Kolloidkémia 4. előadás Határfelületi jelenségek I. Gázok és gőzök adszorpciója szilárd felületeken Adszorbensek Szőri Milán: Kolloidkémia

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Kolloidkémia 4. előadás Határfelületi jelenségek I. Gázok és gőzök adszorpciója szilárd felületeken Adszorbensek Szőri Milán: Kolloidkémia"

Átírás

1 Kolloidkémia 4. előadás Határfelületi jelenségek I. ázok és gőzök adszorpciója szilárd felületeken Adszorbensek 1

2 Határfelületi rétegek 2 Pavel Jungwirth, Nature, 2011, 474,

3 A határfelületi réteg kialakulása Véges anyagmennyiségnek van széle is Egyidejűleg több fázis jelenlétekor A felületen lenni extra energiát igényel (a részecske lemond a vonzó kölcsönhatások egy részéről), ami a γ felületi feszültséggel jellemezzük: ([γ]=j/m 2 =N/m) szabadentalpia, ill. F szabadenergia A S felület szerinti parciális deriváltja Egységnyi felület létrehozásához szükséges izoterm, reverzibilis munka Hardy-Harkins elv: a poláris csoportok nagyobb kölcsönhatásra képesek így az apoláris csoportok helyezkednek el a gáz folyadék határfelületen minimálva a felületi extra energiát fázis1 fázis2 tömbfázis fázishatár tömbfázis 3

4 A felületi feszültség és a tömbfázison belüli kölcsönhatások kapcsolata 4

5 határréteg A kialakuló határréteg vastagsága Vastagság: 0,1 100 nm A termodinamikában a kémiai potenciálkülönbségek kiegyenlítődésére való törekvés, amit mobilis molekulák biztosítják, A felületi energiatöbblet spontán csökkenési lehetőségei: egy gázfázissal érintkező szilárd felület esetén a szilárd fázis legfelső atomjainak/molekuláinak kompenzálatlan állapota megszűnhet, ha a mobilis gázfázis molekuláit a maguk közelébe gyűjtik (adszorpció) kémiai potenciálkülönbség hatására szilárd szemcséken belül is történhetnek olyan spontán változások, melyek a felületen (szemcsehatáron) a szemcse belsejétől eltérő összetételű réteg kialakulását eredményezik (szegregáció) 5

6 A határrétegek csoportosítása Az érintkező rétegek halmazállapota szerint (áz vagy gőz (), folyadék (L) és szilárd (S) fázisok esetén): L/ L/L S/ S/L S/S S/L/ A réteg geometriája szerint: sík görbült felület A határréteg kialakulása során felszabaduló energia szempontjából: kis energiájú nagy energiájú (kitüntetetten nagy energiájú helyeket aktív centrumoknak *) S L 6

7 S/ határfelületi jelenségek 7

8 Adszorpció Alapfogalmak: Adszorpció: feldúsulás határfelületen (megkötődés az aktív centrumokon) Deszorpció: a felületen feldúsult/megkötött molekulák/atomok eltávolítása Adszorbens: nagy felületű szilárd anyag, az adszorpció színtere Adszorptívum: potenciálisan megköthető fluid molekula Adszorbátum: megkötődött (adszorbeálódott) fluid molekula Az adszorpció/deszorpció egyensúlyra vezető folyamat. 8

9 Az adszorpció mennyiségi leírása szilárd egykomponensű gáz határfelület (S/), állandó hőmérsékleten belső energia: Az S/ határfelület koncentráció profilja a felületi többlet (dúsulás) (pozitív adszorpció) entalpia: egyensúlyi gázfázis koncentrációja entrópia: szabadenergia: többlet adszorpció révén kialakuló szilárd fázis teljes rendszer kiindulási Szőri Milán: gáz (fluid) Kolloidkémia az adszorbeált réteg vastagsága Egyensúly akkor áll be, amikor a határfelületi többlet kémiai potenciálja egyenlővé válik a gáz tömbfázis kémiai 9 potenciáljával

10 Fiziszorpció és kemiszorpció összehasonlítása Tulajdonság Fiziszorpció Kemiszorpció Kölcsönhatás Másodrendű kölcsönhatások Elsőrendű kémiai kötés Határréteg vastagsága Akár többmolekulás Egymolekulás A folyamat entalpiaváltozása (hőeffektusa) Exoterm kj/mol Exoterm, több 100 kj/mol A folyamat kinetikája Spontán, gyors yakran aktiválást igényel 10

11 Az S/ adszorpció termodinamikája Spontán folyamatok esetén (T=állandó, p=állandó): ads = H ads T S ads < 0 Ha az adszorbátum szabadsági fokai csökkennek: S ads < 0 T S ads > 0 H ads < 0 (exoterm) Ha az adszorbátum disszociál (csak kemiszorpciónál): T S ads < 0 S ads > 0 akkor lehet H ads > 0 (endoterm is) 11

12 Adszorpciós entalpia (ΔH ads ) Adszorpciós entalpia függ az adszoreált anyag mennyiségétől: Az integrális adszorpciós entalpia (ΔH int ): az az átlagos entalpiamennyiség, amely adott mennyiségű adszorbeált gáznak (n s ) a borítatlan felületű adszorbensre történő adszorpciójakor szabadul fel. Kalorimetriás módszerrel közvetlenül mérhető. A differenciális adszorpciós entalpia (ΔH diff ): entalpiaváltozás, ami kis mennyiségű adszorbátum megkötésekor (dn s ) szabadul fel egy már n s mennyiségű adszorbeált molekulát tartalmazó felület esetében. mikrokaloriméter 12

13 Mitől függ az adszorbeált anyag mennyisége? Adszorbens tulajdonságai Anyagi minőség (első és másodrendű kötésre való hajlam) Fajlagos felület A felület admolekulák általi elérhetősége: Felület érdessége Porozitás Adszorptívum tulajdonságai Anyagi minőség (első és másodrendű kötésre való hajlam a felületi atomokkal és a többi adszorptívummal) Molekulaméret (helyigény) T és p (Le Chatelier-Braun elv alapján) 13

14 Az adszorbeált mennyiség jellemzése Felületi koncentráció [Γ s i ]=mol/m 2 : Γ s i = N i s A s Fajlagos adszorbeált mennyiség [n s i ]=mol/g : n s i = N i s m N i s : i-dik komponens adszorbeált mennyisége N s = p p V RT V = V edény V adszorbens A s : adszorbens fajlagos felülete m: adszorbens tömege Volumetriás meghatározás esetén (normál állapotra vonatkoztatva): ravimetriás meghatározásnál: m i s fajlagos felület (A s ): egységnyi tömegű anyag felülete. [A s ]=m 2 /g: a s = n i s Γ s= A s i m V i s 14

15 Az adszorpció leírására szolgáló függvények I. az egyensúlyi nyomás (p) helyett az ún. relatív nyomást (p r =p/p 0 ) használjuk az egyensúlyi nyomást a gáznak a T hőmérséklethez tartozó p 0 (T) telítési nyomásához (tenzió) viszonyítjuk. A p r =p/p 0 értékét szisztematikusan növelve mérhetjük az ún. adszorpciós izotermákat (T=állandó). Ha a telítés (p r 1) után visszafordulunk és a relatív nyomásokat szisztematikusan csökkentjük, a deszorpciós izotermát kapjuk. Ha a kétfajta izoterma azonos, reverzibilis, ha nem, irreverzibilis adszorpcióról beszélünk. 15

16 Az adszorpció leírására szolgáló függvények II. T=állandó p=állandó V=állandó 16

17 ázadszorpciós izoterma statikus határozása I. Volumetrikus módszer: állandó V és T adott mennyiségű gázt adagolunk a rendszerbe. Az adszorpció következtében a szabad gáz mennyisége csökken. (higanyszint/p-változás) elsősorban alacsony hőmérsékletű mérésekhez (termosztáló közeg cseppfolyós nitrogén, argon, jeges víz) használják 17

18 ázadszorpciós izoterma statikus határozása II. ravimetrikus módszer: klasszikus kvarcrugó elektronikus mikromérleg McBain-mérleg 18

19 ázadszorpciós izoterma statikus határozása IV. S Az elv ugyanaz, csak automatikus mérés 19

20 ázadszorpciós izoterma dinamikus határozása I. Mérési eljárás: Termosztált mintán ismert összetételű kétkomponensű gázelegyet áramoltatunk át, egyik komponens egyáltalán nem adszorbeálódik (pl. H 2 vagy He), a másik komponens (N 2 ) pedig csak alacsony hőmérsékleten, reverzibilisen Detektálás: pl. hővezető-képességi detektorral (TCD) 20

21 ázadszorpciós izoterma dinamikus határozása II. S deszorpciós csúcs kalibrációs csúcs kontrakció (áthelyezés a cseppfolyós N 2 -be) áthelyezés vízbe adszorpciós csúcs 21

22 ázadszorpciós izotermatípusok (IUPAC) Kis külső felületű mikropórusos anyagok fiziszorpciójára jellemző. A szűk mikropórusok feltöltődése már kis relatív nyomásoknál megtörténik. Kemiszorpció esetén. Reverzibilis izoterma (konvex) yenge adszorbens-adszorbátum kölcsönhatás Nincs B pont Pl. vízgőz adszorpciója tiszta grafit felületen Irreverzibilis izoterma yenge adszorbens-adszorbátum kölcsönhatás Pl. vízgőz adszorpciója pórusos apoláros felület kondenzáció Reverzibilis izoterma Rétegképzési mechanizmus Nempórusos vagy makropórusos anyagok egymolekulás. borítottság Irreverzibilis izoterma Hiszterézishurok Mezopórusos szorbensek Lépcsőzetes izoterma Többmolekulás réteges adszorpció Pl. grafitizált szénen az Ar/Kr adszorpciója 77 K-en. 22

23 Izotermák értelmezése I. Klasszikus izoterma modellek: Langmuir-modell BET-modell Dubinin-modell Újabb modellek: Numerikus molekula szimulációk Nagykanonikus Monte Carlo (CMC) Nemlineáris sűrűségfüggvény-elmélet (NLDFT) 23

24 Langmuir izoterma I. Fizikai modell (lásd következő dia) Feltételezések: a felület adszorpciós szempontból energetikailag homogén az adszorpciós réteg maximum egymolekulás vastagságú Nincsen laterális (oldalirányú) kölcsönhatás az adszorbeált molekulák között, azaz a felületi kötőhelyek véletlenszerűen töltődnek fel mindaddig, amíg szabad hely van a felületen Az adszorbeált molekulák immobilisak. A gázmolekulák ideális gázként viselkednek 24

25 Langmuir izoterma II. A borítottság: adszorpciós egyensúlyi állandó Adszorpció: Deszorpció: Egyensúlyban: 25

26 Langmuir Izoterma III. 26

27 Langmuir izoterma IV. Kis nyomások esetén a kifejezés egyszerűsödik: (Henry izoterma) 27

28 BET izoterma I. A Langmuir-modell kiterjesztése végtelen számú fiziszorbeált rétegre A rétegek között nincsen kölcsönhatás az egyes rétegek viselkedése leírható a Langmuir-modellel 28

29 BET izoterma II. 29

30 BET izoterma III. Fajlagos felület meghatározása elterjedt módszer N 2 gáz adszorpcióját vizsgáljuk ekvidisztáns relatív nyomás-értékeknél (p/p 0 ) Meghatározás: N A : az Avogadro-szám, a s : a N 2 -molekula helyigénye megállapodás szerint 0,162 nm 2 /molekula 30

31 Pórus jellemzése 31

32 Pórusok energetikai viszonyai Ideálisan sík felületen: Potenciálfüggvény változása a pórusokban: w: pórusméret d: adszorbeált molekula átmérője Két falú, ideálisan sík felületen: w 32

33 IUPAC szerinti pórusosztályok: Pórusszélesség (w): hengeres pórusnál az átmérő, rés alakú pórusnál a szemben lévő síkok távolsága makropórus, amelynek szélessége nagyobb mint 50 nm, mezopórus, amelynek szélessége 2 50 nm közé esik, mikropórus, amelynek szélessége kisebb mint 2 nm. Mikropórus Mezopórus Makropórus 2 nm 50 nm w/nm 33

34 Dubinin izoterma Mikropórusos rendszerek viselkedésének leírására: éppen betöltött térfogata a mikropórusok teljes térfogata a borítottság a gáz A adszorpciós potenciáljának és a rendszer E karakterisztikus energiájának arányától függ: ahol 34

35 Izoterma egyenletek összefoglalása 35

36 Az adszorpciós hiszterézis I. Mezopórusos szorbensek esetén az izoterma nem reverzibilis, az izotermán a p/p 0 > 0,42 Ok: az adszorpció és a deszorpció eltérő mechanizmusa, gátolt deszorpció (a pórusalak szabálytalansága, pórushálózat). 36

37 Az adszorpciós hiszterézis II. Szűk méreteloszlású hengerszimmetrikus nyitott pórusokat tartalmazó rendszereknél. Különböző méretű és alakú pórusok hálózata esetén tapasztalható. Lemezes részecskék által határolt rés alakú pórusok esetén Sok mikropórust is tartalmazó rendszereknél 37

38 Pórusméret-meghatározási módszerek Kísérleti eljárások: Szimulációs eljárások: Nagykanonikus Monte Carlo (CMC) Nemlineáris sűrűségfüggvény-elmélet (NLDFT) 38

39 Hagyományos adszorbensek 39

40 Aktív szén I. Összetétel: C (50 95%), H, O, és a szervetlen sók és fém-oxidok) Nincs szerkezeti képlete, szerkezete grafitszerű Kiindulási anyaga: olaj, kőszén, tőzeg, fa, műanyagok, csonthéjas gyümölcsök magja (kókuszdió). Végleges pórusszerkezetét fizikai vagy kémiai aktiválással alakítják ki A nyersanyag megválasztása meghatározza a keletkező szén porozitását fajlagos felülete: m 2 /g 40

41 Aktív szén II. felületi heterogenitása a titka : szinte minden molekulafajta megtalálja a számára megfelelő kötő- vagy aktív helyet Kereskedelmi aktív szenek megjelenési formái: 41

42 Zeolitok I. A zeolitok az alumínium-szilikátok családjába tartozó anyagok Általános képletük: M x/n [(AlO 2 ) x (SiO 2 ) y ] mh 2 O jól definiált csatornákat és nyitott kalitkákat tartalmaz ( molekulaszita vagy molekulaszűrő ) Fajlagos felület: több száz m 2 /g felületű méretszelektív adszorbens 42

43 Zeolitok II. Felhasználása: hűtőszekrények hűtőfolyadékának, járművek fékrendszerének, légkondicionáló berendezéseknek a zárt cirkulációs körében vagy transzformátorolajoknál az esetlegesen bekerülő víz megkötésére a levegő alkotóinak szétválasztására, cseppfolyósítható nitrogén és oxigéndús levegő illetve előállítása zeolitok ioncserélő képességét a modern mosóporokban használják ki a víz keménységét okozó Ca 2+ és Mg 2+ ionok megkötésére. 43

44 zilikagél I. amorf pórusos SiO 2 Fajlagos felülete: akár 800 m 2 /g is lehet. Előállítása: 44

45 zilikagél II. Felhasználása: Katalizátorként használják krakkolásnál, számos folyamatban katalizátorhordozó. Nagy vízaffinitása miatt legelterjedtebben szárítószer 45

46 46

Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek. Szőri Milán: Kolloidkémia

Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek. Szőri Milán: Kolloidkémia Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek 1 Határfelületi rétegek 2 Pavel Jungwirth, Nature, 2011, 474, 168 169. / határfelületi jelenségek

Részletesebben

SZILÁRD/GÁZ HATÁRFELÜLETI ADSZORPCIÓ

SZILÁRD/GÁZ HATÁRFELÜLETI ADSZORPCIÓ ZILÁRD/GÁZ HATÁRFELÜLETI ADZORPCIÓ 1. Elméleti bevezető: gázok adszorpciója szilárd adszorbenseken zilárd testek határfelületén az erőtér mindig anizotróp, ezért az adszorptívum (a fluid fázisban jelen

Részletesebben

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)

Részletesebben

Katalízis. Tungler Antal Emeritus professzor 2017

Katalízis. Tungler Antal Emeritus professzor 2017 Katalízis Tungler Antal Emeritus professzor 2017 Fontosabb időpontok: sósav oxidáció, Deacon process 1860 kéndioxid oxidáció 1875 ammónia oxidáció 1902 ammónia szintézis 1905-1912 metanol szintézis 1923

Részletesebben

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27 Az egyensúly 6'-1 6'-2 6'-3 6'-4 6'-5 Dinamikus egyensúly Az egyensúlyi állandó Az egyensúlyi állandókkal kapcsolatos összefüggések Az egyensúlyi állandó számértékének jelentősége A reakció hányados, Q:

Részletesebben

5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével

5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5.1. Átismétlendő anyag 1. Adszorpció (előadás) 2. Langmuir-izoterma (előadás) 3. Spektrofotometria és Lambert Beer-törvény

Részletesebben

Az anyagi rendszer fogalma, csoportosítása

Az anyagi rendszer fogalma, csoportosítása Az anyagi rendszer fogalma, csoportosítása A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 1 A rendszer fogalma A körülöttünk levő anyagi világot atomok, ionok, molekulák építik

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Potenciális (helyzeti) energia: a részecskék kölcsönhatásából származó energia. Energiamegmaradás

Részletesebben

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)

Részletesebben

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően

Részletesebben

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27 Az egyensúly 10-1 Dinamikus egyensúly 10-2 Az egyensúlyi állandó 10-3 Az egyensúlyi állandókkal kapcsolatos összefüggések 10-4 Az egyensúlyi állandó számértékének jelentősége 10-5 A reakció hányados, Q:

Részletesebben

Légköri termodinamika

Légköri termodinamika Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

Energia. Energiamegmaradás törvénye: Energia: munkavégző, vagy hőközlő képesség. Az energia nem keletkezik, nem is szűnik meg, csak átalakul.

Energia. Energiamegmaradás törvénye: Energia: munkavégző, vagy hőközlő képesség. Az energia nem keletkezik, nem is szűnik meg, csak átalakul. Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Energiamegmaradás törvénye: Az energia nem keletkezik, nem is szűnik meg, csak átalakul. A világegyetem energiája állandó. Energia

Részletesebben

Kémiai reakciók sebessége

Kémiai reakciók sebessége Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását

Részletesebben

Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53

Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53 Reakciókinetika 9-1 A reakciók sebessége 9-2 A reakciósebesség mérése 9-3 A koncentráció hatása: a sebességtörvény 9-4 Nulladrendű reakció 9-5 Elsőrendű reakció 9-6 Másodrendű reakció 9-7 A reakciókinetika

Részletesebben

Diffúzió. Diffúzió sebessége: gáz > folyadék > szilárd (kötőerő)

Diffúzió. Diffúzió sebessége: gáz > folyadék > szilárd (kötőerő) Diffúzió Diffúzió - traszportfolyamat (fonon, elektron, atom, ion, hőmennyiség...) Elektromos vezetés (Ohm) töltés áram elektr. potenciál grad. Hővezetés (Fourier) energia áram hőmérséklet különbség Kémiai

Részletesebben

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha

Részletesebben

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók

Részletesebben

A kolloidika alapjai. 4. Fluid határfelületek

A kolloidika alapjai. 4. Fluid határfelületek A kolloidika alapjai 4. Fluid határfelületek Kolloid rendszerek csoportosítása 1. Folyadék-gáz határfelület Folyadék-gáz határfelület -felületi szabadenergia = felületi feszültség ( [γ] = mn/m = mj/m 2

Részletesebben

A kémiai és az elektrokémiai potenciál

A kémiai és az elektrokémiai potenciál Dr. Báder Imre A kémiai és az elektrokémiai potenciál Anyagi rendszerben a termodinamikai egyensúly akkor állhat be, ha a rendszerben a megfelelő termodinamikai függvénynek minimuma van, vagyis a megváltozása

Részletesebben

ADSZORPCIÓ Gázadszorpció és jódszám-meghatározás

ADSZORPCIÓ Gázadszorpció és jódszám-meghatározás ADSZORPCIÓ Gázadszorpció és jódszám-meghatározás Kötelező irodalom: Szekrényesy Tamás: Kolloidika I (609191), Műegyetemi Kiadó, 2000, 135-142. old. Ajánlott irodalom: (1) Sawinsky János, Deák András, Simándi

Részletesebben

Fermi Dirac statisztika elemei

Fermi Dirac statisztika elemei Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika

Részletesebben

Művelettan 3 fejezete

Művelettan 3 fejezete Művelettan 3 fejezete Impulzusátadás Hőátszármaztatás mechanikai műveletek áramlástani műveletek termikus műveletek aprítás, osztályozás ülepítés, szűrés hűtés, sterilizálás, hőcsere Komponensátadás anyagátadási

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek

Részletesebben

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o ) Az atom- olvasni 2.1. Az atom felépítése Az atom pozitív töltésű atommagból és negatív töltésű elektronokból áll. Az atom atommagból és elektronburokból álló semleges kémiai részecske. Az atommag pozitív

Részletesebben

Szilárd gáz határfelület. Berka Márta 2009/2010/II

Szilárd gáz határfelület. Berka Márta 2009/2010/II Szilárd gáz határfelület Berka Márta 2009/2010/II 1 Szilárd gáz határfelület Hasonlóság a fluid határfelületekhez, felületi feszültség Különbségek: állandó alak γa, γ F deformáció- feszültség, (aprítási

Részletesebben

Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)

Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n) Általános kémia képletgyűjtemény (Vizsgára megkövetelt egyenletek a szimbólumok értelmezésével, illetve az egyenletek megfelelő alkalmazása is követelmény) Atomszerkezet Tömegszám (A) A = Z + N Rendszám

Részletesebben

Kinetika. Általános Kémia, kinetika Dia: 1 /53

Kinetika. Általános Kémia, kinetika Dia: 1 /53 Kinetika 15-1 A reakciók sebessége 15-2 Reakciósebesség mérése 15-3 A koncentráció hatása: a sebességtörvény 15-4 Nulladrendű reakció 15-5 Elsőrendű reakció 15-6 Másodrendű reakció 15-7 A reakció kinetika

Részletesebben

Szakértesítő 1 Interkerám szakmai füzetek A folyósító szerek viselkedése a kerámia anyagokban

Szakértesítő 1 Interkerám szakmai füzetek A folyósító szerek viselkedése a kerámia anyagokban Szakértesítő 1 Interkerám szakmai füzetek A folyósító szerek viselkedése a kerámia anyagokban A folyósító szerek viselkedése a kerámia anyagokban Bevezetés A kerámia masszák folyósításkor fő cél az anyag

Részletesebben

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok

Részletesebben

Modellezési esettanulmányok. elosztott paraméterű és hibrid példa

Modellezési esettanulmányok. elosztott paraméterű és hibrid példa Modellezési esettanulmányok elosztott paraméterű és hibrid példa Hangos Katalin Számítástudomány Alkalmazása Tanszék Veszprémi Egyetem Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 1/38 Tartalom

Részletesebben

Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly

Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly Bányai István DE TTK Kolloid- és Környezetkémiai Tanszék 2013.01.11. Környezeti fizikai kémia 1 A fizikai-kémia és környezeti kémia I. A

Részletesebben

2011/2012 tavaszi félév 2. óra. Tananyag:

2011/2012 tavaszi félév 2. óra. Tananyag: 2011/2012 tavaszi félév 2. óra Tananyag: 2. Gázelegyek, gőztenzió Gázelegyek összetétele, térfogattört és móltört egyezősége Gázelegyek sűrűsége Relatív sűrűség Parciális nyomás és térfogat, Dalton-törvény,

Részletesebben

Termodinamikai bevezető

Termodinamikai bevezető Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren

Részletesebben

Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia

Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában 1 Órarend 2 Kurzussal kapcsolatos emlékeztető Kurzus: Az előadás látogatása ajánlott Gyakorlat

Részletesebben

Diffúzió. Diffúzió. Diffúzió. Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd

Diffúzió. Diffúzió. Diffúzió. Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd Anyagszerkezettan és anyagvizsgálat 5/6 Diffúzió Dr. Szabó Péter János szpj@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv

Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv Fizikai kémia és radiokémia B.Sc. László Krisztina 18-93 klaszlo@mail.bme.hu F ép. I. lépcsőház 1. emelet 135 http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem/kornymern Követelmények: 2+0+1 f - részvétel

Részletesebben

Anyagismeret 2016/17. Diffúzió. Dr. Mészáros István Diffúzió

Anyagismeret 2016/17. Diffúzió. Dr. Mészáros István Diffúzió Anyagismeret 6/7 Diffúzió Dr. Mészáros István meszaros@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd Diffúzió Diffúzió -

Részletesebben

Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása.

Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása. Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása. Adszorpció oldatból szilárd felületre Adszorpció oldatból Nem-elektrolitok

Részletesebben

ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 9. (XI. 23)

ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 9. (XI. 23) ELE II. Fizikus, 005/006 I. félév KISÉRLEI FIZIKA Hıtan 9. (XI. 3) Kémiai reakciók Gázelegyek termodinamikája 1) Dalton törvény: Azonos hımérséklető, de eltérı anyagi minıségő és V térfogatú gázkeverékben

Részletesebben

Fázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium

Fázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium Fázisátalakulások, avagy az anyag ezer arca Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium Atomoktól a csillagokig, Budapest, 2016. december 8. Fázisátalakulások Csak kondenzált anyag? A kondenzált

Részletesebben

Számítógépek és modellezés a kémiai kutatásokban

Számítógépek és modellezés a kémiai kutatásokban Számítógépek és modellezés a kémiai kutatásokban Jedlovszky Pál Határfelületek és nanorendszerek laboratóriuma Alkímia ma 214 április 3. VALÓDI RENDSZEREK MODELL- ALKOTÁS MODELL- RENDSZEREK KÍSÉRLETEK

Részletesebben

Az előadás vázlata: Állapotjelzők: Állapotjelzők: Állapotjelzők: Állapotjelzők: nagy közepes kicsi. Hőmérséklet, T tapasztalat (hideg, meleg).

Az előadás vázlata: Állapotjelzők: Állapotjelzők: Állapotjelzők: Állapotjelzők: nagy közepes kicsi. Hőmérséklet, T tapasztalat (hideg, meleg). Az előadás vázlata: I. A tökéletes gáz és állapotegyenlete. izoterm, izobár és izochor folyamatok. II. Tökéletes gázok elegyei, a móltört fogalma, a parciális nyomás, a Dalton-törvény. III. A reális gázok

Részletesebben

Fafizika 4. előadás fa-víz kapcsolat II. Szorpciós jelenségek, hiszterézis

Fafizika 4. előadás fa-víz kapcsolat II. Szorpciós jelenségek, hiszterézis Fafizika 4. előadás fa-víz kapcsolat II. Szorpciós jelenségek, hiszterézis Prof. Dr. Molnár Sándor NYME, FMK, Faanyagtudományi Intézet Szorpciós elméletek A fának, mint kapillár-porózus anyagnak egyik

Részletesebben

Vegyületek - vegyületmolekulák

Vegyületek - vegyületmolekulák Vegyületek - vegyületmolekulák 3.Az anyagok csoportosítása összetételük szerint Egyszerű összetett Azonos atomokból állnak különböző atomokból állnak Elemek vegyületek keverékek Fémek Félfémek Nemfémek

Részletesebben

Badari Andrea Cecília

Badari Andrea Cecília Nagy nitrogéntartalmú bio-olajokra jellemző modellvegyületek katalitikus hidrodenitrogénezése Badari Andrea Cecília MTA Természettudományi Kutatóközpont, Anyag- és Környezetkémiai Intézet, Környezetkémiai

Részletesebben

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilád, folyékony vagy

Részletesebben

Többkomponensű rendszerek. Diszperz rendszerek. Kolloid rendszerek tulajdonságai. Folytonos közegben eloszlatott részecskék - diszperz rendszerek

Többkomponensű rendszerek. Diszperz rendszerek. Kolloid rendszerek tulajdonságai. Folytonos közegben eloszlatott részecskék - diszperz rendszerek Többkomponensű rendszerek 7. hét Folytonos közegben eloszlatott részecskék - diszperz rendszerek homogén - kolloid - heterogén rendszerek - a részecskék mérete alapján Diszperz rendszerek Homogén rendszerek

Részletesebben

Víz. Az élő anyag szerkezeti egységei. A vízmolekula szerkezete. Olyan mindennapi, hogy fel sem tűnik, milyen különleges

Víz. Az élő anyag szerkezeti egységei. A vízmolekula szerkezete. Olyan mindennapi, hogy fel sem tűnik, milyen különleges Az élő anyag szerkezeti egységei víz nukleinsavak fehérjék membránok Olyan mindennapi, hogy fel sem tűnik, milyen különleges A Föld felszínének 2/3-át borítja Előfordulása az emberi szövetek felépítésében

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA

HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA I. Az elektrokémia áttekintése. II. Elektrolitok termodinamikája. A. Elektrolitok jellemzése B. Ionok termodinamikai képződési függvényei C.

Részletesebben

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői Hőmérséklet Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Celsius-skála: 0 ºC pontja

Részletesebben

Makroszkópos tulajdonságok, jelenségek, közvetlenül mérhető mennyiségek leírásával foglalkozik (például: P, V, T, összetétel).

Makroszkópos tulajdonságok, jelenségek, közvetlenül mérhető mennyiségek leírásával foglalkozik (például: P, V, T, összetétel). Mire kell? A mindennapi gyakorlatban előforduló jelenségek (például fázisátalakulások, olvadás, dermedés, párolgás) értelmezéséhez, kvantitatív leírásához. Szerkezeti anyagok tulajdonságainak változása

Részletesebben

Az energia. Energia : munkavégző képesség (vagy hőközlő képesség)

Az energia. Energia : munkavégző képesség (vagy hőközlő képesség) Az energia Energia : munkavégző képesség (vagy hőközlő képesség) Megjelenési formái: Munka: irányított energiaközlés (W=Fs) Sugárzás (fényrészecskék energiája) Termikus energia: atomok, molekulák véletlenszerű

Részletesebben

Szilárd gáz határfelület. Bányai István 2016 DE Fizikai Kémiai Tanszék

Szilárd gáz határfelület. Bányai István 2016 DE Fizikai Kémiai Tanszék Szilárd gáz határfelület Bányai István 2016 DE Fizikai Kémiai Tanszék 1 Szilárd gáz határfelület Hasonlóság a fluid határfelületekhez, felületi feszültség modell létezik Különbségek: állandó alak γa, γf

Részletesebben

Katalízis. A homogén és heterogén katalízis jellemzıinek összehasonlítása

Katalízis. A homogén és heterogén katalízis jellemzıinek összehasonlítása Heterogén katalízis Katalízis Egy katalitikus reakció általában több lépésben megy végbe. A katalizátor az első lépések egyikében reaktánsként, az utolsó lépések valamelyikében pedig termékként szerepel.

Részletesebben

1. SI mértékegységrendszer

1. SI mértékegységrendszer I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség

Részletesebben

FIZIKA. Ma igazán belemelegszünk! (hőtan) Dr. Seres István

FIZIKA. Ma igazán belemelegszünk! (hőtan) Dr. Seres István FIZIKA Ma igazán belemelegszünk! (hőtan) Dr. Seres István Hőtágulás, kalorimetria, Halmazállapot változások fft.szie.hu 2 Seres.Istvan@gek.szi.hu Lineáris (vonalmenti) hőtágulás L L L 1 t L L0 t L 0 0

Részletesebben

Digitális tananyag a fizika tanításához

Digitális tananyag a fizika tanításához Digitális tananyag a izika tanításához Gázok állaotjelzői Adott mennyiségű gáz állaotjelzői: Nyomás: []=Pa=N/m Térogat []=m 3 Hőmérséklet [T]=K; A gázok állaotát megadó egyéb mennyiségek: tömeg: [m]=g

Részletesebben

Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek. N m J 2

Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek. N m J 2 Határelületi jelenségek 1. Felületi eszültség Fogorvosi anyagtan izikai alapjai 3. Általános anyagszerkezeti ismeretek Határelületi jelenségek Kiemelt témák: elületi eszültség adhézió nedvesítés ázis ázisdiagramm

Részletesebben

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom: 1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:

Részletesebben

A metabolizmus energetikája

A metabolizmus energetikája A metabolizmus energetikája Dr. Bódis Emőke 2015. október 7. JJ9 Miért tanulunk bonyolult termodinamikát? Miért tanulunk bonyolult termodinamikát? Mert a biokémiai rendszerek anyag- és energiaáramlásának

Részletesebben

Az anyagi rendszerek csoportosítása

Az anyagi rendszerek csoportosítása Általános és szervetlen kémia 1. hét A kémia az anyagok tulajdonságainak leírásával, átalakulásaival, elıállításának lehetıségeivel és felhasználásával foglalkozik. Az általános kémia vizsgálja az anyagi

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia I. kategória 2. forduló Megoldások

Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia I. kategória 2. forduló Megoldások Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia I. kategória 2. forduló Megoldások I. FELADATSOR 1. C 6. C 11. E 16. C 2. D 7. B 12. E 17. C 3. B 8. C 13. D 18. C 4. D

Részletesebben

Termokémia. Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

Termokémia. Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 Termokémia Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A reakcióhő fogalma A reakcióhő tehát a kémiai változásokat kísérő energiaváltozást jelenti.

Részletesebben

Molekuláris dinamika I. 10. előadás

Molekuláris dinamika I. 10. előadás Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,

Részletesebben

A TÖMEGSPEKTROMETRIA ALAPJAI

A TÖMEGSPEKTROMETRIA ALAPJAI A TÖMEGSPEKTROMETRIA ALAPJAI web.inc.bme.hu/csonka/csg/oktat/tomegsp.doc alapján tömeg-töltés arány szerinti szétválasztás a legérzékenyebb módszerek közé tartozik (Nagyon kis anyagmennyiség kimutatására

Részletesebben

Aerogél alapú gyógyszerszállító rendszerek. Tóth Tünde Anyagtudomány MSc

Aerogél alapú gyógyszerszállító rendszerek. Tóth Tünde Anyagtudomány MSc Aerogél alapú gyógyszerszállító rendszerek Tóth Tünde Anyagtudomány MSc 2016. 04. 22. 1 A gyógyszerszállítás problémái A hatóanyag nem oldódik megfelelően Szelektivitás hiánya Nem megfelelő eloszlás A

Részletesebben

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2002

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2002 1. oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI FELVÉTELI FELADATOK 2002 JAVÍTÁSI ÚTMUTATÓ Az írásbeli felvételi vizsgadolgozatra összesen 100 (dolgozat) pont adható, a javítási útmutató részletezése szerint. Minden

Részletesebben

Hevesy György Országos Kémiaverseny Kerületi forduló február évfolyam

Hevesy György Országos Kémiaverseny Kerületi forduló február évfolyam Hevesy György Országos Kémiaverseny Kerületi forduló 2013. február 20. 8. évfolyam A feladatlap megoldásához kizárólag periódusos rendszert és elektronikus adatok tárolására nem alkalmas zsebszámológép

Részletesebben

Általános és szervetlen kémia Laborelıkészítı elıadás I.

Általános és szervetlen kémia Laborelıkészítı elıadás I. Általános és szervetlen kémia Laborelıkészítı elıadás I. Halmazállapotok, fázisok Fizikai állapotváltozások (fázisátmenetek), a Gibbs-féle fázisszabály Fizikai módszerek anyagok tisztítására - Szublimáció

Részletesebben

Fázisátalakulások. A víz fázisai. A nem közönséges (II-VIII) jég kristálymódosulatok csak több ezer bar nyomáson jelentkeznek.

Fázisátalakulások. A víz fázisai. A nem közönséges (II-VIII) jég kristálymódosulatok csak több ezer bar nyomáson jelentkeznek. Fázisátalakulások A víz fázisai. A nem közönséges (II-VIII) jég kristálymódosulatok csak több ezer bar nyomáson jelentkeznek. Fából vaskarika?? K Vizes kalapács Ha egy tartályban a folyadék fölötti térrészből

Részletesebben

Axiomatikus felépítés az axiómák megalapozottságát a felépített elmélet teljesítképessége igazolja majd!

Axiomatikus felépítés az axiómák megalapozottságát a felépített elmélet teljesítképessége igazolja majd! Hol vagyunk most? Definiáltuk az alapvet fogalmakat! - TD-i rendszer, fajtái - Környezet, fal - TD-i rendszer jellemzi - TD-i rendszer leírásához szükséges változók, állapotjelzk, azok csoportosítása -

Részletesebben

Megjegyzések (észrevételek) a szabad energia és a szabad entalpia fogalmához

Megjegyzések (észrevételek) a szabad energia és a szabad entalpia fogalmához Dr. Pósa Mihály Megjegyzések (észrevételek) a szabad energia és a szabad entalpia fogalmához 1. Bevezetés Shillady Don professzor az Amerikai Kémiai Szövetség egyik tanácskozásán felhívta a figyelmet a

Részletesebben

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható!

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható! 1 MŰVELTSÉGI VERSENY KÉMIA TERMÉSZETTUDOMÁNYI KATEGÓRIA Kedves Versenyző! A versenyen szereplő kérdések egy része általad már tanult tananyaghoz kapcsolódik, ugyanakkor a kérdések másik része olyan ismereteket

Részletesebben

Határfelületi jelenségek: szétterülés és nedvesítés

Határfelületi jelenségek: szétterülés és nedvesítés Határfelületi jelenségek: szétterülés és nedvesítés Bányai István Kolloid.unideb.hu 1 A felületi feszültség koncepció A felületi feszültség a felület egységnyi vonaldarabjára ható, arra merőleges a és

Részletesebben

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,

Részletesebben

Altalános Kémia BMEVESAA101 tavasz 2008

Altalános Kémia BMEVESAA101 tavasz 2008 Folyadékok és szilárd anayagok 3-1 Intermolekuláris erők, folyadékok tulajdonságai 3-2 Folyadékok gőztenziója 3-3 Szilárd anyagok néhány tulajdonsága 3-4 Fázisdiagram 3-5 Van der Waals kölcsönhatások 3-6

Részletesebben

5. előadás 12-09-16 1

5. előadás 12-09-16 1 5. előadás 12-09-16 1 H = U + PV; U=Q-PV H = U + (PV); P= áll H = U + P V; U=Q-P V; U=Q-P V H = Q U= Q V= áll P= áll H = G + T S Munkává nem alakítható Hátalakulás = G + T S 2 3 4 5 6 7 Szilárd halmazállapot

Részletesebben

Célkitűzés/témák Fehérje-ligandum kölcsönhatások és a kötődés termodinamikai jellemzése

Célkitűzés/témák Fehérje-ligandum kölcsönhatások és a kötődés termodinamikai jellemzése Célkitűzés/témák Fehérje-ligandum kölcsönhatások és a kötődés termodinamikai jellemzése Ferenczy György Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Biokémiai folyamatok - Ligandum-fehérje kötődés

Részletesebben

18_heterogen_kinetika.pptx FOLYAMATOK SZILÁRD FELÜLETEKEN HETEROGÉN REAKCIÓK ÁTTEKINTÉS: FELÜLETI JELENSÉGEK ALKALMAZÁSI PÉLDÁK

18_heterogen_kinetika.pptx FOLYAMATOK SZILÁRD FELÜLETEKEN HETEROGÉN REAKCIÓK ÁTTEKINTÉS: FELÜLETI JELENSÉGEK ALKALMAZÁSI PÉLDÁK HETEROGÉN RECIÓ FOLYMTO SZILÁRD FELÜLETEEN HETEROGÉN RE C I Ó (Eddig a g és a l fázisú homogén reakcióktól volt szó.) heterogén reakciók két fázis határán játszódnak le. változás lehet fizikai vagy kémiai,

Részletesebben

FOLYAMATOK SZILÁRD FELÜLETEKEN

FOLYAMATOK SZILÁRD FELÜLETEKEN FOLYAMATOK SZILÁRD FELÜLETEKEN H E T E R O G É N R E A K C I Ó K HETEROGÉN REAKCIÓK (Eddig a g és a l fázisú homogén reakcióktól volt szó.) A heterogén reakciók két fázis határán játszódnak le. A változás

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása

Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása Oktatási Hivatal I. FELADATSOR Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása 1. B 6. E 11. A 16. E 2. A 7. D 12. A 17. C 3. B 8. A 13. A 18. C

Részletesebben

Oldatok - elegyek. Elegyek: komponensek mennyisége azonos nagyságrendű

Oldatok - elegyek. Elegyek: komponensek mennyisége azonos nagyságrendű Oldatok - elegyek Többkomponensű homogén (egyfázisú) rendszerek Elegyek: komponensek mennyisége azonos nagyságrendű Oldatok: egyik komponens mennyisége nagy (oldószer) a másik, vagy a többihez (oldott

Részletesebben

Folyadékok. Molekulák: Gázok Folyadékok Szilárd anyagok. másodrendű kölcsönhatás növekszik. cseppfolyósíthatók hűtéssel és/vagy nyomással

Folyadékok. Molekulák: Gázok Folyadékok Szilárd anyagok. másodrendű kölcsönhatás növekszik. cseppfolyósíthatók hűtéssel és/vagy nyomással Folyadékok Molekulák: másodrendű kölcsönhatás növekszik Gázok Folyadékok Szilárd anyagok cseppfolyósíthatók hűtéssel és/vagy nyomással Folyadékok Molekulák közti összetartó erők: Másodlagos kötőerők: apoláris

Részletesebben

NEHÉZFÉMEK ELTÁVOLÍTÁSA IPARI SZENNYVIZEKBŐL Modell kísérletek Cr(VI) alkalmazásával növényi hulladékokból nyert aktív szénen

NEHÉZFÉMEK ELTÁVOLÍTÁSA IPARI SZENNYVIZEKBŐL Modell kísérletek Cr(VI) alkalmazásával növényi hulladékokból nyert aktív szénen NEHÉZFÉMEK ELTÁVOLÍTÁSA IPARI SZENNYVIZEKBŐL Modell kísérletek Cr(VI) alkalmazásával növényi hulladékokból nyert aktív szénen Készítette: Battistig Nóra Környezettudomány mesterszakos hallgató A DOLGOZAT

Részletesebben

Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző

Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilárd, folyékony vagy

Részletesebben

FELÜLETI FESZÜLTSÉG. Jelenség: A folyadék szabad felszíne másképp viselkedik, mint a folyadék belseje.

FELÜLETI FESZÜLTSÉG. Jelenség: A folyadék szabad felszíne másképp viselkedik, mint a folyadék belseje. Jelenség: A folyadék szabad felszíne másképp iselkedik, mint a folyadék belseje. A felületen leő molekulákra a saját részecskéik onzása csak alulról hat, a felülettel érintkező leegő molekulái által kifejtett

Részletesebben

Kémiai egyensúlyok [CH 3 COOC 2 H 5 ].[H 2 O] [CH3 COOH].[C 2 H 5 OH] K = k1/ k2 = K: egyensúlyi állandó. Tömeghatás törvénye

Kémiai egyensúlyok [CH 3 COOC 2 H 5 ].[H 2 O] [CH3 COOH].[C 2 H 5 OH] K = k1/ k2 = K: egyensúlyi állandó. Tömeghatás törvénye Kémiai egyensúlyok CH 3 COOH + C 2 H 5 OH CH 3 COOC 2 H 5 + H 2 O v 1 = k 1 [CH 3 COOH].[C 2 H 5 OH] v 2 = k 2 [CH 3 COOC 2 H 5 ]. [H 2 O] Egyensúlyban: v 1 = v 2 azaz k 1 [CH 3 COOH].[C 2 H 5 OH] = k

Részletesebben

? Az adszorbens által megkötött mennyiség = x, X: telítettség, töltés, kapacitás. Adszorpció. m kg. A kötőerők

? Az adszorbens által megkötött mennyiség = x, X: telítettség, töltés, kapacitás. Adszorpció. m kg. A kötőerők Adszorpció A kötőerők Szilárd anyagok felületén történő komponensmegkötés (oldatokból és gázelegyekből) Szilárd felületen történő sűrítés Fizikai~ Van der Waals-féle kötőerők Kondenzációs hő Könnyebb deszorpció

Részletesebben

Reológia Mérési technikák

Reológia Mérési technikák Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test

Részletesebben

Curie Kémia Emlékverseny 2016/2017. Országos Döntő 9. évfolyam

Curie Kémia Emlékverseny 2016/2017. Országos Döntő 9. évfolyam A feladatokat írta: Baglyas Márton, Dunaföldvár Lektorálta: Dr. Várallyainé Balázs Judit, Debrecen Kódszám:... Curie Kémia Emlékverseny 2016/2017. Országos Döntő 9. évfolyam A feladatok megoldásához periódusos

Részletesebben

A TERMODINAMIKA I. AXIÓMÁJA. Egyszerű rendszerek egyensúlya. Első észrevétel: egyszerű rendszerekről beszélünk.

A TERMODINAMIKA I. AXIÓMÁJA. Egyszerű rendszerek egyensúlya. Első észrevétel: egyszerű rendszerekről beszélünk. A TERMODINAMIKA I. AXIÓMÁJA Egyszerű rendszerek egyensúlya Első észrevétel: egyszerű rendszerekről beszélünk. Második észrevétel: egyensúlyban lévő egyszerű rendszerekről beszélünk. Mi is tehát az egyensúly?

Részletesebben

ZEOLITOK, MINT ADSZORBENSEK ÉS SZÁRÍTÓ ANYAGOK HANNUS ISTVÁN

ZEOLITOK, MINT ADSZORBENSEK ÉS SZÁRÍTÓ ANYAGOK HANNUS ISTVÁN ZEOLITOK, MINT ADSZORBENSEK ÉS SZÁRÍTÓ ANYAGOK HANNUS ISTVÁN Szegedi Tudományegyetem Alkalmazott és Környezeti Kémiai Tanszék 6720 Szeged, Rerrich Béla tér 1. Tel.: 62-544-626, Fax: 62-544-619 E-mail:

Részletesebben

Anyagtudomány. Ötvözetek egyensúlyi diagramjai (állapotábrák)

Anyagtudomány. Ötvözetek egyensúlyi diagramjai (állapotábrák) Anyagtudomány Ötvözetek egyensúlyi diagramjai (állapotábrák) Kétkomponensű fémtani rendszerek fázisai és szövetelemei Folyékony, olvadék fázis Színfém (A, B) Szilárd oldat (α, β) (szubsztitúciós, interstíciós)

Részletesebben

Diffúzió 2003 március 28

Diffúzió 2003 március 28 Diffúzió 3 március 8 Diffúzió: különféle anyagi részecskék (szilárd, folyékony, gáznemű) anyagon belüli helyváltozása. Szilárd anyagban való mozgás Öndiffúzió: a rácsot felépítő saját atomok energiaszint-különbség

Részletesebben