10. előadás: A sejtciklus szabályozása és a rák

Hasonló dokumentumok
9. előadás: Sejtosztódás és sejtciklus

9. előadás: Sejtosztódás és sejtciklus

Sejtciklus. Sejtciklus. Centriólum ciklus (centroszóma ciklus) A sejtosztódás mechanizmusa. Mikrotubulusok és motor fehérjék szerepe a mitózisban

Sejtciklus. A nyugalmi szakasz elején a sejt növekszik, tömege, térfogata gyarapodik, mert benne intenzív anyagcserefolyamatok

A SEJTOSZTÓDÁS Halasy Katalin

A sejtciklus és szabályozása

Sejtek - őssejtek dióhéjban február. Sarkadi Balázs, MTA-TTK Molekuláris Farmakológiai Intézet - SE Kutatócsoport, Budapest

A SEJTOSZTÓDÁS Halasy Katalin

A sejtciklus szabályozása

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

A sejtciklus szabályozása

Őssejtek és hemopoiézis 1/23

Az emberi sejtek általános jellemzése

A sejtek lehetséges sorsa. A sejtek differenciálódása. Sejthalál. A differenciált sejtek tulajdonságai

A sejtciklus szabályozása 1

A citoszkeleton Eukarióta sejtváz

Biológiai módszerek alkalmazása környezeti hatások okozta terhelések kimutatására

Őssejtek és hemopoiézis 1/23

Transzgénikus állatok előállítása

Az X kromoszóma inaktívációja. A kromatin szerkezet befolyásolja a génexpressziót

Epigenetikai Szabályozás

2. A jelutak komponensei. 1. Egy tipikus jelösvény sémája 2. Ligandok 3. Receptorok 4. Intracelluláris jelfehérjék

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

A keringı tumor markerek klinikai alkalmazásának aktuális kérdései és irányelvei

Jelutak. Apoptózis. Apoptózis Bevezetés 2. Külső jelút 3. Belső jelút. apoptózis autofágia nekrózis. Sejtmag. Kondenzálódó sejtmag

Jelutak. 2. A jelutak komponensei Egy tipikus jelösvény sémája. 2. Ligandok 3. Receptorok 4. Intracelluláris jelfehérjék

ÖSSZ-TARTALOM. 1. Az alapok - 1. előadás 2. A jelutak komponensei 1. előadás 3. Főbb jelutak 2. előadás 4. Idegi kommunikáció 3.

7. előadás Sejtosztódás, differenciálódás

Receptorok és szignalizációs mechanizmusok

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Az omnipotens kutatónak, Dr. Apáti Ágotának ajánlva, egy hálás ex-őssejtje

Neoplazma - szabályozottság nélküli osztódó sejt

ÖSSZ-TARTALOM 1. Az alapok - 1. előadás 2. A jelutak komponensei 1. előadás 3. Főbb jelutak 2. előadás

Darvas Zsuzsa László Valéria. Sejtbiológia. Negyedik, átdolgozott kiadás

A daganat- és rákképződés május 5.

Sejtszaporodás és reakciókinetika

Jelutak ÖSSZ TARTALOM. Jelutak. 1. a sejtkommunikáció alapjai

Réz Gábor. A sejtciklus motorjai és sebességváltói

Prokarióták. A sejtmag tehát csak eukariótákra jellemző. A magok száma

A biológia szerepe az egészségvédelemben

Prokarióták. A sejtmag tehát csak eukariótákra jellemző. A magok száma

Intelligens molekulákkal a rák ellen

Kromoszómák, Gének centromer

A kromoszómák kialakulása előtt a DNS állomány megkettőződik. A két azonos információ tartalmú DNS egymás mellé rendeződik és egy kromoszómát alkot.

Molekuláris Medicina

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Sejt- és fejlődésbiológia ea (zh2) / (Áttekintés) (1. csoport) : Start :42:23 : Felhasznált idő 00:00:14 Név: minta

A vérképző rendszerben ionizáló sugárzás által okozott mutációk kialakulásának numerikus modellezése

TARTALOM. Előszó 9 BEVEZETÉS A BIOLÓGIÁBA

Nagy Krisztina Semmelweis Egyetem, Orálbiológiai Tanszék

Apoptózis. 1. Bevezetés 2. Külső jelút 3. Belső jelút

Szöveti Regeneráció, Gyógyulás Fibrózissal Krenács Tibor

Az ember összes kromoszómája 23 párt alkot. A 23. pár határozza meg a nemünket. Ha 2 db X kromoszómánk van ezen a helyen, akkor nők, ha 1db X és 1db

Őssejtkezelés kardiovaszkuláris kórképekben

11. évfolyam esti, levelező

12. évfolyam esti, levelező

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Mit tud a genetika. Génterápiás lehetőségek MPS-ben. Dr. Varga Norbert

Az ember szaporodása

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

NÖVÉNYÉLETTAN. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

A Telomerase-specific Doxorubicin-releasing Molecular Beacon for Cancer Theranostics

A membránok és a citoszkeleton kapcsolata. A sejtosztódás és a sejtciklus. Előadó:Gönczi Mónika Debreceni Egyetem, ÁOK, Élettani Intézet

SEJT,SZÖVET,SZERV BIOLÓGIAI ÖSSZEFOGLALÓ KURZUS 6. HÉT. Kun Lídia Semmelweis Egyetem, Genetika, Sejt és Immunbiológiai Intézet

TDK lehetőségek az MTA TTK Enzimológiai Intézetben

A daganatképzés molekuláris biológiája 1

A sarjadzó élesztõ sejtciklusának matematikai modellezése

I. kategória II. kategória III. kategória 1. Jellemezd a sejtmag nélküli szervezeteket, a baktériumokat. Mutasd be az emberi betegségeket okozó

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

3. Főbb Jelutak. 1. G protein-kapcsolt receptor által közvetített jelutak 2. Enzim-kapcsolt receptorok által közvetített jelutak 3.

4. Sejt szerveződése és a sejt élete. Sejtalkotók, felépítő és lebontó folyamatok, jelátvitel, trafficking, sejtosztódás, sejthalál

Tüdő adenocarcinomásbetegek agyi áttéteiben jelenlévő immunsejtek, valamint a PD-L1 és PD-1 fehérjék túlélésre gyakorolt hatása

alap követelmény/extra követelmény

Immunológia Alapjai. 13. előadás. Elsődleges T sejt érés és differenciálódás

Genetika és genomika László, Valéria Szalai, Csaba Pap, Erna Tóth, Sára Falus, András Oberfrank, Ferenc Szerkesztette Szalai, Csaba

sejt működés jovo.notebook March 13, 2018

Az öröklődés molekuláris alapjai ban mutatta be James Watson és Francis Crick elegáns kettős hélix modelljét a DNS szerkezetének magyarázatára

Kis dózis, nagy dilemma

BIOLÓGIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Többgénes jellegek. 1. Klasszikus (poligénes) mennyiségi jellegek. 2.Szinte minden jelleg több gén irányítása alatt áll

Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola

Vizsgakövetelmények Ismerje föl mikroszkópban és mikroszkópos képeken a sejtmagot. Ismerje fel rajzolt ábrán a sejtmagot. Ismerje és alkalmazza a

A harántcsíkolt vázizom differenciációja, regenerációja

Hamar Péter. RNS világ. Lánczos Kornél Gimnázium, Székesfehérvár, október

Az endomembránrendszer részei.

Az immunrendszer alapjai, sejtöregedés, tumorképződés. Biológiai alapismeretek

A (human)genetika alapja

A sejtfelszíni receptorok három fő kategóriája

DOKTORI ÉRTEKEZÉS. A sejtszaporodás reakciókinetikai modelljei

A génterápia genetikai anyag bejuttatatása diszfunkcionálisan működő sejtekbe abból a célból, hogy a hibát kijavítsuk.

GRADING. Az emlő invazív és in situ carcinomái. Kulka Janina Semmelweis Egyetem II. sz. Pathologiai Intézet

Kémiai reakció aktivációs energiájának változása enzim jelenlétében

Poligénes v. kantitatív öröklődés

BIOLÓGIA 11. ÉVFOLYAM I. beszámoló. A genetika alaptörvényei

A SEJT. külön rész: A SEJT

NUKLEINSAVAK. Nukleinsav: az élő szervezetek sejtmagvában és a citoplazmában található, az átöröklésben szerepet játszó, nagy molekulájú anyag

Problémák és lehetőségek a helyreállító gyógyítás területén

A citoszol szolubilis fehérjéi. A citoplazma matrix (citoszol) Caspase /Kaszpáz/ 1. Enzimek. - Organellumok nélküli citoplazma

Átírás:

10. előadás: A sejtciklus szabályozása és a rák sejtciklus = Azon egymást követő fázisok vagy szakaszok sorrendje, amelyen egy sejt áthaladaz egyik osztódástól a következőig.)

A sejtciklus változatai szabálytalan sejtciklusok Korai embrionális sejtciklus A petesejt megtermékenyítését követően gyors mitózisok zajlanak. Ilyenkor kimarad a G 1 és G 2 fázis; A sejtek tömege feleződik

A sejtciklus változatai szabálytalan sejtciklusok endoreplikáció A folyamat során kimarad vagy nem zajlik te teljesen a mitózis: a sejtek nem válnak szét. a) A kromoszómák dulikálódnak, de nem válnak szét: politén óriás kromoszómák képződnek b) Az anafázis vagy a citokinézis megakad (többszörös kromoszómaszerelvényű, ill. többmagvú sejtek)

A sejtciklus változatai megállás a sejtciklus valamelyik fázisában petesejtek meiózisa a) Születés időpontjára kialakul a végleges petesejt készlet. A sejtek megállnak meiózis I profázisában (egészen a serdülőkorig). b) A női nemi ciklus során (progeszteron hatására) folytatódik az osztódás, érett petesejt képződik és ovulálódik. Ugyanakkor a meiózis megáll meiózis II. metafázisban. c) A meiózis a megtermékenyítés hatására fejeződik be.

A sejtciklus változatai kilépés a sejtciklusból G 0 és differenciáció A differenciált (adott funció elvégzésére specializálódott) sejtek speciális ún. G 0 fázisban vannak (a G 1 -ből nem léptek S-be). Ez a kilépés lehet végleges (terminális differenciáció): pl. izomsejt, idegsejt vagy ideiglenes: pl. májsejtek

Speciális sejtsorsok: az őssejtek (stem cells) - Önmegújítóképesség,relatíve halhatatlan - Differenciált sejtek létrehozása: pluripotens - unipotens - Sérült szövet pótlása - Szimmetrikus-aszimmetrikus osztódás - aszimmetrikus osztódással egy önmagától eltérő (differenciált sejt) és egy önmagával megegyező (önmegújító képesség) sejt létrehozásának képessége

Speciális sejtsorsok: őssejtek asszimetrikus osztódás Intrinsic út: Egyenlőtlen citoplazma/ fehérje megoszlás eredményeképp az osztódást követően a két sejt nem lesz egyenértékű Extrinsic út: Más környezeti faktorok érik az utódsejteket a térbeli elhelyezkedésük miatt. A megfelelő mirokörnyezetben helyet foglaló sejt őssejt marad, a másik differenciálódik

Van-e a differenciációnak általános menete? Pluripotens őssejt: korlátlan fejlődési potenciállal (ICM, ES) Multipotens őssejtek: korlátozott fejlődési potenciállal (szövetspecifikus őssejtek) Köztes sokszorozó sejt /progenitor: korlátozott számú osztódás Korai differenciált sejttípus posztmitotikus Végdifferenciált sejt

Az őssejtek kevesebb mutációt halmoznak fel: halhatatlan DNS szál hipotézis piros: a halhatatlan DNS-szál a halhatatlan DNS-szál őssejt replikáció valamennyi halhatatlan szál ugyanahhoz a centroszómához kapcsolódik a mitózis során őssejt aszimmetrikus osztódás Alberts: Molecular Biology of the Cell, 2008 őssejt progenitor sejt

Az eukarióta sejt sejtciklusát molekuláris ellenőrző rendszer szabályozza A sejtosztódás gyakorisága sejttípusonként változik Ezek a különbségek a sejtciklus molekuláris szabályozásából származnak A rákos sejtek kikerülnek az ellenörző folyamatok alól

A citoplazmatikus szignálok jelentősége A sejtciklust a citoplazmában jelenlévő kémiai szignálok hajtják E hipotézis számos bizonyítékát olyan szövettenyészetben tartott emlős sejtek szolgáltatták, melyeknél a sejtciklus különböző fázisaiban tartózkodó sejteket fúzionáltatták egymással

KÍSÉRLET Kísérlet 1 Kísérlet 2 S G 1 M G 1 EREDMÉNY S S Amikor S fázisú sejtet fúzionáltattak G1 fázisú sejttel. A G1 fázisú sejtmag azonnal S fázisba lépett, és DNS-t kezdett szintetizálni M M Amior M fázisú sejtet fúzionáltattak G 1 fázisúval, a G 1 sejtmag azonnal osztódnikezdett osztódási orsó alakult ki és kondenzáció indult be, annak ellenére, hogy a kromoszómák nem duplikálódtak.

A sejtciklus ellenőrző rendszere A sejtciklus egymást követő eseményeit a sejtciklus ellenőrző rendszere irányítja Ez az ellenőrző rendszer mind külső, mind belső szabályozás alatt áll A ciklusnak meghatározottellenőrzőpontjai vannak, ahol a sejtciklus megáll, amíg tovább mehetsz szignált nem kap

G 1 ellenőrzőpont G 1 Ellenőrző rendszer S M G 2 M ellenőrzőpont G 2 ellenőrzőpont

A legtöbb sejt esetében a G 1 ellenőrzőpont tűnik a legfontosabbnak Ha a sejt át tud lépni a G 1 ellenőrzőponton, akkor általában befejezik az S, G 2 és M fázist, és osztódik Ha a sejt nem kap átlépést engedélyező szignált, kilép a sejtciklusból, és nem-osztódó, ún. G 0 fázisba kerül.

G 1 ellenőrzőpont G 0 G 1 G 1 (a) A sejt továbbléphet (b) A sejt kilép a sejtciklusból

A sejtciklus ellenőrző pontjai G 1 ellenőrző pont: Start vagy restrikciós pont Kérdés: Megfelelőek-e a körülmények A Cdk-aktivitás beindításához növekedési faktor szignál kell! A sejt nyugalomban van, míg jelet nem kap az osztódásra. aktív Rb fehérje inaktív E2F fehérje aktív CDK4/ ciklind aktív E2F fehérje S-fázis gének átíródása aktív CDK2/ cikline cikline ciklina aktív CDK2/ ciklina DNS SZINTÉZIS inaktív Rb fehérje Az Rb inaktiválódása olyan CDK-ciklin komplexek kialakulásához vezet, amelyek beindítják az S fázist, a DNS replikációját. A pozitív visszacsatolások gyors és éles G1-S-fázis átmenethez vezetnek. Alberts: Molecular Biology of the Cell, 2008

A sejtciklus ellenőrző pontjai G 2 ellenőrző pont: G2/M ellenőrző pont Kérdés: Replikálódott-e a DNS? Megfelelőek-e a körülmények? DNS károsodás esetén a p53 fehérje felfüggeszti a sejtciklust! (a G 1 /S határon is!!!) DNS reparáció DNS károsodás p53 p21 Sejtciklus feltartóztatás Apoptózis Genom-integritás megőrzése a G /M, hanem a G /S határon is

A sejtciklus ellenőrző pontjai M ellenőrző pont: Anafázis ellenőrző pont Kérdés: Minden kromoszóma osztódási orsóhoz kötődött-e? INSTABIL INSTABIL INSTABIL STABIL

A sejtciklus óraművek: Ciklinek és ciklindependens (függő) kinázok A sejtciklus szabályozásában két fehérje család szerepel: ciklinek és ciklin-függő kinázok (Cdks) Cdks aktivitása fluktuál a sejtciklus alatt, mivel az őket szabályozó ciklinek koncentrációja a ciklussal változik MPF (maturation-promoting factor, érést elősegítő faktor) egy ciklin-cdk komplex, mely a G 2 ellenőrzőpont átlépésére és M fázisba lépésre utasítja a sejtet

M G 1 S G 2 M G 1 S G 2 M G 1 MPF aktivitás Ciklin koncentráció Idő (a) AzMPF aktivitál és a ciklin koncentrációjának változása a sejtciklus alatt Cdk lebomlott ciklin ciklin lebomlik G 2 ellenőrzőpont Cdk MPF ciklin (b) A sejtciklus szabályozását segítő molekuláris mechanizmus

Sejtciklus szabályozása állati sejt növényi sejt

Stop and Go szignálok: belső és külső szignálok az ellenőrzőpontoknál Belső szignál például, ha a kinetokórok nem kapcsolódnak a magorsó fonalakhoz, ekkor késleltetődik az anafázist A külső szignálok pl. növekedési faktorok, olyan fehérjék, melyek a sejt osztódását indukálják pl.: vérlemezke eredetű növekedési faktor (PDGF, platelet-derived growth factor) humán fibroblaszt sejtek osztódását serkenti

1 Emberi kötőszövetet apró darabokra vágnak. Darabolás 2 Petri csésze Enzimmel megemésztik az extracelluláris mátrixot, és a sejteket disszociáltatják. 3 A sejteket szövettenyésztő edényekbe ültetik. 4 PDGF-t adnak az edényekhez. 10 µm PDGF nélkül PDGF jelenlétében

Jellegzetes külső szignál a kontakt gátlás (density-dependent inhibition), a tömegben lévő sejtek osztódása leáll A legtöbb állati sejt letapadás függést mutat, ha nem tud kihorgonyzódni egy felülethez, akkor nem osztódik A rákos sejtekre ez a két limitáló tényező nem hat!

letapadás függés kontakt gátlás kontakt gátlás (a) Normál emlős sejt 20 µm 20 µm (b) Rákos sejt

Rákos sejtekben elvész a sejtciklus szabályozása A rákos sejtek nem válszolnak megfelelően a szervezet ellenőrző mechanizmusaira A rákos sejteknek nincs szüksége növekedési faktorokra, hogynövekedjenek ésosztódjanak Saját maguk termelik a növekedési faktorokat Növekedési faktorok hiányában is működik a belső jelátviteli útvonal abnormális sejtciklus szabályozó rendszerrel rendelkeznek

Ha normál sejt rákos sejtté alakul azt transzformációmak hívjuk Ha a rákos sejteket nem tudja eltávolítani az immunrendszer, akkor azok tumorokat okoznak Ha az abnormális sejt a szöveti helyén marad és szövetrétegéből nem lép ki, akkor benignus tumorról beszélünk Malignus tumorok esetén, a rákos sejtek behatolnak a környező szövetekbe és áttéteket (metasztázis) hozhatnak létre, így újabb tumorokat alakíthatnak ki

Tumor Lymph vessel Blood vessel Glandular tissue Cancer cell Metastatic tumor 1 A tumor grows from a single cancer cell. 2 Cancer cells invade neighboring tissue. 3 Cancer cells spread through lymph and blood vessels to other parts of the body. 4 Cancer cells may survive and establish a new tumor in another part of the body.

Figure 12.UN01 P Citokinézis G 1 S Mitosis G 2 mitotikus (M) fázis Telofázis and Citokinézis Profázis Anafázis Metafázis Prometafázis