Elektron-gyorsítás Alfvén-hullám impluzusok által aktív galaxismagokban

Hasonló dokumentumok
Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) augusztus 17 Hungarian Teacher Program, CERN 1

Az Ampère-Maxwell-féle gerjesztési törvény

Theory hungarian (Hungary)

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése

A nagyenergiás neutrínók. fizikája és asztrofizikája

Erős terek leírása a Wigner-formalizmussal

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Az elektromágneses hullámok


Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

2, = 5221 K (7.2)

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Munkagázok hatása a hegesztési technológiára és a hegesztési kötésre a CO 2 és a szilárdtest lézersugaras hegesztéseknél

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16.

Bevezetés a részecske fizikába

1. Feladatok merev testek fizikájának tárgyköréből

Sugárzások kölcsönhatása az anyaggal

Geometriai és hullámoptika. Utolsó módosítás: május 10..

Részecskefizikai gyorsítók

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by OTKA MB augusztus 16. Hungarian Teacher Program, CERN 1

Kvantumos jelenségek lézertérben

Fekete lyukak, gravitációs hullámok és az Einstein-teleszkóp

Pósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G.

Röntgensugárzás. Röntgensugárzás

3.1. ábra ábra

1. fejezet. Gyakorlat C-41

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről

László István, Fizika A2 (Budapest, 2013) Előadás

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Hadronok, atommagok, kvarkok

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád

A gamma-sugárzás kölcsönhatásai

Országos Szilárd Leó Fizikaverseny

Az elektron hullámtermészete. Készítette Kiss László

2. tétel - Gyorsítók és nyalábok (x target, ütköz nyalábok, e, p, nyalábok).

Műszeres analitika II. (TKBE0532)

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet

Sugárzások és anyag kölcsönhatása

Rádl Attila december 11. Rádl Attila Spalláció december / 21

Fizika minta feladatsor

Színképelemzés. Romsics Imre április 11.

Rezgések és hullámok

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

Biofizika. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? A biológiában és orvostudományban alkalmazott fizikai módszerek tárgyalása

Biofizika. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? A biológiában és orvostudományban alkalmazott fizikai módszerek tárgyalása

Fizika 2 - Gyakorló feladatok

Elektron mozgása kristályrácsban Drude - féle elektrongáz

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)

A teljes elektromágneses spektrum

1. ábra. 24B-19 feladat

= Φ B(t = t) Φ B (t = 0) t

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

A legkisebb részecskék a világ legnagyobb gyorsítójában

A femtoszekundumos lézerektől az attoszekundumos fizikáig

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz

A lézer alapjairól (az iskolában)

Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében?

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék

Szupermasszív fekete lyukak. Kocsis Bence ELTE Atomfizikai Tsz. ERC Starting Grant csoportvezető

Elektronok mozgása nanostruktúrákban 2-D elektrongáz, kvantumdrót és kvantumpötty

Röntgendiagnosztikai alapok

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2

Aktív magvú galaxisok és kvazárok

Osztályozó vizsga anyagok. Fizika

A gravitációs hullámok miért mutathatók ki lézer-interferométerrel?

Elektrosztatika Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje

A Standard modellen túli Higgs-bozonok keresése

Atomok és molekulák elektronszerkezete

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3

[ ]dx 2 # [ 1 # h( z,t)

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Programozható vezérlő rendszerek. Elektromágneses kompatibilitás II.

Z bozonok az LHC nehézion programjában

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia

2016. április 5. Balogh Gáspár Sámuel Kvazárok április 5. 1 / 28

Gyakorlat anyag. Veszely. February 13, Figure 1: Koaxiális kábel

A fény mint elektromágneses hullám és mint fényrészecske

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?

Neutrinódetektorok és részecske-asztrofizikai alkalmazásaik

Hang és ultrahang. Sugárzások. A hang/ultrahang mint hullám. A hang mechanikai hullám. Terjedéséhez közegre van szükség vákuumban nem terjed

Atomfizika. Fizika kurzus Dr. Seres István

Értékelési útmutató az emelt szint írásbeli feladatsorhoz I.

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

ELEKTRONIKAI ALKATRÉSZEK

Beugró kérdések. Elektrodinamika 2. vizsgához. Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!

Átírás:

Elektron-gyorsítás Alfvén-hullám impluzusok által aktív galaxismagokban Előadó: Kun Emma, PhD hallgató, SZTE Témavezető: Gergely Árpád László, SZTE Munkatársak: Horváth Zsolt, SZTE Keresztes Zoltán, SZTE Gabányi Krisztina Éva, SZTE, CSFK KTM FIKUT VII, 2014, Budapest

Tartalom Ultranagy Energiájú Kozmikus Részecskék Elektrongyorsításos mechanizmusok Alfvén-hullám impulzus Asztrofizikai alkalmazás és első eredmények

UHECRs Első detektálás 1962-ben (J. Linsley, 1963, Phys. Rev. Lett. 10 146) Nagyenergiájú, nyugalmi tömeggel rendelkező töltött részecskék Kinetikus energia 10 18 ev-10 20 ev Elsődleges UHECRs Extragalaktikus eredetű α, p +, e -, kevés antianyag Másodlagos UHECRs Az elsődleges részecske belép a Föld légkörébe, ütközik annak részecskéivel, és a kölcsönhatás másodlagos részecskék kaszkádját indítja el γ, p +, e -, n 0, π +, π -, π 0, μ - ( http://universe-review.ca/i15-33-detectors.jpg)

AGN-ek (VCV katalógus, z < 0.018, D < 75 Mpc, vörös x-ek) 27 UHECR esemény, E > 5.7x10 19 ev (GZK limit), fekete körök (3.2 o ) A Pierre Auger Observatory látómezeje (egyenes vonalak között) Egyenlő expozíciók (a kéken satírozott részek) A szaggatott vonal a Szupergalaktikus síkot, a fehér pont a Centaurus A-t jelzi (A. V. Olinto et al, 2009, The Astronomy and Astrophysics Decadal Survey, White Paper on Ultra-High Energy Cosmic Rays)

Aktív galaxismagok A központi égitest egy 10 6-10 9 naptömegű fekete lyuk Az akkréció szolgáltatja az energiaforrást Az észlelt AGN típus a jetre való rálátási szögtől függ ( Brooks/Cole Thomson Learning)

Asztrofizikai gyorsítás Fermi gyorsítás Töltött részecskék energiát nyernek ütközésekből, mágneses közegben Hillas kritérium W max ~ z (B/1μG) (R/1 kpc) EeV z töltés B mágneses térerősség R a gyorsító közeg mérete W max ~10 20 ev Neutroncsillag, AGN, GRB, sokkok az intergalaktikus közegben Problémák a Fermi folyamattal túl sok ütközés kell ilyen nagyenergiákra való gyorsításhoz többszörös ütközések, inkoherens és sztochasztikus gyorsítások a szinkrotron emisszió energiát visz el Alternatív mechanizmus szükséges, ami képes nagy energiákra gyorsítani p +,e -,n 0 -at, kozmikus feltételek mellett

EM hullám és részecske kölcsönhatás "wakefield" gyorsítás nem a részecskék egymás közötti kölcsönhatása okozza, hanem egy "külső" elektromágneses hullám A hullám terjedési sebessége közel a fénysebesség Relativisztikus amplitúdó A részecske relativisztikus sebességre gyorsul egy oszcillációs periódus alatt E: elektromos tér (hullám) ω: frekvencia (hullám) e j : töltés (részecske) m j : nyugalmi tömeg (részecske) A gyorsító tér és a részecskék egy irányba mozognak közel hasonló sebességgel Az egyenes vonalú terjedés miatt nincs szinkrotron emisszió

Alfvén hullámok Neutroncsillagok ütközésénél 10 20 ev -ra gyorsít speciális körülmények között Alfvén hullám analógia: hullám terjed egy kifeszített kötél mentén mágneses feszültség szolgáltatja a visszatérítő erőt "magnetic tension" [N/m 3 ] töltött részecskék együtt oszcillálnak a mágneses térrel transzverzális és diszperziómentes ( L. H. Lyu and M. Q. Chen, Institute of Space Science)

Alfvén-hullám impulzus generálása Erősen és gyengén mágnesezett állapotú anyaggyűrűk váltakoznak az akkréciós korongban Erős Alfvén-hullám impulzusok generálódnak a korongban az átmeneteknél

Vektorpotenciál a = (0, a exp r2 r 0 2 cos kz ωt e x, 0, 0) a z, axiális koordináta r, radiális koordináta (y=0)

Vektorpotenciál r: radiális koordináta (m) z: axiális koordináta (m) r 0 : a nyalábnyak átmérője (m) k=2π/λ A : hullámszám (1/m) ω=ck: frekvencia (1/s) z: terjedési irány, axiális koordináta (m) A bemenő paraméterek 2π/ω A =2.0x10 2 x(m/0.1)(m/10 8 ) s λ A =5.8x10 10 x (m/0.1)(m/10 8 ) m a 0 =2.3x10 10 x(m/0.1) 3/2 (m/10 8 ) 1/2 (D/3R g ) -1/2 V A =2.4x10 7 (m/0.1) m: m 0 akkréciós ráta normálva m c kritikus akkréciós rátával (m c =L Edd /0.06c 2 )) m: központi fekete lyuk tömege napegységben D: a fekete lyukhorizontjától való távolság a jet mentén n e (r, γ e )=n 1 (r/1pc) -n γ e -(2α+1), elektronsűrűség γ e : elektron Lorentz faktor n1: forrás-függő normáló faktor (1/cm 3 ) n: a jet geometriájától függő konstans (n=2 folytonos jet) r: távolság a magtól (pc) α: spektrálindex a = a 0 exp r2 r 0 2 cos kz ωt e x R s =2Gm/c 2 L Edd =1.26x10 31 (m/m Nap ) W

Első eredmények Minkowski téridőben érvényesek a számolások Hengerszimmetrikus koordinátarendszer 2D (ct, r, z függés, φ=0) Paramétertér próbálgatása, karakterisztikus viselkedés leírása r 0 =1000m, z 0 =0, az elektron kezdeti koordinátái v r =0, v z =0.0001c, az elektron kezdősebessége m [m Nap ] [10 6,10 7,10 8,10 9 ] szupermasszív fekete lyuk m 0 [m Nap /év] [0.01, 0.1, 0.5, 1] D[R s ] [10,100]

m=10 6 M Nap D=10 R s m0=0.01 m0=0.10 m0=0.50 m0=1.00 m=10 m=10 6 M 6 Nap M Nap D=100 D=100 R s R s m0=0.01 m0=0.10 m0=0.50 m0=1.00 m 0 =0.01 M Nap /év, m=0.002x m Edd (ADAF) Adott z, m 0 D növekszik, a felgyorsult elektron z tengelytől való kitérésének mértéke növekszik Adott z, D m 0 növekszik, a felgyorsult elektron z tengelytől való kitérésének mértéke növekszik m 0 =0.10 M Nap /év m=0.027x m Edd m 0 =0.50 M Nap /év m=0.135x m Edd m 0 =1.00 M Nap /év m=0.263x m Edd

m=10 6 M Nap,D=10 R s m0=0.01 m0=0.10 m0=0.50 m0=1.00 Erős r irányú lökés éri az elektront, az gyorsul, sebessége elér egy maximális értéket, majd lassul és sebessége beáll egy konstans értékre

m=10 6 M Nap,D=100 R s m0=0.01 m0=0.10 m0=0.50 m0=1.00 Távolabb a horizonttól később éri el a sebesség a maximum értékét, viszont adott akkréciós rátához nagyobb végsebesség tartozik

m=10 6 M Nap,D=10 R s m0=0.01 m0=0.10 m0=0.50 m0=1.00 Az elektron z irányú sebessége közel a fénysebesség lesz ~0.001s alatt

m=10 6 M Nap,D=100 R s m0=0.01 m0=0.10 m0=0.50 m0=1.00 Távolabb a horizonttól a z irányú végsebesség kisebb

m0=0.01 m0=0.10 m0=0.50 m0=1.00 m=10 8 M Nap D=10 R s Hasonló karakterisztikus viselkedés mint a kisebb tömegű fekete lyuk esetén m0=0.01 m0=0.10 m0=0.50 m0=1.00 m=10 8 M Nap D=100 R s

m=10 8 M Nap,D=10 R s m0=0.01 m0=0.10 m0=0.50 m0=1.00 m 0 =0.01 M Nap /év, m=10-5 x m Edd m 0 =0.10 M Nap /év m=2.7x10-4 x m Edd m 0 =0.50 M Nap /év m=0.001x m Edd m 0 =1.00 M Nap /év m=0.0027x m Edd Nagyobb akkréciós ráta, kisebb radiális irányú végsebesség, a sebességderivált nem vált előjelet

m=10 8 M Nap,D=100 R s m0=0.01 m0=0.10 m0=0.50 m0=1.00

m=10 8 M Nap,D=10 R s m0=0.01 m0=0.10 m0=0.50 m0=1.00 Nagyobb akkréciós ráta, kisebb axiális irányú végsebesség

m=10 8 M Nap,D=100 R s m0=0.01 m0=0.10 m0=0.50 m0=1.00

Az első tesztek megmutatták Schwarzschild sugártól való függés Horizonttól mért távolságtól való függés Akkréciós rátától való függés

Köszönöm a figyelmet! Referenciák Shakura, N. I.; Sunyaev, R. A.,1973, A&A, 24, 337 I.D. Novikov and K.S. Thorne, "Astrophysics of Black Holes", 1973, 343 Minfeng Gu, Xinwu Ca, D. R. Jiang, 2009, MNRAS, 396, 984 E. Esarey, C. B. Schroeder, and W. P. Leemans, 2009, PRD, 81, 1229 Toshikazu Ebisuzaki &Toshiki Tajima, 2014, Astroparticle Physics, 56, 9