ENZIMKINETIKAI PARAMÉTEREK KÍSÉRLETI MEGHATÁROZÁSA

Hasonló dokumentumok
ENZIMKINETIKAI PARAMÉTEREK KÍSÉRLETI MEGHATÁROZÁSA

ENZIMKINETIKAI PARAMÉTEREK KÍSÉRLETI MEGHATÁROZÁSA

[S] v' [I] [1] Kompetitív gátlás

Reakciókinetika és katalízis

Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53

Az enzimműködés termodinamikai és szerkezeti alapjai

VEBI BIOMÉRÖKI MŰVELETEK KÖVETELMÉNYEK. Pécs Miklós: Vebi Biomérnöki műveletek. 1. előadás: Bevezetés és enzimkinetika

Reakciókinetika. aktiválási energia. felszabaduló energia. kiindulási állapot. energia nyereség. végállapot

VEBI BIOMÉRÖKI MŰVELETEK

Kinetika. Általános Kémia, kinetika Dia: 1 /53

Több szubsztrátos enzim-reakciókról beszélve két teljesen különbözõ rekció típust kell megismernünk.

4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

Mérési adatok illesztése, korreláció, regresszió

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

A kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Mérési hibák

Kémiai reakciók sebessége

Több valószínűségi változó együttes eloszlása, korreláció

Katalízis. Tungler Antal Emeritus professzor 2017

6. Előadás. Vereb György, DE OEC BSI, október 12.

Folyadékszcintillációs spektroszkópia jegyz könyv

Reakció kinetika és katalízis

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

Minőségmenedzsment (módszerek) BEDZSULA BÁLINT

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

ENZIMKINETIKA. v reakciósebesség. 1 / v. 1. ábra. Michaelis-Menten ábrázolás 2. ábra. Lineweaver-Burk ábrázolás. Michaelis-Menten ábrázolás

TRIPSZIN TISZTÍTÁSA AFFINITÁS KROMATOGRÁFIA SEGÍTSÉGÉVEL

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

[Biomatematika 2] Orvosi biometria

y ij = µ + α i + e ij

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

Kontrol kártyák használata a laboratóriumi gyakorlatban

Enzimaktivitás szabályozása

Kémiai reakciók mechanizmusa számítógépes szimulációval

Statisztikai becslés

mérnöki tudományok biomérnöki vegyészmérnöki tudomány tudományok biotechno- lógia kémia biológia

BIOTECHNOLÓGIA - BIOMÉRNÖKSÉG. Vegyipari és BIOMÉRNÖKI műveletek. BIOMÉRNÖKI műveletek. Pécs Miklós: Biomérnöki műveletek 1. Bevezetés, enzimek

Célkitűzés/témák Fehérje-ligandum kölcsönhatások és a kötődés termodinamikai jellemzése

ANOVA összefoglaló. Min múlik?

5. Laboratóriumi gyakorlat

Reakciókinetika és katalízis

ENZIMSZINTŰ SZABÁLYOZÁS

5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével

Reakciókinetika és katalízis

Ellenállásmérés Ohm törvénye alapján

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

A metabolizmus energetikája

Vegyipari és BIOMÉRNÖKI műveletek

3 Ellenállás mérés az U és az I összehasonlítása alapján. 3.a mérés: Ellenállás mérése feszültségesések összehasonlítása alapján.

Abszolútértékes egyenlôtlenségek

Adatok statisztikai értékelésének főbb lehetőségei

LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Reakciókinetika és katalízis

Modern Fizika Labor. 11. Spektroszkópia. Fizika BSc. A mérés dátuma: dec. 16. A mérés száma és címe: Értékelés: A beadás dátuma: dec. 21.

Miért hasznos az enzimgátlások tanulmányozása?

Kutatási programunk fő célkitűzése, az 2 -plazmin inhibitornak ( 2. PI) és az aktivált. XIII-as faktor (FXIIIa) közötti interakció felderítése az 2

[Biomatematika 2] Orvosi biometria

Diffúzió. Diffúzió. Diffúzió. Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd

Zárójelentés. ICP-OES paraméterek

Fázisátalakulások vizsgálata

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás

Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai

Hipotézis vizsgálatok

Elválasztástechnikai és bioinformatikai kutatások. Dr. Harangi János DE, TTK, Biokémiai Tanszék

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE

Többváltozós lineáris regressziós modell feltételeinek tesztelése I.

Az enzimkinetika alapjai

Méréstechnika II. Mérési jegyzőkönyvek FSZ képzésben részt vevők részére. Hosszméréstechnikai és Minőségügyi Labor Mérési jegyzőkönyv

A glükóz reszintézise.

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Többváltozós lineáris regressziós modell feltételeinek

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

Anaerob fermentált szennyvíziszap jellemzése enzimaktivitás-mérésekkel

Glikolízis. emberi szervezet napi glukózigénye: kb. 160 g

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata.

IBNR számítási módszerek áttekintése

Biomatematika 2 Orvosi biometria

Matematikai geodéziai számítások 6.

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia

Likelihood, deviancia, Akaike-féle információs kritérium

1. Gauss-eloszlás, természetes szórás

Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz

Biomatematika 13. Varianciaanaĺızis (ANOVA)

Fázisátalakulások vizsgálata

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

Matematikai geodéziai számítások 6.

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Átírás:

ENZIMKINETIKAI PARAMÉTEREK KÍSÉRLETI MEGHATÁROZÁSA

Tartalomjegyzék A szimulált kísérletek javasolt menete... 3 A computer szimulációval vizsgált elméleti és gyakorlati kérdések... 4 1. A reakciósebesség időfüggése... 4 2. A hőmérséklet hatásai... 6 3. A ph hatása... 7 4. Kinetikai paraméterek statisztikai eloszlásának értékelése... 8 Alkalmazások... 10 1. Egy metabolikus út fiziológiásan releváns szubsztrátjának meghatározása... 10 2. Egy metabolikus út sebesség-meghatározó lépésének azonosítása... 11 3. Az enzimműködés szempontjából kritikus aminosavak azonosítása az enzimaktivitás ph-függésének vizsgálatával... 12 Tesztkérdések... 17 2

A szimulált kísérletek javasolt menete 1. Állítsa be a kísérleti körülményeket. FIGYELEM! A mérési eredmények kísérleti hibát is tartalmaznak. Mindig kísérje figyelemmel a mért adatok számszerű értékeit is (a grafikus ábrázolásoknál a tengelyek automatikus beállítása miatt akár 10 %-os eltérés is óriási különbségnek tűnhet)! a) válasszon reakciót (enzim E - szubsztrát párost) b) vizsgálja meg a reakciósebesség ph- és hőmérséklet függését (jegyezze fel az értéktartományokat, ahol mérhető eredményeket kap) c) vizsgálja meg a reakciósebesség enzimkoncentráció függését (a menüpont 1. Ábrája felhasználásával válasszon ki olyan enzimkoncentrációt, amely mellett a termék keletkezése lineáris). Hasznos támpont a kezdeti értékek megadásánál az in vivo koncentrációk értékei, amelyek minden képernyőn szerepelnek. d) vizsgálja meg a reakciósebesség szubsztrátkoncentráció függését (a menüpont 1. Ábrája felhasználásával válasszon ki olyan szubsztrátkoncentráció tartományt, amely mellett a termék keletkezése lineáris). Hasznos támpont a kezdeti értékek megadásánál az in vivo koncentrációk értékei, amelyek minden képernyőn szerepelnek. e) felhasználva a virtuális lehetőséget, hogy nyomon követhetjük az enzimszubsztrát komplex időbeli alakulását, ellenőrizze a steady-state feltétel érvényességét 2. Miután beállította a kísérleti körülményeket a Michaelis-Menten modellnek megfelelően, azonosítsa a kinetikai paramétereket (hogy egyben a 2. Alkalmazás is elő legyen készítve, a meghatározást ph 7.2 -nél végezze el). A kísérleti hiba megbízható értékeléséhez legalább 5 ismétléssel dolgozzon (túl nagy számú ismétlés viszont elfogadhatatlanul hosszú kísérlethez vezet). 3. Határozza meg az azonosított kinetikai paraméterek statisztikai eloszlását (konfidencia tartományait). E lépést megelőzően a Computer szimuláció menüpont segítségével elő kell állítani nagyszámú (100-300) kinetikai paraméter-kombinációt szimulált kísérleti pontok alapján. Ha kísérleti pontonként kevesebb mint 10 ismétlést használ, a Monte Carlo szimulációs módszer ajánlott. 4. Ismételje meg az 1. - 3. lépéseket minden egyes reakcióra. A gyorsabb kivitelezés érdekében a második és későbbi reakcióknál a "gyors és piszkos" azonosítási algoritmust használhatja. 5. Végezze el az 1. és 2. Alkalmazásban leírt feladatokat. A 3. Alkalmazás fakultatív. A kísérlet minden fázisáról vezessen jegyzőkönyvet! 3

A computer szimulációval vizsgált elméleti és gyakorlati kérdések 1. A reakciósebesség időfüggése dp Az enzim E katalizálta S!P reakció sebessége a v = egyenlettel fejezhető dt ki, vagyis a termék (P) folyamatos enzimaktivitás-mérés során nyert görbéjének első deriváltja: 1 P(mM), S(mM) 0.8 0.6 0.4 0.2 product substrate 0 0 1 2 3 4 5 6 7 8 9 10 15 x 10-4 E(mM), ES(mM) 10 5 0 free enzyme complex 0 1 2 3 4 5 6 7 8 9 10 time(min) A folyamatos enzimaktivitás méréseknél egy minta elfoglalja a mérőműszert a reakció egész időtartamára, amely korlátozza az elvégezhető mérések számát. Ez a probléma nem áll fenn a végpontos enzimaktivitás-méréseknél, amikor a keletkezett terméket P csak egyszer kell megmérni a végidőpontban t max. Pmax Ilyenkor a reakciósebesség a v = egyenlettel adható meg feltéve, hogy a tmax kísérleti körülmények helyes beállításával biztosítjuk a termékkeletkezés 4

lineáritását (a mi computer szimulációnk ilyen végpontos mérést használ). Milyen hosszú t max értéket kell választani a Michaelis-Menten egyenlet V max. S v = érvényességéhez, ahol v "kezdeti" reakciósebesség? Vizsgálja K m S meg az E és S koncentrációk és t max értékek különböző kombinációinak hatását a v-re! A fenti egyenlet "steady-state" állapotra vonatkozik (hogyan lehet definiálni ezt az állapotot?). Az alábbi ábrák felhasználásával tegyen javaslatot arra, hogy milyen kísérleti körülményeken kell változtatni a "steady-state" kritérium érvényesítéséhez: substrate(mm) 0.1 0.08 0.06 0.04 0.02 P S 0 0 1 2 3 4 5 6 7 8 enzyme(mm) 7 x 10-9 6 5 4 ES E 3 0 1 2 3 4 5 6 7 8 time(min) A szimulált kísérletek első lépéseként határozza meg a Michaelis-Menten modell szempontjából megfelelő kísérleti körülményeket a felkínált 5 reakció esetében (E, tartomány S, t max )! 5

2. A hőmérséklet hatásai A kollizió elmélet Egy homogén fázisú kémiai reakció sebessége a reagáló molekulák hatásos összeütközéseinek gyakoriságától függ, amelyet a részecskék kinetikai energiája és végeredményben a hőmérséklet (T) határoz meg. Az Arrhenius E a RT egyenlet k = Ae kifejezi a kapcsolatot a hőmérséklet és a sebességi állandó (k, amely enzim katalizálta reakciók esetében általában megegyezik a katalitikus állandóval az ES!EP részfolyamatban) között (A és E a a reakcióra jellemző állandók). Az enzim stabilitására gyakorolt hatás Az enzimek harmadlagos szerkezete nagyszámú gyenge non-kovalens molekulán belüli kötéseken alapszik. Ha a molekula túl sok energiát vesz fel (egy kritikus értéken túl) a harmadlagos szerkezet összeomlik és az enzim denaturálódik (aktivitása elvész). A hőmérséklet növeli azok molekulák számát, amelyek a denaturáló energiatartományba kerülnek, de ez a hatás időfüggő is (alacsonyabb hőmérsékleten a denaturálódó molekulák száma lassabban emelkedik mint magasabb hőmérsékleten). A fentiekben felvázolt két ellentétes hatás egy csúcsértéket eredményez az enzim katalizálta reakció sebességében, ha ezt a hőmérséklet függvényében ábrázoljuk ("optimális hőmérséklet"). Mit gondol, ez az érték egy fizikai állandó jellemző az enzimre vagy netán a kísérleti körülményektől függ? Vizsgálja meg a kérdést kísérletben! (Tanács: Mérje meg az "optimális hőmérsékletet" különböző t max mellett!) 6

3. A ph hatása Az enzimek aktív centruma gyakran tartalmaz ionizálható aminosav oldalláncokat, amelyek megfelelő ionizáltsági állapota szükséges az aktív centrum konformációjának fenntartásához, a szubsztrátok megkötéséhez vagy a reakció katalíziséhez. Másfelől egy vagy több szubsztrát tartalmazhat ionizálható csoportokat és a szubsztrát csak egik vagy másik ionizáltsági alakja képes lehet az enzimhez kötődni vagy részt venni a katalízisben. A kritikus csoportok pk értékeit meg lehet határozni az enzimaktivitás ph-függésének vizsgálatával (Ld. 3. Alkalmazást Az enzimműködés szempontjából kritikus aminosavak azonosítása az enzimaktivitás ph-függésének vizsgálatával) 7

4. Kinetikai paraméterek statisztikai eloszlásának értékelése Kísérleteinkkel mi csak mintát veszünk a valódi világból. Egy enzim, amely a K m és k p (k p =V max /E t ) valódi paraméterekkel jellemezhető, P termék keletkezéséhez vezet a kísérletben és mi ezt mérjük és számoljuk a reakció sebességet v különböző szubsztrát konventrációk S mellett. E mért adatok alapján következtetni próbálunk a valódi paraméterekre a modell egyenlethez V max. S történő v = non-lineáris regresszióval (ennek lényege, hogy a K m S paraméterekhez különböző értékeket rendel hozzá a computer és ezekkel v reakciósebességet számol, a legjobban illesztett paraméter-kombináció az lesz, amellyel számolva a mért és számolt v között a legkisebb a különbség a legkisebb négyzet-eltérés módszere szerint). A biológiai variabilitás (pl. az enzimkészítmény oxidációja vagy szennyezése) és a kísérleti hibák (pl. bemérési eltérések vagy a mérőműszer pontatlansága) miatt ezzel a módszerrel lehetetlen azonosítani a valódi paramétereket. Amit el tudunk érni, az a fenti regressziós eljárással nyert legjobb becslés (amit valós becslésnek nevezünk) és ennek statisztikai eloszlását (az az értéktartomány, amelyhez a valódi paraméter tartozik bizonyos valószínűséggel, biológiai rendszerekre általában a 95 %-os konfidencia intervallum használatos). Ligand kötődési és kinetikai problémáknál manapság a Monte Carlo szimuláció (különböző változataiban) az ajánlott eljárás a paraméter eloszlás értékeléséhez. Az alapötlet ennél az eljárásnál a következő: ha ismernénk azt a mechanizmust, amely révén a valódi paraméterek a kísérleti mintánkat eredményezik (és erre a kísérletben mért adatok eloszlásából lehet következtetni), akkor felépíthetünk parallel virtuális világképeket, ahol a valós becslés játssza a valódi paraméterek szerepét. Ebben a virtuális világban nagyszámú szintetikus mintákat lehet nyerni computer szimuláció segítségével és ezekkel végrehajtva a fent leírt regressziót a paraméterek nagyszámú szintetikus becsléséhez jutunk (ebben az esetben a computer végzi azt, amit a kutató is csinálna, ha a hozzá szükséges ideje és anyagi támogatása lenne: több százszor ismétli meg a kísérletet). A Monte Carlo módszer egyik változatánál (amelyet "bootstrap"-nek nevezünk) nem szükséges a mért adatok eloszlását ismerni (a computer úgy építi fel a szintetikus mintákat, hogy ismételten véletlenszerűen húz ki adatokat a mért mintahalmazból), de ehhez nagyobb mért mintára van szükség. A valódi paraméterek és a valós becslés közti különbséget a valós becslés és a szintetikus becslések közti különbséggel lehet jellemezni. A valós becslés statisztikai eloszlását azok a határvonalok jellemzik, amelyeken belül a szintetikus paraméterek kívánt hányada (pl. 95 %) megtalálható (Ld. az alábbi ábra). A becsült paraméterek eloszlása felhasználható annak eldöntésére, hogy különböző kísérletekben nyert paraméterek azonosak-e vagy statisztikailag eltérnek egymástól. Az utóbbi kérdés eltérő valószínűségi szinteken 8

válaszolható meg (biológiai rendszerekben általában 5 %-os szinten). Feladat: Hasonlítsa össze saját eredményét csoporttársaid eredményével! Példa 77 76 the smallest area 95% 2-D 'root' confidence region 78 precise and slow Monte Carlo simulation inside simulated points outside simulated points best guess estimated from the sample tested guess 1-D confidence intervals k papp (min -1 ) 75 74 73 72 P=0.0067 71 0.08 0.085 0.09 0.095 0.1 0.105 0.11 0.115 K mapp (mm) 9

Alkalmazások 1. Egy metabolikus út fiziológiásan releváns szubsztrátjának meghatározása Metabolikus utak vizsgálatánál gyakran felmerül a kérdés, hogy néhány lehetséges szubsztrát közül melyik a fiziológiásan releváns. Ilyen kérdés tisztázásához az alternatív szubsztrátokat használó enzim aktivitását először magas (telítő) szubsztrát koncentrációk mellett mérik (meghatározzák a V max értékét). Például az agyban a hexokináz mind a glukózt, mind a fruktózt foszforilálhatja és így felmerül a kérdés, hogy mindkét szubstrát fiziológiásan fontos-e. Az agyszövetből nyert hexokináz in vitro meghatározott V max értékei a következők: Szubsztrát V max (µmol.min -1.g -1 ) glukóz fruktóz 17 25 In vivo azonban a szubsztrát koncentrációja sokkal alacsonyabb lehet mint az a koncentráció, amely mellett a maximális aktivitást mérték. A glukóz és fruktóz esetében az agyszövetben mért intracelluláris koncentrációk 10 µm, illetve 1 µm. A K m értékek ismerete kritikus a feltett kérdés megválaszolásához: Szubsztrát K m (µm) glukóz fruktóz 10 1000 Melyik szubsztrátot részesíti előnyben az agy? Most tekintsük át a következő metabolikus utakat, amelyek a computer szimulációnál rendelkezésre álló reakciókból állnak: E1 E2 E3 E4 S1: A B C D F E1 E3 E4 S2: G C D F Felhasználva saját kísérleti adatait és az A, ill. G szubsztrátok intracelluláris koncentrációira megadott értékeket döntsék el, hogy melyik úton keletkezik F in vivo. 10

2. Egy metabolikus út sebesség-meghatározó lépésének azonosítása A K m, V max és az in vivo szubsztrátkoncentráció ismeretében azonosítani lehet egy metabolikus út sebesség-meghatározó lépését, amely döntő jelentőséggel bír a folyamat fiziológiás szabályozásában és farmakológiai beavatkozások megtervezésében. A metabolikus útban szereplő enzimek maximális aktivitásának összehasonlításával el lehet dönteni egy reakció egyensúlyi vagy nemegyensúlyi jellegét. A sorban megelőző vagy követő reakcióhoz képest magas V max egyensúlyi reakcióra utal ( G 0), míg alacsony V max nem-egyensúlyira ( G<<0). Diszkusszióra javasolt kérdés: Hogyan lehet értelmezni a fenti állítást a biokémiai reakciók szabadenergia változásának fényében 0' [ product] G = G RT ln, ahol G 0 a standard [ substrate] szabadenergia változása ph=7.0-nél? Használja fel a metabolikus utak termodinamikájáról szóló ismereteit! A reakció nem-egyensúlyi jellege szükséges, de nem elégséges feltétele a sebesség-meghatározó szerepnek. Ha a szubsztrát-koncentráció lényegesen alacsonyabb az enzim K m értékénél, a szubsztrát-koncentráció ingadozása akatalitikus aktivitás arányos változásához vezet és így a metabolikus útban az anyagáramlás a rendelkezésre álló szubsztráttól és nem az enzimtől függ. Ezzel szemben a K m -hez képest magas in vivo szubsztrát-koncentráció jelentős változása kis hatást gyakorolna a katalitikus aktivitásra. Így megállapítható, hogy nagy valószínűséggel az a nem-egyensúlyi reakció lesz sebességmeghatározó, amely in vivo telítve van szubsztráttal. E kritériumot felhasználva azonosítsa az S1 metabolikus út sebesség-meghatározó lépését különböző fiziológiás körülmények között! Pl. nyugalomban a vázizom intracelluláris ph értéke 7,2, míg intenzív munka során akár 6,3-ra is csökkenhet. Ugyanaz lesz-e a metabolikus szabályozás a két állapotban? Változik-e a metabolikus kontroll lázas állapotban? 11

3. Az enzimműködés szempontjából kritikus aminosavak azonosítása az enzimaktivitás ph-függésének vizsgálatával A ph-tól függően az enzim aminosav oldalláncai különböző protonáltsági állapotban lehetnek. Tételezzük fel, hogy az enzim (E) a szubsztrát (S) termékké (P) történő átalakulását csak akkor katalizálja, ha n protont köt meg (E n ) kritikus oldalláncoknál, de S akkor is kötődik E-hez, ha az utóbbi 1-gyel több vagy kevesebb protont köt meg (E n-1, illetve E n1 ). Az enzim protonáltságát a H kötődési egyensúlyi állandójával lehet jellemezni (K e a szabad enzimre nézve vagy K es az enzim-szubsztrát komplexre nézve), ahogy az alábbi sémán látható. 12

13

Ha figyelembe vesszük az enzimmolekulák eloszlását a különböző protonáltsági formák között a Michaelis-Menten egyenlethez hasonló módon a következő egyenleteket lehet levezetni, amelyek a kinetikai paraméterek phfüggését is tükrözik: V max app Vmax = [ H ] K 1 K [ H es1 es2 ] K V m app max app K m app [ H ] K 2 e K 1 1 [ ] m K e H = [ H ] K es2 1 K [ H ] = K m es1 V [ H 1 K max e1 ] K [ H e2 ] 1 Ha V max app = V max, akkor [H ]=K es1 (ph=pk es1 ) vagy [H ]=K es2 2 (ph=pk es2 ), feltéve hogy pk es2 - pk es1 >3.5. Az alábbi ábra segítségével indokolja meg miért követelmény a 3.5- nél magasabb pk-különbség a fenti összefüggések gyakorlati alkalmazásánál! A rendelkezésre álló enzimek között (E1 - E4) válasszon egyet, amely alkalmasnak tűnik a katalitikus hatás szempontjából kritikus aminosavak ily módon történő azonosítására. Tervezzen meg kísérleti stratégiát, amely segítségével meghatározhatja a kiválasztott enzim pk es2 és pk es1 értékeit! Az alábbi táblázat szerint milyen aminosavak lehetnek az enzim aktív centrumában? 14

15

16

Tesztkérdések Az alábbi kérdésekkel ellenőrizheti, hogy elméleti felkészültsége elegendő-e a sikeres kísérletezéshez. A helyes válaszok adják meg a jelszót a gyakorlat további fázisához. V max. S 1. Mely állítások igazak a Michaelis-Menten egyenletre v =, amelyet K m S széles körben alkalmazunk az enzimek jellemzésére? A. Az egyenletet korlátozás nélkül lehet alkalmazni minden enzim katalizálta reakcióra. B. A v olyan kísérleti körülmények között mérhető, amikor S csökkenése elhanyagolható a kezdeti szubsztrát koncentrációhoz képest (pl. S<0.1*S 0 ). C. A v olyan kísérleti körülmények között mérhető, amikor elég sok termék keletkezik vagyis S csökkenése lényeges a kezdeti szubsztrát koncentrációhoz képest (pl. S>0.1*S 0 ). D. Az egyenlet csak egyensúlyi rendszerre érvényes. E. Az egyenlet csak "steady-state" rendszerre érvényes. 2. Mely állítások igazak egy metabolikus út sebesség-meghatározó lépésére? A. In vivo a metabolikus út összes többi reakciója általában nagyobb sebességgel zajlik, mert a sebesség-meghatározó lépés V max értéke a legalacsonyabb. B. E reakció standard szabadenergia változása nagy pozitív érték. C. E reakció in vivo szabadenergia változása nagy pozitív érték. D. E reakció standard szabadenergia változása nagy negatív érték. E. E reakció in vivo szabadenergia változása nagy negatív érték. 3. Mely állítások igazak az enzimaktivitást befolyásoló tényezőkre? A. A ph a szubsztrátok és az enzim szerkezetében szereplő aminosavoldalláncok protonáltsági állapotán keresztül befolyásolja a reakció sebességét. B. A ph nem befolyásolja olyan enzim-katalizálta reakciók sebességét, amelyekben a szubsztrátok nem tartalmaznak ionizálható funkciós csoportokat, mert ilyen esetekben az enzim-szubsztrát kölcsönhatás független a molekulák elektromos töltésétől. C. Egy enzimaktivitás-mérés során a hozzáadott aktív enzim mennyiségét állandónak kell tekinteni a vizsgálat időtartamára függetlenül a ph és hőmérséklet esetleges nagyfokú változásaitól. 17

D. A hőmérséklet emelkedése növeli az enzim katalizálta reakciók sebességét a gyakoribb hatásos kolliziók miatt, de egy bizonyos kritikus értéken túl csökkenéshez vezet az enzim harmadlagos szerkezetének összeomlása miatt (denaturáció). E. A D. pontban leírt összefüggés kísérleti vizsgálata során meghatározott optimális hőmérséklet az adott enzim fizikai jellemzője és független a kísérleti körülményektől. 18