PRÓBAÉRETTSÉGI VIZSGA február 14.

Hasonló dokumentumok
MATEMATIKA EMELT SZINTŰ. PRÓBAÉRETTSÉGI VIZSGA február 14. Az írásbeli próbavizsga időtartama: 240 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ

Függvények Megoldások

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

Abszolútértékes és gyökös kifejezések Megoldások

a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?

Exponenciális és logaritmikus kifejezések Megoldások

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

11. Sorozatok. I. Nulladik ZH-ban láttuk:

1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat!

NULLADIK MATEMATIKA ZÁRTHELYI

MATEMATIKA ÉRETTSÉGI május 3. EMELT SZINT I.

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet

3. Egyenletek, egyenletrendszerek, egyenlőtlenségek

2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT

Matematika PRÉ megoldókulcs január 19. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések

c.) Mely valós számokra teljesül a következő egyenlőtlenség? 3

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Országos Középiskolai Tanulmányi Verseny 2009/2010 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása

2. Adott a valós számok halmazán értelmezett f ( x) 3. Oldja meg a [ π; π] zárt intervallumon a. A \ B = { } 2 pont. függvény.

Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa

Nagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010.

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Matematika szintfelmérő dolgozat a 2018 nyarán felvettek részére augusztus

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai. 81f l 2 f 2 + l 2

Feladatok a logaritmus témaköréhez 11. osztály, középszint

= 3 és az y = 1 egyenletű egyenesek metszéspontjának (M)

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 11. évfolyam

egyenlőtlenségnek kell teljesülnie.

MATEMATIKA ÉRETTSÉGI október 21. EMELT SZINT

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Számelmélet Megoldások

I. rész. 4. Határozza meg a valós számok halmazán értelmezett x x 2 4x függvény szélsőértékét és annak helyét! Válaszát indokolja!

Megoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2.

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész

NULLADIK MATEMATIKA ZÁRTHELYI

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész

1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat!

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Egészrészes feladatok

Egyenletek, egyenlőtlenségek VII.

MATEMATIKA ÉRETTSÉGI október 25. EMELT SZINT

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI október 15. KÖZÉPSZINT I.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

} számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! A = { } 1 pont. B = { } 1 pont. x =

Próbaérettségi feladatsor_a NÉV: osztály Elért pont:

Függvények vizsgálata

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(

MATEMATIKA ÉRETTSÉGI október 19. KÖZÉPSZINT

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

PRÓBAÉRETTSÉGI VIZSGA február 18.

MATEMATIKA ÉRETTSÉGI május 06. KÖZÉPSZINT I.

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai

törtet, ha a 1. Az egyszerűsített alak: 2 pont

Abszolútértékes egyenlôtlenségek

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:

MATEMATIKA ÉRETTSÉGI október 25. EMELT SZINT I.

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24

Gyakorló feladatok. 2. Matematikai indukcióval bizonyítsuk be, hogy n N : 5 2 4n n (n + 1) 2 n (n + 1) (2n + 1) 6

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai

Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van!

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

IV. Felkészítő feladatsor

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / május a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok

Figyelem, próbálja önállóan megoldani, csak ellenőrzésre használja a következő oldalak megoldásait!

I. A négyzetgyökvonás

10. Koordinátageometria

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Átírás:

Matematika Próbaérettségi Megoldókulcs 0. február 4. PRÓBAÉRETTSÉGI VIZSGA 0. február 4. MATEMATIKA EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA MEGOLDÓKULCS 0. február 4. STUDIUM GENERALE MATEMATIKA SZEKCIÓ - -

Matematika Próbaérettségi Megoldókulcs 0. február 4. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT ) Oldja meg a valós számok halmazán az alábbi egyenlőtlenséget! cos x 4cos x cos x ( pont) A cos x cos x sin x azonosság felhasználásával a jobb oldal: cos x sin x A trigonometrikus Pitagorasz-tételt felhasználva alakítjuk tovább a jobb oldalt: cos x cos x 6cos x ( pont) Az egyenlőtlenséget 0-ra rendezzük: cos xcos x 0 A másodfokúra visszavezethető kifejezés gyökei: cos x ( pont) cos x Mivel a másodfokúra visszavezethető kifejezés nagyobb, vagy egyenlő, mint 0, ezért: cos x, vagy cos x Csak az első egyenlőtlenséggel haladunk tovább, hiszen a koszinusz függvény értékkészletéből adódóan -nél kisebb értéket nem vehet fel! A két hely, ahol a cos x függvény : x k ( pont) x k A két hely között találjuk azt az intervallumot, periódusonként, mely eleget tesz a fennmaradt egyenlőtlenségnek: k x k, k ( pont) (Természetesen az is jó megoldásnak számít, ha például egy periódussal későbbi megoldás intervallumot adunk meg: 7 k x k, k ) Összesen: pont - -

Matematika Próbaérettségi Megoldókulcs 0. február 4. ) a) Ábrázolja derékszögű koordináta-rendszerben az f : ;9, f x x 8x függvényt! (4 pont) b) Adja meg az f függvény értékkészletét! ( pont) c) A p valós paraméter értékétől függően hány megoldása van az x 8x p egyenletnek az ;9 intervallumon? (8 pont) a) f x x 8x x 4 4 A helyes ábráért, helyes koordináta-rendszer felrajzolásáért, zérushelyek feltüntetésért jár a pont. ( pont) y O 6 9 x b) A függvény értékkészletének két szélsőértéke adódik a függvény ábrájából. A függvény minimum értéke a 0. A másik szélsőértéket megkapjuk, ha megvizsgáljuk, hogy x 9 helyen milyen értéket vesz fel a függvény (melyet azonban nem ér el): x 9 f x. Tehát f értékkészlete: 0;. c) Az ábrázolás alapján adódnak a lehetséges variációk. Ezek p értékétől függően: Ha p 0, akkor nincs megoldása az egyenletnek. Ha p 0, akkor megoldása van az egyenletnek. Ha 0 p 4, akkor 4 megoldása van az egyenletnek. Ha p 4, akkor megoldása van az egyenletnek. Ha 4 p, akkor megoldása van az egyenletnek. Ha p, akkor megoldása van az egyenletnek. Ha p, akkor nincs megoldása az egyenletnek. Összesen: 4 pont - -

Matematika Próbaérettségi Megoldókulcs 0. február 4. ) Tekintse az alábbi két halmazt! A x x x B x log 7 x Adja meg az AB, A B, B \ A halmazokat! ( pont) Először tekintsük az A halmazt. Az értelmezési tartomány a gyök miatt: ; Ahhoz, hogy az egyenlőtlenség négyzetre emelése ekvivalens átalakítás lehessen, vizsgálnunk kell a jobboldalt, mivel a baloldal miatt nemnegatívnak kell lennie. Ezután a belső kikötés alapján adódik: 0;, ami a szűkebb értelmezési tartományt képviseli. A négyzetre emelés után adódik: x 4x 0 4x x A másodfokú kifejezés gyökei, és ebből adódóan az intervallum: x ; x 4 ; ; 4 Az értelmezési tartománnyal egyeztetve: A ;. A B halmaz értelmezési tartománya a logaritmus miatt: ;7. Logaritmus azonosság alapján adódik: log 7 x log 7 x log Az alapú logaritmus szigorúan monoton csökkenő, ezért elhagyhatjuk a logaritmust mindkét oldalon, úgy, hogy a relációs jel irányát megváltoztatjuk: 7 x ; Az értelmezési tartomány egyeztetésével: B ;7. Végül a halmazműveletek által képzett új halmazok a következők: A B ; AB ;7 B\ A Összesen: pont - 4 -

Matematika Próbaérettségi Megoldókulcs 0. február 4. 4) a) Adott egy a n számtani sorozat, melynek első tagja 6, differenciája pedig 4. Mennyi annak a valószínűsége, hogy ennek a számtani sorozatnak az első 0 tagjából egyet véletlenszerűen kiválasztva egy olyan tagot kapunk, mely -mal osztva maradékul -öt ad? (7 pont) b mértani sorozat, melynek első tagja 6, kvóciense pedig 4. Mennyi annak a valószínűsége, hogy ennek a mértani sorozatnak az első 06 tagjából egyet b) Adott egy n véletlenszerűen kiválasztva egy olyan tagot kapunk, mely -mal osztva maradékul -öt ad? (6 pont) a) A számtani sorozatban az első tagtól kezdve megfigyeljük a -mal való osztás maradékát. Ezek rendre: 6, 0,,, 9, 0, 4, 8,,, 7,,,... Megfigyelhető, hogy az osztási maradékok ciklikusan váltakoznak, hiszen mindig 4-et adunk az előző számhoz. Tehát a maradékok folytatása 6, 0,,, A periódus, tehát minden. tag -mal osztva maradékul -öt ad. ( pont) Mivel a 0. tagig 0 teljes ciklus megy végig, a keresett valószínűség:. ( pont) b) A mértani sorozatban az első tagtól kezdve megint csak megfigyeljük a -mal való osztás maradékát. Ezek rendre: 6,,, 7,, 8, A maradékok ebben az esetben is ciklikusan váltakoznak, hiszen mindig 4-gyel szorozzuk az előző számot. Tehát a maradékok folytatása 6,,, A periódus 6, azaz minden 6. tag -mal osztva -öt ad maradékul. ( pont) A keresett valószínűség, mivel a 06. tagig 6 teljes ciklus meg végbe: 6. ( pont) Összesen: pont Maximális elérhető pontszám: pont - -

Matematika Próbaérettségi Megoldókulcs 0. február 4. ) Egy átlagos magyar mezőgazdaság 780 egyedet számláló állatállománya tehenekből és szárnyasokból áll. Ezen állatok 6%-át a húsukért tartják, %-át pedig a termékeik (pl. tojás, tej) miatt. A húsukért tartott állatok és a teljes állatállomány aránya 0 -szer akkora, mint a húsukért tartott tehenek és az összes tehén számának aránya. A húsukért tartott tehenek aránya az összes tehén között 8 -szer akkora, mint amekkora ez az arány a szárnyasok között. a) Hány tehén és hány szárnyas van a mezőgazdaságban? A számításait végig pontos értékekkel végezze! ( pont) Valójában az egész mezőgazdaság csak virtuális és az interneten egy alkalmazás keretein belül létezik. Viki a játék megszállottja más ismerőseivel egyetemben aktívan egyengeti kis tanyájának életét. Egy szép délutánon Farm találkozót szerveznek, hogy élőben vitassák meg a virtuális eseményeket. Viki másik játékosra kicsit haragszik, mert azok nem küldözgetnek neki ajándék takarmányt. b) Ha a találkozó elején csak azokkal hajlandó pacsizni, akikre nem haragszik, rajta kívül viszont mindenki mindenkivel pacsizik, akkor hányan lehetnek a találkozón Vikivel együtt, ha összesen 8 pacsi születik? (4 pont) a) Jelölje t a tehenek számát, sz pedig a szárnyasok számát a mezőgazdaságban. A szárnyasok száma ekkor: sz 780 t A húsukért tartott állatok aránya a teljes állatállományban 780-nak a 6%-a, azaz 07 darab. A húsukért tartott állatok aránya a teljes állatállományban 0,6. Ennek a 0 -ad része 0,, tehát a tehenek felét tartják a húsukért. A húsukért tartott állatok száma a szárnyasok között az előző arányszámnak a 8 -szorosa: 0, 0, 687 ( pont) 8 Tehát a húsukért tartott tehenek száma 0,t. A húsukért tartott szárnyasok száma pedig 0, 687 780 t. A kettő összegét ismerjük a korábbi számításunkból, így adódik az egyenlet: 0, t 0, 687 780 t 07 Ezt végigoldva: 0,t 6, 6 0, 687t 07 0,87t 9, ( pont) t 6 sz 780 6 64 Tehát a mezőgazdaságban 6 darab tehén és 64 darab szárnyas van. Ellenőrizni kell, hogy bár a végeredmények egész számok, vajon a további megkülönböztetett csoportok is egész számot adnak-e. A húsukért tartott tehenek száma 78, a húsukért tartott szárnyasok száma pedig 49, így a megoldás valóban helyes! - 6 -

Matematika Próbaérettségi Megoldókulcs 0. február 4. b) A találkozón résztvevők számát jelöljük n-nel, Vikivel együtt. A feladat szövegéből tudjuk, hogy Viki n résztvevővel pacsizott, hiszen önmagával és két másik ismerősével nem érintkezett. Tudjuk továbbá, hogy a maradék n résztvevő közül mindenki mindenkivel pacsizott. Tehát fel tudjuk írni az alábbi egyenletet, az egyszerű gráf éleinek számát megadó képlet segítségével: n n n 8 (Természetesen az is jó logikai menet és jár érte a pont, ha abból indulunk ki, hogy -vel kevesebb pacsizás történt annál, mintha mindenki mindenkivel pacsizott volna. Azaz: nn 0.) Az egyenletet rendezve, és n gyökeit kiszámolva kapjuk: n n 40 0 n ; n 6 Mivel élő emberekről beszélünk, ezért a negatív gyök nem ad jó megoldást, tehát Vikivel együtt 6 résztvevő volt a találkozón. Összesen: 6 pont - 7 -

Matematika Próbaérettségi Megoldókulcs 0. február 4. 6) Adott egy egyenlőszárú háromszög, melyről tudjuk, hogy szárainak hossza 6 egység, metszéspontjuk pedig a C ; pontba esik. A háromszög másik két csúcsa (A, B) illeszkedik a 4y 8 x egyenletű parabolára. a) Számítsa ki a másik két csúcs koordinátáit! (6 pont) b) Írja fel az ABC háromszög egyik száregyenesének egyenletét! Ez az egyenes a parabolát még egy pontban metszi (D). Határozza meg a D pont koordinátáit! (6 pont) c) Vica és Tomi matematika csoportja dolgozatot írt a fenti két feladatból. A maximálisan megszerezhető 0 pontból a diákok a következő pontszámokat érték el: 8, 6, 8, 9, 0, 6,,, 4, 9,, 9. Adja meg a pontszámokból álló adatsokaság mediánját és móduszát és értelmezze is azokat! (4 pont) a) A háromszög másik két csúcsa rajta van a C középpontú 6 egység sugarú körön. Ezen kör egyenlete: x y 6 A maradék két csúcs és a parabola metszéspontjait a kör és a parabola egyenlete által alkotott egyenletrendszer gyökei adják meg: I. x y 6 II. 4y 8 x Láthatjuk, hogy mindkét egyenletben szerepel az x kifejezés, ami a második egyenletben ki is van fejezve. Ezt visszahelyettesítjük az első egyenletbe, majd továbbalakítjuk: y 4y 8 6 4y 8 y 0y 6 y 4y 0 A másodfokú kifejezés gyökei y 6 és y, melyek közül csak az y ad megoldást, hiszen y 6 esetén x nem esik a valós számok halmazába. Az y gyököt visszahelyettesítve a második egyenletbe adódik: x 4 8 4 x x ; x Tehát a két pont koordinátái: ;, ; A B. - 8 -

Matematika Próbaérettségi Megoldókulcs 0. február 4. b) Vegyük az AC szár egyenesének egyenletét a két ponton átmenő egyenes egyenletéből kiindulva: x y A zárójeleket felbontva: 7x4y 7 (A BC szár egyenesének egyenlete: 7x 4y ) A D pont koordinátáit az AC szár egyenesének és a görbe egyenletének A csúcstól különböző metszéspontja adja meg: I. 7x4y7 II. 4y 8 x Az első egyenletből y-t kifejezve és azt a második egyenletbe behelyettesítve: 7x 7 8 x x x 9x 0 0 Az egyenletrendszer A csúcstól különböző megoldáspárja: x 4 y. 4 A D csúcs koordinátái tehát: D 4; 4 (A BC szár egyenesének B csúcstól különböző metszéspontja a görbével: D ; 4 ) c) A medián meghatározásához növekvő sorrendbe rendezzük a pontszámokat. A medián a sorba rendezett sokaság középső két tagjának (6. és 7. tag) átlaga, mivel páros számú sokaságról beszélünk:, 4,,, 6, 6, 8, 8, 9, 9, 9, 0 6 8 7. Tehát Vica és Tomi matematika csoportjának diákjai által elért pontszámok egyik fele kisebb, másik fele nagyobb, mint 7 pont. A módusz egy adatsokaság leggyakrabban előforduló eleme. Az adatsokaságban a 9 pont fordul elő a leggyakrabban, tehát a módusz 9. Vica és Tomi matematika csoportjának diákjai által elért pontszámok között 9 pontos eredmény szerepelt a legtöbbször. Összesen: 6 pont - 9 -

Matematika Próbaérettségi Megoldókulcs 0. február 4. 7) Adott egy érintőnégyszög, melyről tudjuk, hogy oldalának aránya :4:7, illetve két szemben lévő oldalának összege, cm. a) Mekkorák az érintőnégyszög oldalai? ( pont) Matematika órán Péter, Olivér és Sándor megoldották a fenti példát, és vitába keveredtek, mert mindhármuknak más eredmény jött ki. A következő állításokat tették: Péter: Ilyen érintőnégyszög nem létezik! Olivér: Az érintőnégyszög egyik oldala cm hosszú! Sándor: Az érintőnégyszögnek van olyan oldala, mely, cm-nél is rövidebb! b) Melyikük állítása igaz a feltételnek megfelelő érintőnégyszögre? ( pont) a) Az érintőnégyszög-tétel alapján a szemközti oldalak összege egyenlő, így párban két-két szemközti oldal összege a négyszögnek, cm. Ha az érintőnégyszög oldalait sorrendben a, b, c, d-vel jelöljük: a c b d, A megadott arányszámok nem feltétlenül követik az oldalak sorrendjét a négyszögben, ezért három esetet különböztetünk meg aszerint, hogy a három arányszám közül melyik két oldal van egymással szemben. ( pont). négyszög arány egysége a b c d x 4x 7x 9x, x,,, cm 4, cm 7, 8,7 cm, 6, cm. négyszög 6y, y,87 y 7y 4y,87 7,87 4,87,7 cm, cm 7, cm,, cm nincs ilyen érintő négyszög! 4z z 7z. négyszög z, z,0 4,0 4,09 cm,0,0 cm 7,0 7,6 cm,,04 9,0 cm A (helyesen) vizsgált esetenként - pont jár. (9 pont) Tehát a. négyszög nem létezik, mivel a negyedik oldala negatív lenne, ami nem lehetséges egy síkidomnál. A másik két megoldás adódik a táblázatból. b) Mindhárman egy-egy esettel találkoztak a feladat megoldása során. Péter állítása a második esethez tartozó érintőnégyszögre igaz, Olivér állítása az első esethez tartozó érintőnégyszögre igaz, Sándor állítása pedig a harmadik esethez tartozó érintőnégyszögre igaz. Tehát a saját megoldásukat tekintve mindhármuk állításának van igazságértéke, hiszen vannak olyan érintőnégyszögek, amelyekre a fenti táblázat bizonyos esetei igazak. ( pont) (Természetesen az is jó válasznak minősül, hogy összességében egyiknek sincs igaza, hiszen egyikük sem az összes esetről tett állítást, azonban fontos kiemelnünk, hogy mindhármuknak egy adott esetet tekintve igazuk volt.) Összesen: 6 pont - 0 -

Matematika Próbaérettségi Megoldókulcs 0. február 4. 8) Katinka egy különleges kocka dobálgatásával tölti unalmas perceit. A kocka attól különleges, hogy 0% eséllyel az egyik élén áll meg, ekkor Katinka úgy veszi, mintha 0-t dobott volna. a) Katinka hatszor dob a kockával és minden egyes dobás értékét felírja egy papírra. A 6. dobás után hány különböző hatjegyű szám szerepelhet a papírlapján? ( pont) b) Mennyi a valószínűsége, hogy a 6 dobásból legfeljebb kétszer párost dobott? Az eredményt tizedesjegyre kerekítve adja meg! (9 pont) c) Az előző izgalmas játék után Katinka ötvenszer egymás után dobott a kockával. Ötször azt tapasztalta, hogy az élén állt meg. Ha az előző 0 dobásból emlékezete alapján véletlenszerűen kiválaszt 0 dobást, mennyi a valószínűsége, hogy a kiválasztott dobások közül kétszer az élén állt meg a kocka? Az eredményt tizedesjegyre kerekítve adja meg! (4 pont) a) Mivel a kocka az élére is állhat, ezzel 0-t dobván, 7 különböző értéket lehet dobni. Mivel egy hatjegyű szám nem kezdődhet 0-val (hiszen onnantól kezdve csak ötjegyű számról beszélhetünk), ezért az első helyiértékre 6 féle érték, a maradék helyiértékre 7 féle érték kerülhet. 677777 67 0084, tehát 00 84 különböző hatjegyű számot képezhet. b) Mivel a kockadobásoknál van esély arra, hogy az élén áll meg a kocka, és ezáltal 0-t dobott 0 Katinka, a maradék hatféle érték dobásának valószínűsége: 9 6 0 0 ( pont) A páros számú értékek, amelyeket dobhat: 0,, 4, 6. Tehát annak a valószínűsége, hogy dobás során a dobott szám értéke páros: p 0 0 0 (Ha kihagyta, vagy elfelejtette, hogy az élére is állhat a kocka, akkor nem jár az ezt megelőző 4 pont! Azonban, ha innentől a megfelelő logikai menetet követve halad tovább a következő pontok megadhatóak!) A binomiális eloszlás képletét alkalmazva adódik: k 6k 6 9 k 0 k 0 0 0 6 4 6 9 6 9 6 9 0 0 0 0 0 0 0 ( pont) 44 8974 908 66890 0, 64000000 64000000 ( pont) Tehát annak a valószínűsége, hogy Katinka 6 dobásából legfeljebb kétszer dobott páros értékű számot 0,. c) A hipergeometrikus eloszlás képletét alkalmazva: 4 8 0,76 0 P 0,64 0 4,70 0 ( pont) Tehát annak a valószínűsége, hogy az 0 dobásból véletlenszerűen 0-at kiválasztva a kiválasztott dobások közül kétszer az élén állt meg a kocka 0,4. Összesen: 6 pont - -

Matematika Próbaérettségi Megoldókulcs 0. február 4. 9) Adott az alábbi függvény! f : ; ; f x x x x a) Elemezze f függvényt zérushelyei, monotonitása, valamint lokális szélsőértékeinek helye és értéke alapján a deriváltfüggvényének segítségével! ( pont) g : ; függvényt, amelynek deriváltfüggvénye f, tehát b) Adja meg azt a g f, és ezen kívül g 0 is teljesül! (4 pont) a) Az f függvény zérushelyeit megkapjuk, ha először szorzattá alakítjuk a kifejezést: x x x 0 x x x 0 x 0 Végül alkalmazzuk a másodfokú függvény megoldóképletét: x x0 x, x,79; x,79 Ügyelünk az értelmezési tartományra ( ; ), mely alapján a 0 és a,79 lesz f zérushelye! Az f függvény deriváltfüggvénye a következő: f : ; f x x x. A másodfokú megoldóképlet segítségével meghatározzuk f zérushelyeit: x x 0 x ; x. Mivel f függvény főegyütthatója pozitív, ezért tudhatjuk, hogy f értékei x esetén pozitívak, x esetén negatívak, x esetén pozitívak. Vizsgálnunk kell azt is, hogy az értelmezési tartomány két határán nincs-e a függvénynek lokális szélsőértéke! Ebben az esetben nincs. x x x x f x x x x f x f fx 0 fx 0 0 f 0 0 f szig. mon. nő lokális maximum f szig. mon. csökken lokális minimum f 7 7 szig. mon. nő Ezek alapján az f függvény menete: A ; intervallumon szigorúan monoton növekvő. Az x helyen lokális maximuma van, melynek értéke. A ; intervallumon szigorúan monoton csökkenő. 7 Az x helyen lokális minimuma van, melynek értéke. 7 A ; intervallumon szigorúan monoton növekvő. - -

Matematika Próbaérettségi Megoldókulcs 0. február 4. b) Gyakorlatilag f függvény egy konkrét primitív függvényét keressük, melyet g jelöl: 4 x x x g x c c 4 Tudjuk még, hogy a g függvény az helyen a 0 értéket veszi fel, ebből kiszámoljuk c értékét: 4 g 0 c 0 4 ( pont) c Tehát a keresett primitív függvény: 4 x x x g x 4 Összesen: 6 pont Maximális elérhető pontszám: 64 pont A próbaérettségi során szerezhető maximális pontszám: pont - -