Anyagvizsgálati lehetőségek a SZIKKTI Labor Kft. - ben



Hasonló dokumentumok
Anyagvizsgálati lehetőségek a SZIKKTI Labor Kft. - ben

Mikroszerkezeti vizsgálatok

Röntgenanalitika. Röntgenradiológia, Komputertomográfia (CT) Röntgenfluoreszcencia (XRF) Röntgenkrisztallográfia Röntgendiffrakció (XRD)

Világítástechnikai üveghulladék tégla- és cserépipari felhasználhatóságának lehetőségei 1. rész

Pásztázó elektronmikroszkóp. Alapelv. Szinkron pásztázás

Szerkezetvizsgálat ANYAGMÉRNÖK ALAPKÉPZÉS (BSc)

Röntgen-gamma spektrometria

Karbonát és szilikát fázisok átalakulása a kerámia kiégetés során (Esettanulmány Cultrone et al alapján)

Finomszerkezetvizsgálat

Szerkezetvizsgálat szintjei

Világítástechnikai üveghulladék korundkerámia adalékanyagként való felhasználhatóságának vizsgálata

A nanotechnológia mikroszkópja

Röntgensugárzást alkalmazó fıbb tudományterületek

Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic

Röntgendiffrakció. Orbán József PTE, ÁOK, Biofizikai Intézet november

Abszorpciós fotometria

Sugárzás és anyag kölcsönhatásán alapuló módszerek

Havancsák Károly Nagyfelbontású kétsugaras pásztázó elektronmikroszkóp az ELTÉ-n: lehetőségek, eddigi eredmények

Pásztázó elektronmikroszkóp (SEM scanning electronmicroscope)

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez

Mikrohullámú abszorbensek vizsgálata

ELTE Fizikai Intézet. FEI Quanta 3D FEG kétsugaras pásztázó elektronmikroszkóp

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév

Modern Fizika Labor Fizika BSC

Röntgen-pordiffrakció (XRD) Kő-, kerámia- és fémek archeometriája Kürthy Dóra

Röntgenanalitikai módszerek I. Összeállította Dr. Madarász János Frissítve 2016 tavaszán

Modern fizika laboratórium

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása

Nagyműszeres vegyész laboratórium programja. 8:15-8:25 Rövid vizuális ismerkedés a SEM laborral. (Havancsák Károly)

Abszorpciós fotometria

a NAT /2006 nyilvántartási számú akkreditálási státuszhoz

Quanta 3D SEM/FIB Kétsugaras pásztázó elektronmikroszkóp. Havancsák Károly

A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása

ÜVEG ÉS ÜVEGMÁZ. (Fórizs István MTA Geokémiai Kutatóintézet Anyagának felhasználásával)

Karbonát és szilikát fázisok átalakulása a kerámia kiégetése során (Esettanulmány Cultrone et al alapján)

Kerámia, üveg és fém-kerámia implantátumok

A diffúz reflektancia spektroszkópia (DRS) módszerének alkalmazhatósága talajok ásványos fázisának rutinvizsgálatában

Bevezetés a lézeres anyagmegmunkálásba

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA

Mikrohullámú abszorbensek vizsgálata 4. félév

Nemzeti Akkreditáló Testület. MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT /2010 számú akkreditált státuszhoz

Röntgen-pordiffrakció (XRD) Kőeszközök, fémek és kerámiák archeometriája Kürthy Dóra

Polimerek fizikai, mechanikai, termikus tulajdonságai

A fény tulajdonságai

Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére

MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAH / nyilvántartási számú akkreditált státuszhoz

Szinkrotronspektroszkópiák május 14.

RÉSZLETEZŐ OKIRAT (3) a NAH /2016 nyilvántartási számú akkreditált státuszhoz

Dr. Korim Tamás PhD intézetigazgató egyetemi docens. Pannon Egyetem Anyagmérnöki Intézet

Abszorpciós spektroszkópia

KÉSŐ AVAR ÜVEGGYÖNGYÖK ÖSSZETÉTEL- VIZSGÁLATA

Anyagvizsgálati módszerek Elemanalitika. Anyagvizsgálati módszerek

Abszorpció, emlékeztetõ

Nagyműszeres vegyész laboratórium programja. 9:15-9:25 Rövid vizuális ismerkedés a SEM laborral. (Havancsák Károly)

A szubmikronos anyagtudomány néhány eszköze. Havancsák Károly ELTE TTK Központi Kutató és Műszer Centrum július.

Reológia Mérési technikák

KERÁMIATAN I. MISKOLCI EGYETEM. Mőszaki Anyagtudományi Kar Kerámia-és Szilikátmérnöki Tanszék. gyakorlati segédlet

Szerkezetvizsgálat szintjei

a NAT /2013 nyilvántartási számú akkreditált státuszhoz

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2017/18-es tanév

MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT /2015 nyilvántartási számú akkreditált státuszhoz

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Szűrés. Gyógyszertechnológiai alapműveletek. Pécsi Tudományegyetem Gyógyszertechnológia és Biofarmáciai Intézet

A CSEPEL MŰVEK TALAJAINAK NEHÉZFÉM SZENNYEZETTSÉGE. Készítette: Szabó Tímea, Környezettudomány MSc Témavezető: Dr. Óvári Mihály, egyetemi adjunktus

Mikrohullámú abszorbensek vizsgálata

6-7. PÁSZTÁZÓ ELEKTRONMIKROSZKÓPIA MEGBÍZHATÓSÁGI HIBAANALITIKA VIETM154 HARSÁNYI GÁBOR, BALOGH BÁLINT

Havancsák Károly Az ELTE TTK kétsugaras pásztázó elektronmikroszkópja. Archeometriai műhely ELTE TTK 2013.

A röntgen-pordiffrakció lehetőségei és korlátai a kerámia vizsgálatokban

Korai beton műtárgyak anyagának vizsgálata és környezeti ásványtani értékelése

SZERKEZETVIZSGÁLAT. ANYAGMÉRNÖK BSc KÉPZÉS (nappali munkarendben) TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ

A FŐVÁROSI HULLADÉKHASZNOSÍTÓ MŰ KAZÁNJÁBAN KELETKEZETT SZILÁRD ANYAGOK KÖRNYEZET- GEOKÉMIAI VIZSGÁLATA

Bevezetés a lézeres anyagmegmunkálásba

Környezet nehézfém-szennyezésének mérése és terjedésének nyomon követése

A TERMÉSZETES RADIOAKTIVITÁS VIZSGÁLATA A RUDAS-FÜRDŐ TÖRÖK- FORRÁSÁBAN

Pásztázó elektronmikroszkópia (SEM) Elektronsugaras mikroanalízis (EPMA)

100 o C víz forrása 212 o F 0 o C víz olvadása 32 o F T F = 9/5 T C Példák: 37 o C (láz) = 98,6 o F 40 o C = 40 o F 20 o C = 68 o F

Opakásványok kristályorientáció vizsgálata a lahócai Cu-Au ércesedésben

10. előadás Kőzettani bevezetés

Nemzeti Akkreditáló Testület. MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (2) a NAT /2012 nyilvántartási számú akkreditált státuszhoz

Talajmechanika. Aradi László

Abszorpciós spektrometria összefoglaló

Vázlat a transzmissziós elektronmikroszkópiához (TEM) dr. Dódony István

Kvalitatív fázisanalízis

Kötőanyagok habarcsok. a mikroszkóp rt?

RÉSZLETEZŐ OKIRAT (2) a NAH /2016 nyilvántartási számú akkreditált státuszhoz

Röntgen sugárzás. Wilhelm Röntgen. Röntgen feleségének keze

Fókuszált ionsugaras megmunkálás

Röntgensugárzás. Röntgensugárzás

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről

Szakértesítő 1 Interkerám szakmai füzetek A folyósító szerek viselkedése a kerámia anyagokban

Polimorfia Egy bizonyos szilárd anyag a külső körülmények függvényében különböző belső szerkezettel rendelkezhet. A grafit kristályrácsa A gyémánt kri

A bányászatban keletkező meddőanyagok hasznosításának lehetőségei. Prof.Dr.CSŐKE Barnabás, Dr.MUCSI Gábor

A hőmérsékleti sugárzás

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

A DERIVATOGRÁF: EGY FEJEZET A TERMIKUS ANALÍZIS TÖRTÉNETÉBŐL

9 gyak. Acél mangán tartalmának meghatározása UV-látható spektrofotometriás módszerrel

Sugárzások kölcsönhatása az anyaggal

Átírás:

SZIKKTI Labor Szilikátkémiai Anyagvizsgáló-Kutató Kft. Budapest Anyagvizsgálati lehetőségek a SZIKKTI Labor Kft. - ben Laczkó László - Wojnárovitsné Dr. Hrapka Ilona Fórizs Katalin kutatási-fejlesztési vezető ügyvezető igazgató, MTA doktora XXIX. Téglás Napok, Balatonvilágos, 2014. november 13-14. laboratórium vezető

Egy kis történelem ÉaKKI Építőanyagipari Központi Kutató Intézet (1953. márc.16. 1965. dec. 31.) SZIKKI Szilikátipari Központi Kutató Intézet (1966. jan. 01. 1966.dec. 31.) SZIKKTI Szilikátipari Központi Kutató és Tervező Intézet (1967. jan. 01. 1994. jún. 30.) SZIKKTI Labor Szilikátkémiai Anyagvizsgáló Kutató Kft. (1994.) 2

A SZIKKTI Labor Kft. a Nemzeti Akkreditáló Testület által a) NAT-1-1259/2011 számon akkreditált, FÜGGETLEN vizsgálólaboratórium b) NAT-2-0224/2011 számon akkreditált kalibráló laboratórium, 2001-től a Brookfield viszkoziméterek márkakereskedője 3

SZIKKTI Labor Kft. tevékenységi köre - szilikátipari nyersanyagok, félkész és késztermékek (cement, mész, beton, üveg, szigetelőanyag, tégla, cserép, kerámia, tűzállóanyag, speciális műszaki kerámiák, perlitek) kémiai, fizikai, kristályszerkezeti, termoanalitikai, morfológiai vizsgálata - betonok, beton adalékanyagok, betonadalékszerek vizsgálata - vízvizsgálat - szervetlen szintetikus szálasanyagok korróziójának, szálerősítésű termékek tulajdonságainak vizsgálata. Különleges minőségű szálasanyag összetételek kidolgozása - környezetvédelmi vizsgálatok (azbeszt tartalom meghatározása, CO2 kibocsátás, szabad kvarc ) - műemlékvédelemmel kapcsolatos kőtisztítási és konzerválási eljárások hatékonyságának - vizsgálata. ipari hulladékok hasznosítása, újrafeldolgozása - kutatási, fejlesztési és szakértői megbízások teljesítése komplex vizsgálati módszerek alkalmazásával. 4

Fizikai vizsgálatok Porozitás és pórusméret-eloszlás A módszer alapja, hogy a Hg, mint nem nedvesítő folyadék, csak azokba a pórusokba tud behatolni, melyeknél a felületi feszültség miatt fellépő erőt a külső nyomás kompenzálja. A pórusokat végtelen hosszú hengernek tekintve a pórusok sugara (r) a Washburn egyenlettel számítható: r= 2 σ cosα p növekvő nyomás A mérés során vákuumból indulva a nyomás (p) fokozatos növelésével a nagyobb átmérőjű pórusoktól a kisebbek felé haladva 177 0,004 m tartományban határozzuk meg a porozitást. 5

Fizikai vizsgálatok Porozitás és pórusméret-eloszlás mérési eredmények beton pórusátmérő tartomány (µm-nm) 55 µm - 3,5 nm leggyakoribb pórusméret (µm) 0,018 kumulatív pórustérfogat (cm3/g) 0,044 pórustérfogat ( %) 9,52 fajlagos felület ( m2/g ) 11,71 6

Fizikai vizsgálatok Fajlagos felület A fajlagos felület az egységnyi mennyiségű (tömegű vagy térfogatú) szemhalmaz szemcséinek felületösszegét fejezi ki. BET-készülék (gázadszorpció) Blaine-készülék (permeabilitás) 7

Fizikai vizsgálatok Szemcseméret-eloszlás és átlagos szemcseméret Mérési elv: a koherens fénysugár és az előzetesen diszpergált porszemcsék kölcsönhatásán alapszik. Ha egy gömbként tekinthető részecske átmérője nagyobb a ráeső fény hullámhosszánál, akkor fényelhajlási jelenség jön létre. Az egyes szemcsék érintési felületén elhajló fénynyaláb irányváltoztatásának szöge fordítottan arányos azok sugarával. Az azonos szögelhalású sugarakat egyesítő lencse fókuszsíkjában egy olyan diffrakciós kép keletkezik, amelynek energiaeloszlása a poranyag szemcseméreteloszlására jellemző. 8

Fizikai vizsgálatok Szemcseméret-eloszlás és átlagos szemcseméret A mérőrendszer fő egységei: - fényforrás - mintatartó - optikai lencsék - fotodetektor-rendszer - számítógép Mérés előtt a mintát elektrolit hozzáadásával és ultrahanggal és mechanikai úton is diszpergáljuk. A diszpergált részecskéket tartalmazó szuszpenziót egy szivattyú a vibrotartály és a mintatartó között áramoltatja. Ez biztosítja a tökéletes homogenitást és az esetleges gázbuborékok eltávolítását. 9

Fizikai vizsgálatok Szemcseméret-eloszlás és átlagos szemcseméret 10

Fizikai vizsgálatok Cement minta szemcseméret-eloszlásának jellemzői a Rosin-Rammler-Sperling-Bennett (RRSB) egyenlet alapján Egyenletességi tényező: 1,2965 Finomsági mérőszám: 13,41 m Közepes szemcseméret: 10,05 m Frakció-összetétel, m/m% 0-3 m 3-32 m 32-192 m 16,21 79,22 4,57 11

Termikus vizsgálatok Derivatográfia A derivatográfia olyan összetett termoanalitikai módszer, amellyel a vizsgált minta hevítése során bekövetkező átalakulásokat kísérő hőenergia- és tömegváltozások egy mintával egyidejűleg meghatározhatók. Az erre alkalmas készülék a derivatográf, amely a DTA-, TG-, T- és DTG-görbéket egy időben automatikusan veszi fel. 1. mintatartó tégely, 2. inert anyagot tartalmazó tégely, 3. tégelytartó rúd, 4. termoelemek, 5. kemence, 6. mérleg, 7. áramlevezető huzalok, 8. tekercs, 9. mágnes, 10. DTG galvanométer, 11. T galvanométer, 12. DTA galavnométer, 13.megvilágító lámpák, 14. optikai rés, 15. fotografikus jelrögzítés (de ma már számítógépes jel-és adatrögzítés történik) 12

Termikus vizsgálatok Derivatográfia REA-gipsz minta termoanalitikai görbéi Korongos massza termoanalitikai görbéi mészkő termoanalitikai görbéi 13

Termikus vizsgálatok Dilatációs vizsgálatok Dilatációs vizsgálattal az anyag hevítés hatására bekövetkező hosszváltozása mérhető. A mérési eredményekből az anyag relatív lineáris hőtágulási vagy zsugorodási együtthatója számítható. transzformációs tartomány üveg dilatációs görbéje A mérések 1000 C ill. 1500 C hőmérsékletig végezhetők. 14

Termikus vizsgálatok Dilatációs vizsgálatok 15

Termikus vizsgálatok Terhelés alatti lágyulás és kúszás vizsgálata Tűzállóanyagok hevítés hatására bekövetkező zsugorodásnak vizsgálatára alkalmas módszer. hőtágulásának és Maximális vizsgálati hőmérséklet: 1600 C minták minta deformációja (%) 1 0-1 0 200 400 600 800 1000 1200 1400-2 -3 NETZSCH 421 típusú terhelés alatti lágyulásmérő készülék -4-5 m inta hőm é rs ék le te ( C) 16

Termikus vizsgálatok Szilárd tüzelőanyagok égéshőjének vizsgálata IKA 2000 kaloriméter Szilárd tüzelőanyagok -klór tartalmának meghatározása (ISO 587) -kén tartalmának meghatározása (ASTM D 3177) 17

Kristályszerkezeti vizsgálatok Röntgendiffrakció Ha egy kristályos anyagra röntgensugarakat bocsátunk, akkor az anyagra jellemző elhajlási képet kapunk. A kristály a röntgensugárral szemben optikai rácsként viselkedik, azaz a röntgensugár a kristály atomjain minden irányban szóródik. Az egyes irányokban a szórt sugarak egymást erősítik és elhajlási maximumok jönnek létre. Brägg elve szerint e maximumok úgy tekinthetők, mint a kristályra eső röntgensugárnak a kristályrács síkjain létrejövő tükröződései. Az egyes kristályos fázisok minőségi azonosítása azon alapul, hogy a röntgenreflexió helyzete ( ) és erőssége (I) jellemző az anyagra. A mennyiségi meghatározás alapja az, hogy a porkeverékeknél a különböző kristályos komponensekhez tartozó reflexiós viszonylagos intenzitása a komponensek mennyiségi arányától függ. 18

Kristályszerkezeti vizsgálatok Röntgen pordiffrakció Brägg-egyenlet n = 2 d sin A módszer elve a Brägg-egyenleten alapul, amely összefüggést határoz meg a röntgensugárzás hullámhossza ( ), a reflexiós szög és a rácssíktávolság (d) között. Adott esetén a szög mérésével meghatározható a reflexiókhoz tartozó d rácssíktávolság. 19

Kristályszerkezeti vizsgálatok Röntgendiffrakció P P P: Ca(OH)2 portlandit K: CaCO3 kalcit P P P P K P P 2 [ ] d [Å] építési mészhidrát minta röntgendiffrakciós felvétele 20

Kristályszerkezeti vizsgálatok Fázisátalakulások in situ vizsgálata röntgendiffrakcióval volfram karbid / kobalt porkeverék hevítéses röntgenkamrás felvétele 21

oxidos összetétel 53,72 m/m% Al2O3 30,57 m/m% CaO 1,58 m MgO 0,37 m K2 O 0,72 m Na2O 2,40 m CO2 0,44 m H2 O 10,16 m/m% izzítási veszteség 10,60 m/m% /m% /m% /m% /m% /m% fázisösszetétel 2 [ ] d [Å] illit 4,5 kaolinit 70,0 m/m% muszkovit 2,5 m kvarc 7,0 m kalcit 1,0 m röntgenamorf (üveges) 15,0 m/m% 22 /m% m /m% /m% /m% számítással Röntgen pordiffrakció SiO2

Pásztázó elektronmikroszkópia (SEM) és az elektronsugaras mikroanalízis (EDX) katódlumineszcencia Auger elektronok abszorbeált elektronok transzmittált elektronok Szekunder elektronok. A lazán kötött, külső héjon lévő elektronoktól erednek, amelyeket a primer elektronnyaláb kiüt a helyükről. Ezek kis energiájú elektronok energiájuk (5-10 ev).összegyűjtve topografikus (felületi) információt adnak a pásztázó elektronmikroszkópiában. Visszaszórt elektronok (BSE). Az eredeti nyalábból rugalmas, nagyszögű szórást szenvedett, általában 10 kev nagyságrendű energiájú elektronok. A visszaszórt elektronokkal létrehozott kép rendszámkontrasztot mutat, így a különböző elemeket tartalmazó képrészek jól elkülönülnek a képen. Röntgenfotonok. A mintát bombázó elektronnyaláb a minta atomjainak belső héjáról elektront üt ki. Az ilyen elektronhiány a nagyobb energiájú elektronpályáról betöltődik, miközben a két héj energiakülönbségének megfelelő energiájú röntgenfoton keletkezik. Minthogy ez az energia jellemző az őt kibocsátó atomra, ezért - a mintából távozó röntgenfotonok energiáját megmérve - információt nyerhetünk a minta kémiai összetételére. 23

Pásztázó (scanning) elektronmikroszkópia (SEM) A minta felületét pásztázó elektronnyaláb mozgatását egy generátor vezérli. Ugyanez a generátor vezérli pontról-pontra a képernyőn megjelenő ún. írósugár intenzitását is. A mintafelületre főkuszált 200 Å átmérőjű elektronnyaláb által gerjesztett elektronok vagy röntgenfotonok intenzitását detektorok érzékelik. Ha a pontról-pontra történő letapogatás során a minta felületének emissziója változik, akkor ez a képernyőn megjelenő írósugár intenzitásváltozásában is megnyilvánul és morfológiára ill. összetételre 24 jellemző kép alakul ki.

Energiadiszperzív mikroszonda (EDX) működési elve A kalcium elektronátmenetei Gerjesztési térfogat A vizsgálat elve: az anyag-elektron kölcsönhatása során keletkező karakterisztikus röntgensugárzás energiája az elem minőségére, intenzitása, azaz a csúcs alatti területek pedig a mennyiségére jellemző. Az egyes elemek koncentrációja a mátrixhatást is figyelembe vevő ZAF program alkalmazásával számítható. SiO2 23,77 m/m% Al2O3 0,40 m Fe2O3 0,12 m TiO2 4,29 m K2O 2,44 m Na2O 11,34 m/m% /m% /m% /m% /m% Elemi összetételből a szilikátkémiai gyakorlatban megszokott oxidos összetételt számolunk. 25

Morfológiai és mikroszondás vizsgálatok mészkőből készült dombormű felületi szennyeződései 26

Morfológiai és mikroszondás vizsgálatok klinker SEM felvétele 27

Morfológiai és mikroszondás vizsgálatok Fém kerámia határfelületen lejátszódó diffúziós folyamatok tanulmányozása mikroszondás vizsgálatokkal Al2O3 kerámia Al2O3 kerámia 28

Morfológiai és mikroszondás vizsgálatok Cirkosil falazati anyag SE elektronkép és az Al, Zr koncentrációprofilja Al elemeloszlási kép Zr elemeloszlási kép 29

Morfológiai és mikroszondás vizsgálatok Agyag szedimentációja Na-pirofoszfát oldatban; < 10 mm-es frakció Agyag ultrahangos kezelése 30

Kémiai összetétel meghatározása röntgenfluoreszcens spektrométerrel Ha megfelelő energiájú röntgensugár atomokkal kölcsönhatásba lép, akkor többek között a belső héjakról elektronokat lök ki. A keletkezett hézagot a külső héjról átmenő elektronok töltik ki, miközben a két héj közötti energiakülönbséget sugárzási kvantumok formájában kibocsátja. E fluoreszcens sugárzás energiája a röntgensugárzás tartományába esik. Ez a vizsgált elemre karakterisztikus, ezért felhasználható minőségi analízishez. Ezen túl az emittált röntgenkvantumok száma arányos az elem koncentrációjával, így kvantitatív vizsgálatra is alkalmas. 31

Kémiai összetétel meghatározása röntgenfluoreszcens spektrométerrel 32

Kémiai összetétel meghatározása röntgenfluoreszcens spektrométerrel 33

Kémiai összetétel meghatározása röntgenfluoreszcens spektrométerrel mintaelőkészítés 34

Kémiai összetétel meghatározása röntgenfluoreszcens spektrométerrel kémiai összetétel, m/m% kvarchomok cement kaolin Izzítási veszteség (1000 C) 0,22 1,40 13,55 SiO2 98,61 20,03 48,60 Al2O3 0,62 5,76 35,60 Fe2O3 0,045 3,31 0,83 TiO2 0,05 0,35 0,26 CaO 0,10 63,60 0,43 MgO < 0,01 1,20 0,11 K2O 0,34 0,81 0,59 Na2O 0,02 0,24 0,01 SO3 < 0,01 2,82 0,01 Mn2O3 < 0,01 n.a. n.a. P2O5 < 0,01 n.a. n.a. SrO 0,01 n.a. n.a. ZnO < 0,01 n.a. ZrO2 < 0,001 n.a. 35 n.a. n.a.

Kémiai összetétel meghatározása spektrofotométerrel Kétfényutas spektrofotométer működésének elvi ábrája Si, Fe, P, Cr6+, Ti4+, NO2-; NO3- tartalom meghatározása 36

Kémiai összetétel meghatározása spektrofotométerrel vizsgálandó minta oldata C1 C2 (Bouguer) Lambert Beer törvény A=lg I0 IT =ε c l 37 C3 C4

Kémiai összetétel meghatározása klasszikus analitikai módszerekkel 38

Kémiai összetétel meghatározása klasszikus analitikai módszerekkel 39

A SZIKKTI Labor Kft. ügyv. ig. Wojnárovitsné Dr. Hrapka Ilona (okl. vegyészmérnök, a kémia tudomány doktora) munkatársak: Fórizs Katalin (okl. vegyészmérnök) Horváth Anna (vegyésztechnikus) Laczkó László (okl. vegyész, cement-és mészipari vizsgáló szakértő) Migály Béla (okl. geológus, betontechnológus) Dr. Sajó István (XRD specialista) Sarlós Jánosné (vegyésztechnikus) Tóth Judit (vegyésztechnikus) Zentai Tamás (okl. villamosmérnök) 40

Köszönöm megtisztelő figyelmüket! web: e-mail: tel.: www.szikktilaborkft.hu szikktilaborkft@t-online.hu + 36 1 388-8752 + 36 1 368-7626 + 36 1 919-2345 41