4.A 4.A. 4.A Egyenáramú hálózatok alaptörvényei Ohm és Kirchhoff törvények

Hasonló dokumentumok
12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás

Elektromos áram, egyenáram

Elektromos áramerősség

Gingl Zoltán, Szeged, :14 Elektronika - Hálózatszámítási módszerek

1. konferencia: Egyenáramú hálózatok számítása

Elektromos töltés, áram, áramkör

Gingl Zoltán, Szeged, szept. 1

Elektromos áram, áramkör, kapcsolások

Az Ohm törvény. Ellenállás karakterisztikája. A feszültség és az áramerősség egymással egyenesen arányos, tehát hányadosuk állandó.

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.

Összetett hálózat számítása_1

Elektrotechnika- Villamosságtan

Ellenállásmérés Wheatstone híddal

Elektromos áram, áramkör

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2.

évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: Tanítási órák száma: 1 óra/hét

Ohm törvénye. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel.

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

Elektromos ellenállás, az áram hatásai, teljesítmény

Fizika A2E, 9. feladatsor

FIZIKA II. Egyenáram. Dr. Seres István

Elektrotechnika 11/C Villamos áramkör Passzív és aktív hálózatok

1. SI mértékegységrendszer

Vízgépészeti és technológiai berendezésszerelő Épületgépészeti rendszerszerelő

Elektromos töltés, áram, áramkörök

Elektromos ellenállás, az áram hatásai, teljesítmény

ELEKTROMOSSÁG ÉS MÁGNESESSÉG

Elektrotechnika 1. előadás

Elektromosság, áram, feszültség

Elektrotechnika 9. évfolyam

Elektromos áram, egyenáram

17/1. Négypólusok átviteli függvényének ábrázolása. Nyquist diagram.

TARTALOMJEGYZÉK. Előszó 9

MÉSZÁROS GÉZA okl. villamosmérnök villamos biztonsági szakértő

Hobbi Elektronika. Bevezetés az elektronikába: 1. Alapfogalmak, Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás, feszültségosztó

1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak?

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai

Elektromos áram. Vezetési jelenségek

Fizika A2E, 8. feladatsor

Méréstechnikai alapfogalmak

Elektromos áram, áramkör

ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?

EGYFÁZISÚ VÁLTAKOZÓ ÁRAM

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.

ELKON S-304 autó villamossági mőszer áramköri leírása

Átmeneti jelenségek egyenergiatárolós áramkörökben

Mértékegysége: 1A (amper) az áramerősség, ha a vezető keresztmetszetén 1s alatt 1C töltés áramlik át.

Elektrotechnika példatár

Összefüggő szakmai gyakorlat témakörei

MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c)

Elektrotechnika- Villamosságtan

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek.

1.A 1.A. 1.A Villamos alapfogalmak Feszültség, áram, töltés, ellenállás

Tranziens jelenségek rövid összefoglalás

Fizika Vetélkedő 8 oszt. 2013

Elektronikai alapgyakorlatok

Fizika 1 Elektrodinamika beugró/kis kérdések

Felvételi, 2018 szeptember - Alapképzés, fizika vizsga -

Elektromechanika. 6. mérés. Teljesítményelektronika

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

I. Félvezetődiódák. Tantárgy: Villamos mérések 2. Szakközépiskola 12. évfolyam számára. Farkas Viktor

Mérnök Informatikus. EHA kód: f

A töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük. Az áram irányán a pozitív részecskék áramlási irányát értjük.

TestLine - Fizika 8. évfolyam elektromosság 2. Minta feladatsor

2.Előadás ( ) Munkapont és kivezérelhetőség

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával

EGYENÁRAM. 1. Mit mutat meg az áramerısség? 2. Mitıl függ egy vezeték ellenállása?

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép

25/1. Stacionárius és tranziens megoldás. Kezdeti és végérték tétel.

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

Elektrotechnika. 1. előad. Budapest Műszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autechnikai Intézet

Nyári gyakorlat teljesítésének igazolása Hiányzások

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

Elektrokémia Kiegészítés a praktikumhoz Elektrokémiai cella, Kapocsfeszültség, Elektródpotenciál, Elektromotoros erı.

5.A 5.A. 5.A Egyenáramú hálózatok alaptörvényei Nevezetes hálózatok

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA ÉPÜLETGÉPÉSZET ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA MINTAFELADATOK

Logaritmikus erősítő tanulmányozása

Egyszerű kísérletek próbapanelen

Elektronikai műszerész Elektronikai műszerész

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, május-június

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

Villamosságtan szigorlati tételek

Az N csatornás kiürítéses MOSFET jelleggörbéi.

Bevezetés az elektronikába

ELEKTRONIKAI ALAPISMERETEK

13.B 13.B. 13.B Tranzisztoros alapáramkörök Többfokozatú erısítık, csatolások

Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör?

Rugalmas tengelykapcsoló mérése

Villamos gépek tantárgy tételei

AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04.

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép

Átírás:

4.A Egyenáramú hálózatok alaptörvényei Ohm és Kirchhoff törvények Mutassa be az egyszerő áramkör felépítését és jellemzıit! Értelmezze a t, mint töltésszétválasztót és a fogyasztót, mint töltés kiegyenlítıt! Definiálja az egyenáramú hálózatok Ohm törvényét! Ábrázolja az ellenállások jelleggörbéjét! Definiálja az egyenáramú hálózatok csomópontokra és hurkokra vonatkozó Kirchhoff törvényeit! Rajzolja fel az alaptörvények igazolására szolgáló mérési elrendezéseket! Az egyszerő áramkör Egyszerő áramkör felépítése Mivel minden anyagnak van ellenállása, a töltéshordozók áramlása csak akkor marad fenn, ha a szabad elektronoknak az ütközésekkor elveszı energiáját folyamatosan pótoljuk, vagyis az elektronokat villamos térrel aktiváljuk. A gyakorlatban ezt egy feszültségével oldjuk meg. A t, a fogyasztót és az ezeket összekötı vezetékeket együttesen áramkörnek nevezzük. Az áramkör A töltésszétválasztás A a befektetett energiafajtákat villamos energiává alakítja át úgy, hogy közben töltésszétválasztást végez. Egyszerő töltésszétválasztó eszköz például a zsebtelep, a hıelem, a fényelem és az akkumulátor. Az erımővekben háromfázisú ok segítségével állítják elı a kívánt feszültséget. A szétválasztott töltések egyik csoportja a kivezetésén kilépve, majd a vezetéken és a fogyasztón áthaladva a másik kivezetéséhez sodródik, ahol az ellentétes töltésekkel találkozik és kiegyenlítıdik. Az ellentétes töltések kiegyenlítıdését rekombinációnak nevezzük. A pólusok Az alkatrészek és az eszközök kivezetéseit, így a ét is kapcsoknak vagy pólusoknak nevezzük. A t elsısorban a feszültségével jellemezhetjük, amely a kapcsai között lép fel. A feszültség hajtja elıre a töltéseket, ez készteti az elektronokat a töltéskiegyenlítıdésre. A feszültség irányát, polaritását nyíllal jelöljük. A nyíl a kiegyenlítıdı pozitív töltéshordozók áramlási irányát jelöli, ezért minden esetben a pozitív kapcsától a negatív kapcsa felé mutat. Generátorok A ok csoportosítása A feszültségokat csoportosíthatjuk az elıállított feszültség idıbeli lefolyása szerint, valamint az elıállított feszültség értéke szerint. Megkülönböztetünk váltakozó- illetve egyenfeszültséget, valamint állandó és változó értékő feszültséget elıállító okat. A ok fajtái A gyakorlatban sokféle t használunk, ezek tulajdonságait a rajzjelükkel is kifejezhetjük. Az ábrán látható ok: 1

a) egyszerő, b) forgógépes, c) egyenfeszültségő, d) szinuszosan váltakozó feszültségő, e) elektronikus f) galvánelem. A galvánelem is egyenfeszültségő, a hosszú vonal a pozitív, a rövid a negatív pólusa. Az áramkör A feszültségének hatására megindul a szabad töltéshordozók áramlása, ami nem más, mint az áram. Áram csak akkor alakul ki, ha az áramkör zárt. A gyakorlatban az áramkör zárását, megszakítását kapcsolókkal végzik. Az áramkörök fontos része a fogyasztók csatlakoztatását biztosító foglalat. A következı képeken a különbözı típusú izzók foglalatait láthatjuk. Elektronok áramlása Az áramerısség Az áramerısség csakúgy, mint a feszültség vektor mennyiség, iránya a pozitív töltéshordozók áramlási irányával egyezik meg. Ha megfigyeljük ez ellentétes a leggyakoribb töltéshordozó az elektron áramlási irányával. Az áramkörben az áram iránya a pozitív pólusától a fogyasztón át a negatív pólus felé mutat. Áram folyása Protonok áramlása A ok rajzjelei Egyszerő Forgógépes Egyenfeszültségő Szinuszos Galvánelem A fogyasztók Az áramkör másik fontos eleme a fogyasztó, amit egy ellenállással szimbolizálunk. Feladata a töltéskiegyenlítés. Áramköri jelölése egy téglalap. A fogyasztó a rajta átáramló töltéshordozók energiáját hı, mechanikai, fény stb. energiává alakítja. lyen fogyasztók például: izzólámpa, hajszárító, vasaló stb. Ohm törvénye, az ellenállás jelleggörbéje Ohm törvénye Georg Ohm német fizikus a kísérletei alapján az ellenállást a feszültségbıl és a hatására kialakuló áramerısségbıl határozta meg. Azt tapasztalta, hogy az áramkörben a két mennyiség hányadosa jellemzı egy adott fogyasztóra és állandó érték, ami nem függ sem a feszültség, sem pedig az áramerısség értékétıl. 2

R = állandó =, [ R ] = Ω = A Póluspárok nevezetes lezárásai A ok kapcsainak (póluspárok) kétféle nevezetes lezárását ismerjük: a rövidzárt és a szakadást. Rövidzárról akkor beszélünk, ha nem szerepel fogyasztó az áramkörben, tehát R = 0 és =. A által szétválasztott töltések akadálytalanul és közvetlenül a kapcsai között egyenlítıdnek ki. A gyakorlatban minden anyagnak van ellenállása, ezért az áram értéke sohasem lehet végtelen, így tökéletes, ideális rövidzár nem létezik. Szakadásról akkor beszélünk, ha az áramkörben végtelen nagy értékő ellenállás szerepel, viszont ez nem tekinthetı fogyasztónak, mert szakadás esetén az áramkörben nem folyik áram. R =, = 0. Lineáris alkatrészek Az A rövidzár A szakadás Az ellenállás R = összefüggés átrendezésével a törvény további alakjai: = és = R. Az R = összefüggést egy - R koordinátarendszerben ábrázolva R állandósága miatt egy olyan egyenest kapunk, amelynek a meredeksége: 1R, ami nem más, mint a villamos vezetıképesség. Nagy értékő ellenálláshoz ezért kicsi, kicsihez nagy meredekségő egyenes tartozik. Azokat az eszközöket és áramköröket, amelyek karakterisztikája egyenes, lineáris eszközöknek, illetve áramköröknek nevezzük, amelyeknél ez nem teljesül nemlineárisaknak. A nemlineáris eszközökkel és áramkörökkel elsısorban az elektronika foglalkozik, és ezekre Ohm törvénye csak fenntartásokkal alkalmazható, hiszen az áramerısség nem egyenesen arányos a feszültséggel. Kirchhoff. törvénye: a csomóponti törvény Egyenáramú áramkörök alapfogalmai Minden olyan áramkört, amely több fogyasztót, vagy több t tartalmaz összetett áramkörnek tekintjük, és villamos hálózatnak is nevezhetjük. A villamos hálózatokat csoportosíthatjuk energia vagy a kivezetések száma szerint is. Energia szerint megkülönböztetünk passzív illetve aktív villamos hálózatokat. Egy összetett áramkör passzív, ha csak fogyasztókat tartalmaz, míg aktív, ha a fogyasztókon kívül legalább egy t is magába foglal. Pólusnak nevezzük a hálózatnak azt a pontját, amelyhez egy újabb áramköri elemet (alkatrészt, mérıeszközt, t, stb.) csatlakoztathatunk. A gyakorlatban alkalmazott hálózatok lehetnek: kétpólusúak (például a legtöbb fogyasztó: hangfal, izzólámpa, ) vagy négypólusúak (például az erısítıkapcsolások). A szabad pólusok megszüntetését lezárásnak nevezzük, amelyet a legegyszerőbben egy ellenállással vagy egy ral valósíthatunk meg. Két nevezetes lezárásról már említést tettünk: a szakadásról illetve a rövidzárról. Kirchhoff törvényei Kirchhoff törvényei egyenáramú villamos hálózatok elemzéséhez nyújtanak segítséget, de késıbb látni fogjuk, hogy bizonyos kritériumok figyelembevételével váltakozó áramú hálózatok analizálására is alkalmazhatók. 3

Összetett áramkör Három vagy több vezeték találkozási pontja a hálózat csomópontja. lyenek például az áramkör A, B, C, D, E, G és H pontjai, de nem csomópont az F pont, hiszen ott nincs jelölve a kötés. Két csomópont között található a hálózat egy ága (AD, AC, DH, ). Azonos csomópontnak tekinthetı az E és a G pont, valamint az A és a B pont, mert csak egy vezetékkel vannak összekötve, nincs köztük alkatrész. Huroknak nevezzük azoknak az ágaknak az összességét, amelyeken végighaladva a kiindulási pontba térhetünk vissza úgy, hogy közben egy ágon sem haladunk kétszer végig (ACD, BACE, ) A csomóponti törvény A csomópontba befolyó áramok nagyságának összege megegyezik a csomópontból elfolyó áramok nagyságának összegével. Az ábra áramai között a csomóponti törvény értelmében a következı kapcsolat van: 1 + 2 = 3 + 4 + 5, ebbıl: 1 + 2 3 4 5 = 0. Σ=0, azaz a csomóponti áramok összege nulla, ha a be- és az elfolyó áramok elıjeleit különbözınek választjuk. Az ábra jelöléseinél tehát a csomópontba befolyó áramok ( 1, 2 ) elıjele pozitív, míg a kifelé folyó áramok ( 3, 4, 5 ) elıjele negatív. Csomóponti áramok Kirchhoff. törvénye: a huroktörvény A huroktörvény Bármely zárt hurokban az áramköri elemeken lévı feszültségek elıjelhelyes összege nulla. Az ábra feszültségei között a következı kapcsolat adható meg: 01 + 02 03 = 1 + 2 + 3 + 4 ebbıl következik, hogy: 01 + 02 03 1 2 3 4 =0 vagyis Σ=0 Az ábra jelöléseinél a körüljárási iránynak megfelelı feszültségek elıjele pozitív ( 1, 3, 03, 4, 2 ), a körüljárási iránnyal ellentétes feszültségek elıjele negatív ( 02, 01 ). 4

A huroktörvény másképpen megfogalmazva: a sorba kapcsolódó fogyasztókra jutó feszültségek összege megegyezik a ok elıjelhelyes feszültségösszegével. Feszültségek egy hurokban A hurokban a feszültségek összegzése Az Ohm törvény igazolása méréssel A villamos alapmennyiségek mérése A villamos mérımőszereket egy körrel jelöljük, amelyben feltüntetjük a mérendı mennyiség mértékegységét (A,, Ω, W, m, µa) esetleg a jelét (,, R, P, stb.). Az ellenállások mérésének legegyszerőbb módja, ha az ellenállás két kivezetésére kapcsolunk egy ellenállásmérı mőszert. A mőszer tartalmaz saját feszültségforrást, és ennek a feszültségének hatására kialakuló áramerısség értékbıl számítja ki az ellenállás értékét. Ohm törvényének értelmében lehetıségünk van arra, hogy egy ellenállás értékét feszültségének és áramerısségének mérésével határozzuk meg. A hányadosuk ugyanis az ellenállást adja meg az meg elıször, hogyan kössük be az áramkörbe ezeket a mérımőszereket! R = összefüggés alapján. Nézzük Ellenállás mérése Áramerısség mérése Feszültség mérése - Az áramerısség a töltéshordozók áramlását jellemzı mennyiség, ezért az árammérı mőszert a fogyasztóval sorosan kell bekötni. - A feszültség pedig két pont közötti potenciálkülönbség, ezért a feszültségmérı mőszert a fogyasztóval párhuzamosan kell kapcsolni. Mérés több mőszerrel Ha a kétféle mőszerrel ugyanannak az ellenállásnak a jellemzıit akarjuk megmérni, akkor a nem ideális mőszerek miatt a következı problémákkal találkozunk. 1. Ha az ellenállással a feszültségmérıt kapcsoljuk párhuzamosan, akkor nemcsak az ellenálláson, hanem a feszültségmérın folyó áramot is mérjük. 5

2. Ha az ellenállással az árammérıt kapcsoljuk sorosan, akkor nemcsak az ellenálláson, hanem az árammérın esı feszültséget is mérjük. Kis értékő ellenállások mérése Alakítsunk ki egy soros áramkört az árammérı mőszerbıl és az R x ismeretlen ellenállásból a két kapcsa között, majd kapcsoljuk a feszültségmérıt az ellenállással párhuzamosan. Kis értékő ellenállás Az ellenállás mért értéke közvetlenül a mérési eredményekbıl számítva: R x = x A mérési módszer annál pontosabb, minél kisebb az ellenállás értéke a feszültségmérı mőszer belsı ellenállásához képest. Kis értékő ellenállás mérésénél a feszültségmérı árama a nagy ellenállása miatt sokkal kisebb lesz, mint az ismeretlen ellenállásé, így a mérési hiba is kicsi lesz. Nagy értékő ellenállások mérése Alakítsunk ki egy soros áramkört az árammérı mőszerbıl és az R x ismeretlen ellenállásból a két kapcsa között, majd kapcsoljuk a feszültségmérıt a ral párhuzamosan. Nagy értékő ellenállás Az ellenállás mért értéke közvetlenül a mérési eredményekbıl számítva: R = x x A mérési módszer annál pontosabb, minél nagyobb az ellenállás értéke az árammérı mőszer belsı ellenállásához képest. Nagy értékő ellenállás mérésénél az árammérı feszültsége a kis ellenállása miatt sokkal kisebb lesz, mint az ismeretlen ellenállásé, így a mérési hiba is kicsi lesz. Az Kichhoff törvények igazolása méréssel R 1 1 A R 2 2 1 A 2 A 3 R 1 R 2 R 3 A R 3 3 Huroktörvény mérése Csomóponti törvény mérése 6