Szilárd gáz határfelület. Berka Márta 2009/2010/II

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Szilárd gáz határfelület. Berka Márta 2009/2010/II"

Átírás

1 Szilárd gáz határfelület Berka Márta 2009/2010/II 1

2 Szilárd gáz határfelület Hasonlóság a fluid határfelületekhez, felületi feszültség Különbségek: állandó alak γa, γ F deformáció- feszültség, (aprítási munka, égéshő, oldáshő stb.) a felületi feszültség függ az előélettől a felületi feszültség csökkenthető adszorpcióval a felületi feszültség különbözik (a kristály él, lap, csúcs) a szilárd felületeknek struktúrája van Szilárd felület molekuláris szinten mindig heterogén A szilárd felület nagyon különbözik a közegtől ugyanannál az anyagnál is, sajátsága függ a helytől, a szennyeződéstől és a hibahely jellegétől. Az atomok helyi eloszlása egy egyedi atom körül függ az adott helytől a felületen még akkor is ha tökéletes kristályról van szó, következésképpen az atomok elektromos sajátságai nem egyformák. A szilárd felületeknek struktúrája van. 2

3 A felületi hibák A felületi hibák néhány jellegzetes típusa: sík terasz (ez igazából nem hiba) lépcső beszögellés csúcs egyedi atom A szilárd felület sohasem homogén molekuláris szinten hibahelyek agyagásványok 3

4 Szilárd felület molekuláris szinten A szilárd felület sohasem homogén molekuláris szinten A fő sikok lapcentrált kocka a felületi feszültség különbözik (a kristály él, lap, csúcs) kockacukor Síkok egyszerű kocka rács az (111) sík árnyékolt Azok a felületek a legstabilabbak, amelyeknek legnagyobb az atomsűrűségük és a felületi atomok koordinációs száma a legnagyobb, a legkisebb a fel.feszültség. 4

5 A felület tisztasága A tiszta felületek vizsgálatára megoldás a nagy vákuum alatti vizsgálatok: 1 bar 2, ütközés/s/m 2 (10-8 s-onként 1 atom) 10-4 Pa ütközés/s/m 2 (0,1 s-onként egy atom) - ultra nagy vákuum: 10-7 Pa (10-12 bar ), így esetleg 10-9 Pa így darab ütközés (10 5 s-onként egy atomot eltalál) 5

6 Technikák szilárdfelület vizsgálatára Spektroszkópiai, diffrakciós és kiegészítő módszerek Rendeződés és szerkezet Leképezés Azonosítás és kémia X-ray photoelectron spectroscopy XPS Fotoelektron spektroszkópiák Auger electron spectroscopy AES Auger-elektronspektroszkópia Secondary ion mass spectroscopy SIMS szekunderion-tömegspektroszkópia Low energy electron diffraction LEED kisenergiájú elektrondiffrakció Grazing incident X-ray diffraction GIXD érintõleges beesési X-ray diff. Scanning tunneling microscopy STM -pásztázó alagúteffektus-mikroszkópia Atomic force microscopy AFM - Atom-erő mikroszkópia P.W. Atkins III. 6

7 Adszorpció Az adszorpció minőségi jellemzője a felületi kötődés jellege és erőssége. Ennek alapján van fiziszorpció (van der Waals kölcsönhatással) kemiszorpció (kémiai [kovalens] kötéssel). Fiziszorpció Kemiszorpció. kis [ ] Δ ad H θ kj/mol nagy [ ] adsz. entalpia nagy távolság kis távolság többrétegű egyrétegű nem specifikus rendszerint specifikus molekula szerk. marad molekulaszerk. változik ΔG = ΔH TΔS Az entrópia többnyire csökken, mivel a gáz szabadsági foka csökken, így a szabad entalpia előjele a entalpia előjelétől és nagyságától függ 7

8 Az adszorpció mértéke kétirányú, egyensúlyi folyamat (ellenirány: deszorpció): dinamikus egyensúly áll fenn az gáztéri adszorbens és az adszorbátum között az egyensúly függ: - a két anyag minőségétől, -a p nyomástól és. a T hőmérséklettől. mérés Térfogatmérésen alapuló módszer Nitrogén adszorpció 8

9 Szorpciós izotermák Erős kölcsönhatás I, II, IV-s típusok Gyenge kölcsönhatás III, V típusok Γ, az adszorbeált mólok száma egységnyi felületen, vagy a borítottság, θ, a p/p 0 relativ nyomás függvényében 9

10 Γ Alkalmazás Γ bp p p 1 θ = = átrendezve = + Γ 1 + bp b m Langmuir I. tipus (gázokra) Γ Γ Γ Feltételezés: monoréteg, homogen felület, független aktív centrumok, adszorpció-deszorpció dinamikus egyensúly k a és k d seb. konstans. Γ, az adszorbeált mólok száma egységnyi felületen (mol/g vagy mol/m 2 ), θ a borítottság, p/p 0 a relativ nyomás Γ m a teljes monoréteg borítottság kapacitása, b, szorpciós konstans m ( ) 2 2 m ( / ) ϕm( / ) A / = / mol g m molecules N molecules mol specific surface area m g m b ka = k exp E / RT d ( )

11 Langmuir Hückel izoterma p p Γ = z + 1 bz Kiszámította a felületet, kisebbnek adódott mint a geometriai. Magyarázat, az adszorpció csak az aktív helyeken történik. Langmuir Hückel izoterma Γ m helyett z az aktív centrumok száma. További módosítás a differenciális adszorpciós hő függ a borítottságtól. Kis borítottságnál olyan nagy mintha kemiszorpció lenne. Nem azonos erősségű aktív helyek, heterogén felület. Γ Fajlagos felület meghatározás! ( ) 2 2 m ( / ) ϕm( / ) A / = / mol g m molecules N molecules mol specific surface area m g Irving Langmuir Nobel price in

12 BET isotherm, II tipus Brunauer, Emmett, Teller (gázokra) Γ Zp Γ = ( p p) 1+ Z 1 p/ p m { ( )( )} 0 0 {( 1 v ) } Z exp E E / RT Nettó adszorpciós hő Feltételek: több rétegű adszorpció, minden rétegre a Langmuir egyenletet alkalmazva, adszorpció és deszorpció, dinamikus egyensúly, az adszorbeátum megoszlása a rétegek között állandó. E 1, E v az első réteg adszorpciós hő, és az adszorbeátum párolgás hője.. 12

13 Modern Archimedes Képaláírás: Beck Mihálynak és a többi debreceni kollégának Stephen Brunauer Paul Hugh Emmett Teller Ede Brunauer, Emmett, Teller 13

14 Kapilláris kondenzáció, IV, V típusú izotermák (gőzökre) Kapilláris kondenzáció akkor fordul elő, amikor az aktuális síkbeli egyensúlyi gőznyomásnál kisebb gőznyomásokon folyadék jelenik meg a szorbensen. p γv 2 = r L ln p0 RT rm Zsigmondy: Ha a felület homorú (r<0), ahogyan a Kelvin egyenlet mutatja, az egyensúlyi gőznyomás, p r, jelentősen kisebb lehet mint a sík folyadékfelszínnel egyensúlyban lévő p 0 gőznyomás. Ezért a kapillárisban kialakult meniszkusz esetében a gőz kisebb nyomáson kondenzálódik, p r /p 0 <1. A jelenséget kapilláris kondenzációnak nevezzük. Feltételek: pórusos adszorbens, nagy relatív nyomás, és a gőz folyadékként jól nedvesíti a felületet azaz homorú meniszkusz. (Hiszterézis, haladó, hátráló peremszög, tintásüveg forma, stb.) Adszorpció, deszorpció hiszterézis Talaj vízháztartása!! A pórus méret számolható, p r / p 0 ~ r r meniszkusz =R kapillaris /cos θ 14

15 Adszorpció oldatból szilárd felületre Nem-elektrolit adszorpciója Erős elektrolit adszorpciója Híg oldatból 1. Típusú izotermák, empirikus szabályok Elegy adszorpció Többlet izotermák Semleges felületre Ekvivalens vagy molekularis adszorpcio Nem semleges felületre Nem ekvivalens vagy ioncsere szorpció Poláris felületre Apoláris felületre Az elektromos kettősréteg kialakulása 15

16 Adszorpció híg oldatból A hasonló a hasonlót szereti Minden rendszer minimális energiára törekszik A szorbeálódó képesség függ a C atom számától A Langmuir (és a Freundlich) izotermák gyakran alkalmazhatók. Az a, a látszólagos fajlagos adszorbeált anyagmennyiség, c 0 a kezdeti c az egyensúlyi koncentráció az oldatban. Γ a, Γ a, p c m V c a = m m ( 0 c), / mol g 16

17 Kromatográfia Mi a kromatográfia? Elválasztási módszer. Az elválasztani kívánt két (több) komponenst külön fázisba visszük: elnevezések szerint van egy álló (S, L) és egy mozgó fázis (G,L). A megoszlás a mozgó és az álló fázis között történhet adszorpció, fázisegyensúly (elegyedés, oldékonyság), méret, ioncsere vagy specifikus kölcsönhatások alapján. Adszorpciós kromatográfia Megoszlásos kromatográfia Méretkizárásos kromatográfia Ioncsere kromatográfia Affinitás kromatográfia Γ 1 b = Γ m 1 2 bp bp + bp >> b szelektiv 17

18 Types of Chromatography 18

19 Adszorpció oldatból szilárd felületre Nem-elektrolit adszorpciója Erős elektrolit adszorpciója Híg oldatból 1. Típusú izotermák, empirikus szabályok Elegy adszorpció Többlet izotermák Indifferens felületre Equivalent or molecular adsorption Nem indifferens felületre Nem ekvivalens vagy ioncsere szorpció Poláris felületre Apoláris felületre Az elektromos kettősréteg kialakulása 19

20 Elegy adszorpciós izotermák, kétkomponensű elegyek adszorpciója szilárd adszorbensen A lineáris szakasz mentén az adszorbeált réteg összetétele állandó x b azeotróp összetétel Az A és B komponensek összmennyisége a felületen (szaggatott) és a B komponens felületi többlete a B komponens elegybeli koncentrációjának függvényében, U és S típusú többletizotermáknál. Felületi többlet= felület oldat koncentráció 20

21 Elegy adszorpciós izotermák, kétkomponensű elegyek adszorpciója szilárd adszorbensen Látszólagos fajlagos adszorbeált felületi anyagtöbblet Ualakú Többlet-izotermák U, S alakú adszorpciós kapacitás az y- tengelymetszetekből Salakú x 1,a azeotróp összetétel molar fraction of component(1) 60% Hidrofób / hidrofil terület aránya 60% / 40% CCl 4 (1) és CHCl 3 (2) elegy aktív szénen 21

22 Adszorpció erős elektrolitok vizes oldataiból Erős elektrolit adszorpció Molekuláris vagy ekvivalens Nem-ekvivalens vagy ioncsere Indifferens felület Nem indifferens felület Anion-, kationcsere apoláris Hamumentes aktív szénen az elektrolitok adszorpciója vizes oldatból (liotrop sor: Al 3+ > Ca 2+ = Mg 2+ > K + = NH 4+ > Na + ) poláris Ionkristály saját telitett oldatából, bizonyos koncentrációnál a kétféle ion a megfelelő rácspontra ül poláris Elektromos kettősréteg Szemben álló fegyverzetek?? Melyik ion kerül belülre? 22

23 Elektromos kettősréteg. Elektromos potenciálkülönbség eredete. Elektromos potenciálkülönbség alakul ki ha valamely töltéshordozó megoszlása nem egyenletes. Nettó töltés (áramforráshoz kötött elektród, nem tárgyaljuk) A fázisok semlegesek (nincsenek áramforráshoz kötve), de a töltéseloszlás nem egyenletes a határfelületen, a két oldalon ellentétes előjellel. Oka: 1. Felületi disszociáció (a közeg ph-tól függ) 2. Ionok adszorpciója. Saját vagy specifikus ionok 3. Izomorf helyettesítés agyagok! Példák: Nem-fémek felülete, oxidok vízben, proteinek COOH/COO -, NH 2 /NH 3 + Olajcsepp vízben (negatív adszorpció a kationra erősebb mint az anionra, messzebb van a felülettől), emulgáló szerek Elektródok, agyagásványok konstans töltése Poláris molekulák adszorpciója: felszíni potenciál (üveg vízben, benzolban). 23

Adszorpció, fluid határfelületeken. Bányai István

Adszorpció, fluid határfelületeken. Bányai István Adszorpció, fluid határfelületeken Bányai István 1 A felületi feszültség mérése, de minek? 2 2 r k gh r k 1 ghr c 2 Ahol r c a kapilláris sugara (m), r a sűrűség (kg/m 3 ), h a folyadékoszlop magassága,

Részletesebben

Szilárd gáz határfelület. Bányai István 2016 DE Fizikai Kémiai Tanszék

Szilárd gáz határfelület. Bányai István 2016 DE Fizikai Kémiai Tanszék Szilárd gáz határfelület Bányai István 2016 DE Fizikai Kémiai Tanszék 1 Szilárd gáz határfelület Hasonlóság a fluid határfelületekhez, felületi feszültség modell létezik Különbségek: állandó alak γa, γf

Részletesebben

Adszorpció folyadék-szilárd határfelületen. 2011-12/II Bányai István

Adszorpció folyadék-szilárd határfelületen. 2011-12/II Bányai István Adszorpció folyadék-szilárd határfelületen 2011-12/II Bányai István 1 Közönséges Jelentősége bibliai példa keserű víz (ioncsere) kromatográfia (papíron, oszlopon) elektródok, kozmetikumok, hajápolás Kevésbé

Részletesebben

Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása.

Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása. Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása. Adszorpció oldatból szilárd felületre Adszorpció oldatból Nem-elektrolitok

Részletesebben

Szilárd-folyadék határfelület Erős elektrolit adszorpció. Berka Márta és Bányai István 2010/2011/II

Szilárd-folyadék határfelület Erős elektrolit adszorpció. Berka Márta és Bányai István 2010/2011/II Szilárd-folyadék határfelület Erős elektrolit adszorpció Berka Márta és Bányai István 2010/2011/II 1 Adszorpció erős elektrolitok vizes oldataiból Erős elektrolit adszorpció Molekuláris vagy ekvivalens

Részletesebben

Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek. Szőri Milán: Kolloidkémia

Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek. Szőri Milán: Kolloidkémia Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek 1 Határfelületi rétegek 2 Pavel Jungwirth, Nature, 2011, 474, 168 169. / határfelületi jelenségek

Részletesebben

Adszorpció erős elektrolitok vizes oldataiból

Adszorpció erős elektrolitok vizes oldataiból Adszorpció erős elektrolitok vizes oldataiból Berka Márta Bányai István 1 Adszorpció erős elektrolitok vizes oldataiból Erős elektrolit adszorpció Molekuláris vagy ekvivalens Nem-ekvivalens vagy ioncsere

Részletesebben

5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével

5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5.1. Átismétlendő anyag 1. Adszorpció (előadás) 2. Langmuir-izoterma (előadás) 3. Spektrofotometria és Lambert Beer-törvény

Részletesebben

A kolloidika alapjai. 4. Fluid határfelületek

A kolloidika alapjai. 4. Fluid határfelületek A kolloidika alapjai 4. Fluid határfelületek Kolloid rendszerek csoportosítása 1. Folyadék-gáz határfelület Folyadék-gáz határfelület -felületi szabadenergia = felületi feszültség ( [γ] = mn/m = mj/m 2

Részletesebben

Altalános Kémia BMEVESAA101 tavasz 2008

Altalános Kémia BMEVESAA101 tavasz 2008 Folyadékok és szilárd anayagok 3-1 Intermolekuláris erők, folyadékok tulajdonságai 3-2 Folyadékok gőztenziója 3-3 Szilárd anyagok néhány tulajdonsága 3-4 Fázisdiagram 3-5 Van der Waals kölcsönhatások 3-6

Részletesebben

Az anyagi rendszer fogalma, csoportosítása

Az anyagi rendszer fogalma, csoportosítása Az anyagi rendszer fogalma, csoportosítása A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 1 A rendszer fogalma A körülöttünk levő anyagi világot atomok, ionok, molekulák építik

Részletesebben

Az elektromos kettős réteg és speciális alakulásai. Bányai István DE Fizikai Kémiai Tanszék

Az elektromos kettős réteg és speciális alakulásai. Bányai István DE Fizikai Kémiai Tanszék Az elektromos kettős réteg és speciális alakulásai Bányai István DE Fizikai Kémiai Tanszék A felületi töltés F( ) 0 A felületi töltés szerepe a liofób kolloidok stabilitásában DLVO elmélet. A hidrofób

Részletesebben

Katalízis. Tungler Antal Emeritus professzor 2017

Katalízis. Tungler Antal Emeritus professzor 2017 Katalízis Tungler Antal Emeritus professzor 2017 Fontosabb időpontok: sósav oxidáció, Deacon process 1860 kéndioxid oxidáció 1875 ammónia oxidáció 1902 ammónia szintézis 1905-1912 metanol szintézis 1923

Részletesebben

Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések

Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések Pécsi Tudományegyetem Általános Orvostudományi Kar 2010-2011. 1 A vegyületekben az atomokat kémiai kötésnek nevezett erők tartják össze. Az elektronok

Részletesebben

Általános és szervetlen kémia Laborelıkészítı elıadás I.

Általános és szervetlen kémia Laborelıkészítı elıadás I. Általános és szervetlen kémia Laborelıkészítı elıadás I. Halmazállapotok, fázisok Fizikai állapotváltozások (fázisátmenetek), a Gibbs-féle fázisszabály Fizikai módszerek anyagok tisztítására - Szublimáció

Részletesebben

Kolloidkémia 4. előadás Határfelületi jelenségek I. Gázok és gőzök adszorpciója szilárd felületeken Adszorbensek Szőri Milán: Kolloidkémia

Kolloidkémia 4. előadás Határfelületi jelenségek I. Gázok és gőzök adszorpciója szilárd felületeken Adszorbensek Szőri Milán: Kolloidkémia Kolloidkémia 4. előadás Határfelületi jelenségek I. ázok és gőzök adszorpciója szilárd felületeken Adszorbensek 1 Határfelületi rétegek 2 Pavel Jungwirth, Nature, 2011, 474, 168 169. A határfelületi réteg

Részletesebben

HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA

HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA I. Az elektrokémia áttekintése. II. Elektrolitok termodinamikája. A. Elektrolitok jellemzése B. Ionok termodinamikai képződési függvényei C.

Részletesebben

Határfelületi jelenségek: szétterülés és nedvesítés

Határfelületi jelenségek: szétterülés és nedvesítés Határfelületi jelenségek: szétterülés és nedvesítés Bányai István Kolloid.unideb.hu 1 A felületi feszültség koncepció A felületi feszültség a felület egységnyi vonaldarabjára ható, arra merőleges a és

Részletesebben

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol Kémiai kötések A természetben az anyagokat felépítő atomok nem önmagukban, hanem gyakran egymáshoz kapcsolódva léteznek. Ezeket a kötéseket összefoglaló néven kémiai kötéseknek nevezzük. Kémiai kötések

Részletesebben

FOLYAMATOK SZILÁRD FELÜLETEKEN

FOLYAMATOK SZILÁRD FELÜLETEKEN FOLYAMATOK SZILÁRD FELÜLETEKEN H E T E R O G É N R E A K C I Ó K HETEROGÉN REAKCIÓK (Eddig a g és a l fázisú homogén reakcióktól volt szó.) A heterogén reakciók két fázis határán játszódnak le. A változás

Részletesebben

Anyagvizsgálati módszerek Elektroanalitika. Anyagvizsgálati módszerek

Anyagvizsgálati módszerek Elektroanalitika. Anyagvizsgálati módszerek Anyagvizsgálati módszerek Elektroanalitika Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Optikai módszerek 1/ 18 Potenciometria Potenciometria olyan analitikai eljárások

Részletesebben

Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia

Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában 1 Órarend 2 Kurzussal kapcsolatos emlékeztető Kurzus: Az előadás látogatása ajánlott Gyakorlat

Részletesebben

Folyadékok. Molekulák: Gázok Folyadékok Szilárd anyagok. másodrendű kölcsönhatás növekszik. cseppfolyósíthatók hűtéssel és/vagy nyomással

Folyadékok. Molekulák: Gázok Folyadékok Szilárd anyagok. másodrendű kölcsönhatás növekszik. cseppfolyósíthatók hűtéssel és/vagy nyomással Folyadékok Molekulák: másodrendű kölcsönhatás növekszik Gázok Folyadékok Szilárd anyagok cseppfolyósíthatók hűtéssel és/vagy nyomással Folyadékok Molekulák közti összetartó erők: Másodlagos kötőerők: apoláris

Részletesebben

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV.

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV. TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV. TÖBBFÁZISÚ, TÖBBKOMPONENS RENDSZEREK Kétkomponens szilárd-folyadék egyensúlyok Néhány fogalom: - olvadék - ötvözetek - amorf anyagok Állapotok feltüntetése:

Részletesebben

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o ) Az atom- olvasni 2.1. Az atom felépítése Az atom pozitív töltésű atommagból és negatív töltésű elektronokból áll. Az atom atommagból és elektronburokból álló semleges kémiai részecske. Az atommag pozitív

Részletesebben

18_heterogen_kinetika.pptx FOLYAMATOK SZILÁRD FELÜLETEKEN HETEROGÉN REAKCIÓK ÁTTEKINTÉS: FELÜLETI JELENSÉGEK ALKALMAZÁSI PÉLDÁK

18_heterogen_kinetika.pptx FOLYAMATOK SZILÁRD FELÜLETEKEN HETEROGÉN REAKCIÓK ÁTTEKINTÉS: FELÜLETI JELENSÉGEK ALKALMAZÁSI PÉLDÁK HETEROGÉN RECIÓ FOLYMTO SZILÁRD FELÜLETEEN HETEROGÉN RE C I Ó (Eddig a g és a l fázisú homogén reakcióktól volt szó.) heterogén reakciók két fázis határán játszódnak le. változás lehet fizikai vagy kémiai,

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)

Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n) Általános kémia képletgyűjtemény (Vizsgára megkövetelt egyenletek a szimbólumok értelmezésével, illetve az egyenletek megfelelő alkalmazása is követelmény) Atomszerkezet Tömegszám (A) A = Z + N Rendszám

Részletesebben

Víz. Az élő anyag szerkezeti egységei. A vízmolekula szerkezete. Olyan mindennapi, hogy fel sem tűnik, milyen különleges

Víz. Az élő anyag szerkezeti egységei. A vízmolekula szerkezete. Olyan mindennapi, hogy fel sem tűnik, milyen különleges Az élő anyag szerkezeti egységei víz nukleinsavak fehérjék membránok Olyan mindennapi, hogy fel sem tűnik, milyen különleges A Föld felszínének 2/3-át borítja Előfordulása az emberi szövetek felépítésében

Részletesebben

Művelettan 3 fejezete

Művelettan 3 fejezete Művelettan 3 fejezete Impulzusátadás Hőátszármaztatás mechanikai műveletek áramlástani műveletek termikus műveletek aprítás, osztályozás ülepítés, szűrés hűtés, sterilizálás, hőcsere Komponensátadás anyagátadási

Részletesebben

Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek. N m J 2

Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek. N m J 2 Határelületi jelenségek 1. Felületi eszültség Fogorvosi anyagtan izikai alapjai 3. Általános anyagszerkezeti ismeretek Határelületi jelenségek Kiemelt témák: elületi eszültség adhézió nedvesítés ázis ázisdiagramm

Részletesebben

Bevezetés a talajtanba VIII. Talajkolloidok

Bevezetés a talajtanba VIII. Talajkolloidok Bevezetés a talajtanba VIII. Talajkolloidok Kolloid rendszerek (kolloid mérető részecskékbıl felépült anyagok): Olyan két- vagy többfázisú rendszer, amelyben valamely anyag mérete a tér valamely irányában

Részletesebben

A kémiai és az elektrokémiai potenciál

A kémiai és az elektrokémiai potenciál Dr. Báder Imre A kémiai és az elektrokémiai potenciál Anyagi rendszerben a termodinamikai egyensúly akkor állhat be, ha a rendszerben a megfelelő termodinamikai függvénynek minimuma van, vagyis a megváltozása

Részletesebben

Adszorpció folyadékelegyekből 2. Elektrolit oldat

Adszorpció folyadékelegyekből 2. Elektrolit oldat Adszorpció folyadékelegyekből 2. Elektrolit oldat Bonyolultabb, mert min. 3 komponens van: anion, kation és oldószer. Általában 5 komponens: anion, kation, oldószer-anion, oldószer-kation, disszociálatlan

Részletesebben

Szilárd gáz határfelület. Berka Márta 2009/2010/II

Szilárd gáz határfelület. Berka Márta 2009/2010/II Szilárd gáz határfelület Berka Márta 2009/2010/II 1 Szilárd gáz határfelület Hasonlóság a fluid határfelületekhez, felületi feszültség Különbségek: állandó alak γa, γ F deformáció- feszültség, (aprítási

Részletesebben

13 Elektrokémia. Elektrokémia Dia 1 /52

13 Elektrokémia. Elektrokémia Dia 1 /52 13 Elektrokémia 13-1 Elektródpotenciálok mérése 13-2 Standard elektródpotenciálok 13-3 E cella, ΔG és K eq 13-4 E cella koncentráció függése 13-5 Elemek: áramtermelés kémiai reakciókkal 13-6 Korrózió:

Részletesebben

Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53

Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53 Reakciókinetika 9-1 A reakciók sebessége 9-2 A reakciósebesség mérése 9-3 A koncentráció hatása: a sebességtörvény 9-4 Nulladrendű reakció 9-5 Elsőrendű reakció 9-6 Másodrendű reakció 9-7 A reakciókinetika

Részletesebben

Elektronegativitás. Elektronegativitás

Elektronegativitás. Elektronegativitás Általános és szervetlen kémia 3. hét Elektronaffinitás Az az energiaváltozás, ami akkor következik be, ha 1 mól gáz halmazállapotú atomból 1 mól egyszeresen negatív töltésű anion keletkezik. Mértékegysége:

Részletesebben

KÉMIA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003

KÉMIA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003 KÉMIA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003 I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK A vizsgázónak a követelményrendszerben és a vizsgaleírásban

Részletesebben

Kinetika. Általános Kémia, kinetika Dia: 1 /53

Kinetika. Általános Kémia, kinetika Dia: 1 /53 Kinetika 15-1 A reakciók sebessége 15-2 Reakciósebesség mérése 15-3 A koncentráció hatása: a sebességtörvény 15-4 Nulladrendű reakció 15-5 Elsőrendű reakció 15-6 Másodrendű reakció 15-7 A reakció kinetika

Részletesebben

Energiaminimum- elve

Energiaminimum- elve Energiaminimum- elve Minden rendszer arra törekszi, hogy stabil állapotba kerüljön. Milyen kapcsolat van a stabil állapot, és az adott állapot energiája között? Energiaminimum elve Energiaminimum- elve

Részletesebben

Kromatográfiás módszerek

Kromatográfiás módszerek Kromatográfiás módszerek Mi a kromatográfia? Kromatográfia ugyanazon az elven működik, mint az extrakció, csak az egyik fázis rögzített ( állófázis ) és a másik elhalad mellette ( mozgófázis ). Az elválasztást

Részletesebben

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)

Részletesebben

Folyadékok. Molekulák: Gázok Folyadékok Szilárd anyagok. másodrendű kölcsönhatás növekszik. cseppfolyósíthatók hűtéssel és/vagy nyomással

Folyadékok. Molekulák: Gázok Folyadékok Szilárd anyagok. másodrendű kölcsönhatás növekszik. cseppfolyósíthatók hűtéssel és/vagy nyomással Folyadékok Molekulák: másodrendű kölcsönhatás növekszik Gázok Folyadékok Szilárd anyagok cseppfolyósíthatók hűtéssel és/vagy nyomással Folyadékok Molekulák közti összetartó erők: Másodlagos kötőerők: apoláris

Részletesebben

SZILÁRD/GÁZ HATÁRFELÜLETI ADSZORPCIÓ

SZILÁRD/GÁZ HATÁRFELÜLETI ADSZORPCIÓ ZILÁRD/GÁZ HATÁRFELÜLETI ADZORPCIÓ 1. Elméleti bevezető: gázok adszorpciója szilárd adszorbenseken zilárd testek határfelületén az erőtér mindig anizotróp, ezért az adszorptívum (a fluid fázisban jelen

Részletesebben

NEDVESEDÉS (KONTAKT NEDVESEDÉS TANULMÁNYOZÁSA TENZIDOLDATOKKAL)

NEDVESEDÉS (KONTAKT NEDVESEDÉS TANULMÁNYOZÁSA TENZIDOLDATOKKAL) NEDVESEDÉS (KONTAKT NEDVESEDÉS TANULMÁNYOZÁSA TENZIDOLDATOKKAL) /Az elméleti számonkérés mindig a gyakorlatok legelején írásos formában történik az előadások idetartozó anyaga, valamint Szekrényesy T.:

Részletesebben

3. A kémiai kötés. Kémiai kölcsönhatás

3. A kémiai kötés. Kémiai kölcsönhatás 3. A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS OVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Kémiai kötések Na Ionos kötés Kovalens kötés Fémes

Részletesebben

Általános kémia vizsgakérdések

Általános kémia vizsgakérdések Általános kémia vizsgakérdések 1. Mutassa be egy atom felépítését! 2. Mivel magyarázza egy atom semlegességét? 3. Adja meg a rendszám és a tömegszám fogalmát! 4. Mit nevezünk elemnek és vegyületnek? 5.

Részletesebben

KÉMIA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK

KÉMIA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK KÉMIA Elvárt kompetenciák: I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK induktív következtetés (egyedi tényekből az általános törvényszerűségekre) deduktív következtetés (az általános törvényszerűségekből

Részletesebben

Határfelületi jelenségek: felületi feszültség koncepció

Határfelületi jelenségek: felületi feszültség koncepció Határfelületi jelenségek: felületi feszültség koncepció Bányai István www.kolloid.unideb.hu 3. óra Kolloidok és a határfelület A kolloidméret felé haladva a fajlagos felület rohamosan növekszik Határfelületi

Részletesebben

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27 Az egyensúly 6'-1 6'-2 6'-3 6'-4 6'-5 Dinamikus egyensúly Az egyensúlyi állandó Az egyensúlyi állandókkal kapcsolatos összefüggések Az egyensúlyi állandó számértékének jelentősége A reakció hányados, Q:

Részletesebben

Elektromos áram. Vezetési jelenségek

Elektromos áram. Vezetési jelenségek Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai

Részletesebben

KÉMIA. Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003

KÉMIA. Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003 KÉMIA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003 ű érettségire felkészítő tananyag tanterve /11-12. ill. 12-13. évfolyam/ Elérendő célok: a természettudományos gondolkodás

Részletesebben

Határfelületi elektromos tulajdonságok ( tétel) Előadás: március 11

Határfelületi elektromos tulajdonságok ( tétel) Előadás: március 11 Határfelületi elektromos tulajdonságok (1113. tétel) Előadás: március 11 FELÜLETI TÖLTÉSEK KIALAKULÁSA S/L HATÁRFELÜLETEN ioncserélő gyanták (állandó töltés): kation cserélő anion cserélő _ SO 3 H CH 2

Részletesebben

KÉMIA TANMENETEK 7-8-9-10 osztályoknak

KÉMIA TANMENETEK 7-8-9-10 osztályoknak KÉMIA TANMENETEK 7-8-9-10 osztályoknak Néhány gondolat a mellékletekhez: A tanterv nem tankönyvhöz készült, hanem témakörökre bontva mutatja be a minimumot és az optimumot. A felsőbb osztályba lépés alapja

Részletesebben

Folyadékok és szilárd anyagok

Folyadékok és szilárd anyagok Folyadékok és szilárd anyagok 7-1 Intermolekuláris erők, folyadékok tulajdonságai 7-2 Folyadékok gőztenziója 7-3 Szilárd anyagok néhány tulajdonsága 7-4 Fázisdiagram 7-5 Van der Waals kölcsönhatások 7-6

Részletesebben

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont 1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat

Részletesebben

gait k, rozzák k meg solják szembeni viselkedését, szerkezetét és a talajba került anyagok (tápanyagok, szennyezıanyagok, stb.

gait k, rozzák k meg solják szembeni viselkedését, szerkezetét és a talajba került anyagok (tápanyagok, szennyezıanyagok, stb. TALAJ KÉMIAI K TULAJDONSÁGAI A talaj kémiai k tulajdonságai gait a vízben v oldható sók k mennyisége és s minısége, a kolloidkémiai reakciók, k, a kémhatk mhatás s határozz rozzák k meg ezek befolyásolj

Részletesebben

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően

Részletesebben

A TÖMEGSPEKTROMETRIA ALAPJAI

A TÖMEGSPEKTROMETRIA ALAPJAI A TÖMEGSPEKTROMETRIA ALAPJAI web.inc.bme.hu/csonka/csg/oktat/tomegsp.doc alapján tömeg-töltés arány szerinti szétválasztás a legérzékenyebb módszerek közé tartozik (Nagyon kis anyagmennyiség kimutatására

Részletesebben

FELÜLETI FESZÜLTSÉG. Jelenség: A folyadék szabad felszíne másképp viselkedik, mint a folyadék belseje.

FELÜLETI FESZÜLTSÉG. Jelenség: A folyadék szabad felszíne másképp viselkedik, mint a folyadék belseje. Jelenség: A folyadék szabad felszíne másképp iselkedik, mint a folyadék belseje. A felületen leő molekulákra a saját részecskéik onzása csak alulról hat, a felülettel érintkező leegő molekulái által kifejtett

Részletesebben

Spontaneitás, entrópia

Spontaneitás, entrópia Spontaneitás, entrópia 6-1 Spontán folyamat 6-2 Entrópia 6-3 Az entrópia kiszámítása 6-4 Spontán folyamat: a termodinamika második főtétele 6-5 Standard szabadentalpia változás, ΔG 6-6 Szabadentalpia változás

Részletesebben

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok

Részletesebben

Kolloidstabilitás. Berka Márta 2010/2011/II

Kolloidstabilitás. Berka Márta 2010/2011/II Kolloidstabilitás Berka Márta 2010/2011/II Kolloid stabilitáshoz taszítás kell. Sztérikus stabilizálás V R V S sztérikus stabilizálás: liofil kolloidok alkalmazása védőhatás adszorpció révén (természetes

Részletesebben

KÉMIA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY A) KOMPETENCIÁK

KÉMIA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY A) KOMPETENCIÁK KÉMIA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY A) KOMPETENCIÁK A vizsgázónak a követelményrendszerben és a vizsgaleírásban meghatározott módon, az alábbi kompetenciák meglétét kell bizonyítania: - a természettudományos

Részletesebben

Kész polimerek reakciói. Makromolekulák átalakítása. Makromolekulák átalakítása. Természetes és mesterséges makromolekulák átalakítása cellulóz, PVAc

Kész polimerek reakciói. Makromolekulák átalakítása. Makromolekulák átalakítása. Természetes és mesterséges makromolekulák átalakítása cellulóz, PVAc Kész polimerek reakciói 8. hét Természetes és mesterséges makromolekulák átalakítása cellulóz, PVAc szabad funkciós csoportok reakciói bomlási folyamatok Térhálósítási folyamatok A cellulóz szabad alkoholos

Részletesebben

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok

Részletesebben

Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39

Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39 Kémiai kötés 4-1 Lewis elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet

Részletesebben

A kettős réteg speciális alakulása

A kettős réteg speciális alakulása A kettős réteg speciális alakulása Stern-modell, ionok véges mérettel zeta-layer Φ 0 ψ 0 surface potential Φ/V ψ zeta v. nyírási sík ψφ St d Stern-p. ζ potential Stern-layer x (indiv.u.) 2 a Stern rétegben

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Általános Kémia, 2008 tavasz

Általános Kémia, 2008 tavasz 9 Elektrokémia 9-1 Elektródpotenciálok mérése 9-1 Elektródpotenciálok mérése 9-2 Standard elektródpotenciálok 9-3 E cell, ΔG, és K eq 9-4 E cell koncentráció függése 9-5 Elemek: áramtermelés kémiai reakciókkal

Részletesebben

Kötések kialakítása - oktett elmélet

Kötések kialakítása - oktett elmélet Kémiai kötések Az elemek és vegyületek halmazai az atomok kapcsolódásával - kémiai kötések kialakításával - jönnek létre szabad atomként csak a nemesgázatomok léteznek elsődleges kémiai kötések Kötések

Részletesebben

Többkomponensű rendszerek. Diszperz rendszerek. Kolloid rendszerek tulajdonságai. Folytonos közegben eloszlatott részecskék - diszperz rendszerek

Többkomponensű rendszerek. Diszperz rendszerek. Kolloid rendszerek tulajdonságai. Folytonos közegben eloszlatott részecskék - diszperz rendszerek Többkomponensű rendszerek 7. hét Folytonos közegben eloszlatott részecskék - diszperz rendszerek homogén - kolloid - heterogén rendszerek - a részecskék mérete alapján Diszperz rendszerek Homogén rendszerek

Részletesebben

Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS

Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS Milyen képlet adódik a következő atomok kapcsolódásából? Fe - Fe H - O P - H O - O Na O Al - O Ca - S Cl - Cl C - O Ne N - N C - H Li - Br Pb - Pb N

Részletesebben

Bevezetés a lézeres anyagmegmunkálásba

Bevezetés a lézeres anyagmegmunkálásba Bevezetés a lézeres anyagmegmunkálásba FBN332E-1 Dr. Geretovszky Zsolt 2010. október 6. Anyagcsaládok Fémek Kerámiák, üvegek Műanyagok Kompozitok A családok közti különbségek tárgyalhatóak: atomi szinten

Részletesebben

Radioaktív nyomjelzés

Radioaktív nyomjelzés Radioaktív nyomjelzés A radioaktív nyomjelzés alapelve Kémiai indikátorok: ugyanazoknak a követelményeknek kell eleget tenniük, mint az indikátoroknak általában: jelezniük kell valamely elemnek ill. vegyületnek

Részletesebben

Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39

Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39 Kémiai kötés 12-1 Lewis elmélet 12-2 Kovalens kötés: bevezetés 12-3 Poláros kovalens kötés 12-4 Lewis szerkezetek 12-5 A molekulák alakja 12-6 Kötésrend, kötéstávolság 12-7 Kötésenergiák Általános Kémia,

Részletesebben

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben

Axiomatikus felépítés az axiómák megalapozottságát a felépített elmélet teljesítképessége igazolja majd!

Axiomatikus felépítés az axiómák megalapozottságát a felépített elmélet teljesítképessége igazolja majd! Hol vagyunk most? Definiáltuk az alapvet fogalmakat! - TD-i rendszer, fajtái - Környezet, fal - TD-i rendszer jellemzi - TD-i rendszer leírásához szükséges változók, állapotjelzk, azok csoportosítása -

Részletesebben

5/12/2010. Elegyek. 4-1 Az elegyek fajtái. 10% etanol oldat (v/v) 4-2 Koncentrációk. Mol koncentrációk. 4-3 intermolekuláris kölcsönhatások

5/12/2010. Elegyek. 4-1 Az elegyek fajtái. 10% etanol oldat (v/v) 4-2 Koncentrációk. Mol koncentrációk. 4-3 intermolekuláris kölcsönhatások Elegyek 4-1 Az elegyek fajtái 4-1 Elegyek fajtái 4-2 Koncentrációk 4-3 Intermolekuláris erők, az elegyedés folyamata 4-4 Elegyek keletkezése, egyensúly 4-5 Gázok oldhatósága 4-6 Elegyek gőznyomása 4-7

Részletesebben

Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek E A J 2. N m

Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek E A J 2. N m Határelületi jelenségek 1. Felületi eültség Fogorvosi anyagtan izikai alapjai 3. Általános anyagerkezeti ismeretek Határelületi jelenségek Kiemelt témák: elületi eültség adhézió nedvesítés ázis ázisdiagramm

Részletesebben

Savak bázisok. Csonka Gábor Általános Kémia: 7. Savak és bázisok Dia 1 /43

Savak bázisok. Csonka Gábor Általános Kémia: 7. Savak és bázisok Dia 1 /43 Savak bázisok 121 Az Arrhenius elmélet röviden 122 BrønstedLowry elmélet 123 A víz ionizációja és a p skála 124 Erős savak és bázisok 125 Gyenge savak és bázisok 126 Több bázisú savak 127 Ionok mint savak

Részletesebben

Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok

Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok Atomszerkezet Atommag protonok, neutronok + elektronok izotópok atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok periódusos rendszer csoportjai Periódusos rendszer A kémiai kötés Kémiai

Részletesebben

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Egyenáram Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Elektromos áram Az elektromos töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük.

Részletesebben

Kémiai reakciók sebessége

Kémiai reakciók sebessége Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását

Részletesebben

1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont

1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont 1. feladat Összesen: 15 pont Vizsgálja meg a hidrogén-klorid (vagy vizes oldata) reakciót különböző szervetlen és szerves anyagokkal! Ha nem játszódik le reakció, akkor ezt írja be! protonátmenettel járó

Részletesebben

Kolloidkémia 5. Előadás Kolloidstabilitás. Szőri Milán: Kolloidkémia

Kolloidkémia 5. Előadás Kolloidstabilitás. Szőri Milán: Kolloidkémia Kolloidkémia 5. Előadás Kolloidstabilitás Szőri Milán: Kolloidkémia 1 Kolloidok stabilitása Termodinamikailag lehetnek stabilisak (valódi oldatok) Liofil kolloidok G oldat

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók

Részletesebben

Célkitűzés/témák Fehérje-ligandum kölcsönhatások és a kötődés termodinamikai jellemzése

Célkitűzés/témák Fehérje-ligandum kölcsönhatások és a kötődés termodinamikai jellemzése Célkitűzés/témák Fehérje-ligandum kölcsönhatások és a kötődés termodinamikai jellemzése Ferenczy György Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Biokémiai folyamatok - Ligandum-fehérje kötődés

Részletesebben

ozmózis osmosis Egy rendszer termodinamikailag stabilis, ha képződése szabadentalpia csökkenéssel jár, állandó nyomáson és hőmérsékleten.

ozmózis osmosis Egy rendszer termodinamikailag stabilis, ha képződése szabadentalpia csökkenéssel jár, állandó nyomáson és hőmérsékleten. ozmózis osmosis termodinamikai stabilitás thermodynamic stability kinetikai stabilitás kinetic stability felületaktív anyagok surfactants, surface active materials felületinaktív anyagok surface inactive

Részletesebben

Inverz módszerek kidolgozása a molekuláris kölcsönhatások vizsgálatára folyadékkromatográfiában. az OTKA számú kutatás szakmai zárójelentése

Inverz módszerek kidolgozása a molekuláris kölcsönhatások vizsgálatára folyadékkromatográfiában. az OTKA számú kutatás szakmai zárójelentése Inverz módszerek kidolgozása a molekuláris kölcsönhatások vizsgálatára folyadékkromatográfiában az OTKA 48887 számú kutatás szakmai zárójelentése A kromatográfiás elválasztások során lejátszódó folyamatok

Részletesebben

Anyagtudomány. Ötvözetek egyensúlyi diagramjai (állapotábrák)

Anyagtudomány. Ötvözetek egyensúlyi diagramjai (állapotábrák) Anyagtudomány Ötvözetek egyensúlyi diagramjai (állapotábrák) Kétkomponensű fémtani rendszerek fázisai és szövetelemei Folyékony, olvadék fázis Színfém (A, B) Szilárd oldat (α, β) (szubsztitúciós, interstíciós)

Részletesebben

Makroszkópos tulajdonságok, jelenségek, közvetlenül mérhető mennyiségek leírásával foglalkozik (például: P, V, T, összetétel).

Makroszkópos tulajdonságok, jelenségek, közvetlenül mérhető mennyiségek leírásával foglalkozik (például: P, V, T, összetétel). Mire kell? A mindennapi gyakorlatban előforduló jelenségek (például fázisátalakulások, olvadás, dermedés, párolgás) értelmezéséhez, kvantitatív leírásához. Szerkezeti anyagok tulajdonságainak változása

Részletesebben

a. 35-ös tömegszámú izotópjában 18 neutron található. b. A 3. elektronhéján két vegyértékelektront tartalmaz. c. 2 mól atomjának tömege 32 g.

a. 35-ös tömegszámú izotópjában 18 neutron található. b. A 3. elektronhéján két vegyértékelektront tartalmaz. c. 2 mól atomjának tömege 32 g. MAGYAR TANNYELVŰ KÖZÉPISKOLÁK IX. ORSZÁGOS VETÉLKEDŐJE AL IX.-LEA CONCURS PE ŢARĂ AL LICEELOR CU LIMBĂ DE PREDARE MAGHIARĂ FABINYI RUDOLF KÉMIA VERSENY - SZERVETLEN KÉMIA Marosvásárhely, Bolyai Farkas

Részletesebben

Membránszerkezet Nyugalmi membránpotenciál

Membránszerkezet Nyugalmi membránpotenciál Membránszerkezet Nyugalmi membránpotenciál 2011.11.15. A biológiai membránok fő komponense. Foszfolipidek foszfolipid = diglicerid + foszfát csoport + szerves molekula (pl. kolin). Poláros fej (hidrofil)

Részletesebben

A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 54 524 03 Vegyész technikus Tájékoztató

Részletesebben

Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly

Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly Bányai István DE TTK Kolloid- és Környezetkémiai Tanszék 2013.01.11. Környezeti fizikai kémia 1 A fizikai-kémia és környezeti kémia I. A

Részletesebben

1. SI mértékegységrendszer

1. SI mértékegységrendszer I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség

Részletesebben

Diffúzió. Diffúzió. Diffúzió. Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd

Diffúzió. Diffúzió. Diffúzió. Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd Anyagszerkezettan és anyagvizsgálat 5/6 Diffúzió Dr. Szabó Péter János szpj@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd

Részletesebben

Határfelületi jelenségek

Határfelületi jelenségek Határfelületi jelenségek Fizikai kémia előadások 7. Turányi Tamás ELTE Kémiai Intézet Felületi feszültség Egy folyadékrészecske akkor van a legalacsonyabb energiaállapotban, ha minden oldalról másik részecske

Részletesebben