Infokommunikációs rendszerek 1.ea

Hasonló dokumentumok
Híradástechnika I. 5.ea

HÍRADÁSTECHNIKA I. Dr.Varga Péter János

Híradástechnika I. 7.ea

HÍRADÁSTECHNIKA I. Dr.Varga Péter János

HÍRKÖZLÉSTECHNIKA. 2.ea. Dr.Varga Péter János

HÍRADÁSTECHNIKA I. Dr.Varga Péter János

HÍRADÁSTECHNIKA I. Dr.Varga Péter János

HÍRADÁSTECHNIKA. Dr.Varga Péter János

HÍRKÖZLÉSTECHNIKA. 4.ea. Dr.Varga Péter János

HÍRADÁSTECHNIKA I. Dr.Varga Péter János

HÍRADÁSTECHNIKA. 5.ea. Dr.Varga Péter János

HÍRADÁSTECHNIKA I. Dr.Varga Péter János

HÍRADÁSTECHNIKA I. Dr.Varga Péter János

HÍRKÖZLÉSTECHNIKA. 3.ea. Dr.Varga Péter János

Híradástechnika I. 6.ea

Dr.Varga Péter János HÍRKÖZLÉSTECHNIKA. 3.ea

Híradástechnika I. 3.ea

Dr.Varga Péter János HÍRADÁSTECHNIKA. 2.ea

Híradástechnika I. 4.ea

Infokommunikációs rendszerek 1.ea

HÍRADÁSTECHNIKA I. Dr.Varga Péter János

HÍRKÖZLÉSTECHNIKA. 7.ea. Dr.Varga Péter János

Dr.Varga Péter János HÍRADÁSTECHNIKA. 2.ea

HÍRADÁSTECHNIKA. 2.ea. Dr.Varga Péter János

HÍRKÖZLÉSTECHNIKA. 3.ea. Dr.Varga Péter János

HÍRADÁSTECHNIKA I. Dr.Varga Péter János

HÍRKÖZLÉSTECHNIKA. 3. és 4. ea. Dr.Varga Péter János

HÍRKÖZLÉSTECHNIKA. 2.ea. Dr.Varga Péter János

Dr.Varga Péter János HÍRKÖZLÉSTECHNIKA. 5.ea

HÍRKÖZLÉSTECHNIKA. 2.ea. Dr.Varga Péter János

Dr.Varga Péter János HÍRKÖZLÉSTECHNIKA. 6.ea

Infokommunikációs rendszerek

Az optika és a kábeltv versenye a szélessávban. Előadó: Putz József

Híradástechnika I. 4.ea

Optikai hálózatok 1.ea

INFOKOMMUNIKÁCIÓS RENDSZEREK ÉS ALKALMAZÁSOK

FÉNYTÁVKÖZLÉS. Dr.Varga Péter János

HÍRKÖZLÉSTECHNIKA. 6.ea. Dr.Varga Péter János

Korszerű technológiák. a szélessávú elérési hálózatok területén. Korsós András. műszaki igazgató. SCI-Network Távközlési és Hálózatintegrációs Rt.

Adatátviteli eszközök

HÍRKÖZLÉSTECHNIKA. 7.ea. Dr.Varga Péter János

Hírközléstechnika 2.ea

MERRE TART A HFC. Koós Attila Gábor, Veres Zoltán , Balatonalmádi

Számítógép-hálózat fogalma (Network)

Infokommunikációs rendszerek 2.ea

Hálózati alapismeretek

2007. március 23. INFO SAVARIA GNSS alapok. Eötvös Loránd Tudományegyetem, Informatika Kar. Térképtudományi és Geoinformatikai Tanszék

Távközlő hálózatok és szolgáltatások IP hálózatok elérése távközlő és kábel-tv hálózatokon

Kincskeresés GPS-el: a korszerű navigáció alapjai

Sávszélesség növelés a Magyar Telekom vezetékes access hálózatában. Nagy Tamás Magyar Telekom Budapest, május.

POF (Plastic (Polimer) Optical Fiber) jellemzően a mag anyaga: Polymethil Metacrilate (PMMA) - héj: flourral kezelt PMMA - n= 1,412

INFOKOMMUNIKÁCIÓS RENDSZEREK MENEDZSMENTJE

6.óra Hálózatok Hálózat - Egyedi számítógépek fizikai összekötésével kapott rendszer. A hálózat működését egy speciális operációs rendszer irányítja.

Rádiófrekvenciás kommunikációs rendszerek

Frekvencia tartományok. Számítógépes Hálózatok és Internet Eszközök. Frekvencia tartományok rádió kommunikációhoz

Tájékoztató. Értékelés. 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 40%.

INFOKOMMUNIKÁCIÓS RENDSZEREK ÉS ALKALMAZÁSOK

Számítógépes hálózatok felépítése, működése

Hálózatok I. (MIN3E0IN-L) ELŐADÁS CÍME. Segédlet a gyakorlati órákhoz. 2.Gyakorlat. Göcs László

INFOKOMMUNIKÁCIÓS RENDSZEREK MENEDZSMENTJE

A számítógép-hálózat egy olyan speciális rendszer, amely a számítógépek egymás közötti kommunikációját biztosítja.

Számítógépes hálózatok

ÚTMUTATÓ AZ ÜZLETI INTERNETKAPCSOLATRÓL

Száguldó versenyautók // Száguldó Gigabitek. Telekommunikációs és információtechnológia Hungaroring + Invitel

FIGYELEM! Ez a kérdőív az adatszolgáltatás teljesítésére nem alkalmas, csak tájékoztatóul szolgál!

GPON rendszerek bevezetése, alkalmazása a Magyar Telekom hálózatában

Kommunikációs rendszerek programozása. Wireless LAN hálózatok (WLAN)

Számítógépes hálózatok

FIZIKAI SZINTŰ KOMMUNIKÁCIÓ

DOCSIS és MOBIL békés egymás mellett élése Putz József Kábel Konvergencia Konferencia 2018.

A TV műsorszolgáltatás jelene, jövője. Putz József

Távközlő hálózatok és szolgáltatások IP hálózatok elérése távközlő és kábel-tv hálózatokon

FTTX passzív építőelemek

Hálózati ismeretek. Az együttműködés szükségessége:

OFDM technológia és néhány megvalósítás Alvarion berendezésekben

Dr. Wührl Tibor Ph.D. MsC 01 Ea. IP hálózati hozzáférési technikák

FIGYELEM! Ez a kérdőív az adatszolgáltatás teljesítésére nem alkalmas, csak tájékoztatóul szolgál!

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

Számítógép hálózatok gyakorlat

Távközlő hálózatok és szolgáltatások IP hálózatok elérése távközlő és kábel-tv hálózatokon

Adatátviteli rendszerek Vezetékes kommunikációs interfészek. Dr. habil Wührl Tibor Óbudai Egyetem, KVK Híradástechnika Intézet

INFOKOMMUNIKÁCIÓS RENDSZEREK ÉS ALKALMAZÁSOK

4. Csatlakozás az Internethez. CCNA Discovery 1 4. fejezet Csatlakozás az internethez

FIGYELEM! Ez a kérdőív az adatszolgáltatás teljesítésére nem alkalmas, csak tájékoztatóul szolgál!

Számítógépek, perifériák és a gépeken futó programok (hálózati szoftver) együttese, amelyek egymással összeköttetésben állnak.

Hálózatok. Alapismeretek. A hálózatok célja, építőelemei, alapfogalmak

Műholdas infokommunikációs rendszerek

A helyhez kötött (vezetékes) internethozzáférési szolgáltatás minőségi célértékei

A Magyar Telekom FTTx (GPON) fejlesztése

Kábel nélküli hálózatok. Agrárinformatikai Nyári Egyetem Gödöllő 2004

Fénytávközlő rendszerek és alkalmazások

Hálózati architektúrák és rendszerek. 4G vagy B3G : újgenerációs mobil kommunikáció a 3G után

A helyhez kötött (vezetékes) internethozzáférési szolgáltatás minőségi célértékei

A SWOT elemzés SWOT DSL

Bevezetés. Számítógép-hálózatok. Dr. Lencse Gábor. egyetemi docens Széchenyi István Egyetem, Távközlési Tanszék

ISIS-COM Szolgáltató Kereskedelmi Kft. MIKROHULLÁMÚ INTERNET ELÉRÉSI SZOLGÁLTATÁS

Wi-Fi alapok. Speciális hálózati technológiák. Date

Szomolányi Tiborné 2009 november. PDF created with pdffactory Pro trial version

Számítógép hálózatok

Járműinformatika Multimédiás buszrendszerek (MOST, D2B és Bluetooth) 4. Óra

Átírás:

Infokommunikációs rendszerek 1.ea Dr.Varga Péter János

Elérhetőségek 2 Dr.Varga Péter János e-mail: varga.peter@kvk.uni-obuda.hu Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet Telefon: +36 (1) 666-5140 Cím: 1084 Budapest, Tavaszmező u. 17. C ép. 508 WEB: www.vpj.hu

Számonkérés 3 Követelmény típus: Évközi jegy Osztályzatok - 60% : 1 61-70%: 2 71-80%: 3 81-90%: 4 91-100%: 5

Számonkérés 4 Utolsó alkalommal ZH (2016.04.16.) A pótlás módja: A hiányzás miatt meg nem írt és az elégtelen zárthelyi szorgalmi időszakban 1 alkalommal, előre megbeszélt időpontban pótolható,javítható. Szorgalmi időszakon kívül a zárthelyik javítása, az évközi jegy pótlása, javítása a TVSZ előírásai szerint lehetséges.

Infokommunikációs rendszerek 5 Távközlő hálózatok Műholdas hálózatok Infokommunikációs rendszerek Mobiltelefon hálózatok Informatikai hálózatok Műsorszétosztó hálózatok Technológiai hálózatok Műsorelosztó hálózatok

6

7

8

9

10

11

12

Hálózatok fogalma 13 A fizikai hálózatok különféle információ típusok külön-külön vagy integrált átvitelére szolgálnak Pl: beszéd, hang, dokumentum, szöveges vagy multimédia üzenet, mozgókép, adat,

Hálózatok fogalma 14 Az átvitt információ típusoknak megfelelően különféle hálózatok alakultak ki, amelyek különféle forgalmi szolgáltatásokat nyújtanak. A különféle szolgáltatásokat nyújtó hálózatok gyakorlati megvalósításuk során részben közös elemekre épülhetnek, de a nyújtott szolgáltatásuk alapján elvileg külön-külön értelmezhetők.

Hálózatok kapcsolatai 15 Hálózatok egyenrangúan és/vagy hierarchikusan kapcsolhatók össze. Hálózatok megkülönböztetése technológiájukban területükben igazgatási üzemeltetési egységükben

Egyenrangú hálózatok 16 Egyenrangúan együttműködő hálózatokról akkor beszélünk, ha az elemi hálózatok csak hordozó szolgáltatást nyújtanak.

Hierarchikus hálózatok 17 Hierarchikusan együttműködő hálózatokról akkor beszélünk, ha a hordozó hálózat hordozó szolgáltatást nyújt egy másik, hordozó ráépített hálózat számára. Hálózatok többszörösen is egymásra építhetők, amelyek így hálózati rétegeket alkotnak.

18 Az információ továbbítás célja, modellje Üzenet Hír Jel Jel Hír Üzenet Információ forrása Kódoló Adó Kommunikációs csatorna Vevő Dekódoló Információ felhasználása Zaj

Az információ továbbítás 19 célja, modellje Üzenet: Továbbításra szánt adathalmaz Hír: Időfüggvénnyé alakított üzenet Jel: A hír elektromos mása Zaj: Minden egyéb, amely az előzőek mellett nem kívánatos jelenségként fellép Cél: VETT ÜZENET = KÜLDÖTT ÜZENET

Mi lehet az üzenet? 20 Beszéd Zene Szöveg Állókép Mozgókép Adat

Jelek 21 A jel fogalma: A fizikai mennyiség olyan érteke vagy értékváltozása, amely egy egyértelműen hozzárendelt információt hordoz A jel információtartalommal bír Matematikai függvények x D f : értelmezesi tartomány y R f : értékkészlet

22 Jelek értelmezési tartománya és értékkészlete

23 Jelek grafikus ábrázolása

A kommunikációban használt 24 fontosabb fogalmak A sávszélesség A sávszélesség az a frekvenciatartomány, amelyben az áramkör használható. A sávszélességet az f 2 -f 1 különbséggel definiáljuk, ahol f 1 az alsó és f 2 az ún. felső határfrekvancia. Ezekben a pontokban a kimenő jel a maximális érték felére esik vissza. BW=f 2 -f 1

A kommunikációban használt 25 fontosabb fogalmak A csillapítás Ha valamely elektronikus alkatrész, vagy adatátviteli összeköttetés kimenetén a jel amplitúdója kisebb, mint a bemenetére adott jelé, azt mondjuk, hogy csillapítás lépett fel. Definíció szerint a csillapítás a kimenő és a bemenő teljesítmény hányadosa.

A kommunikációban használt 26 fontosabb fogalmak A decibel-skála A csillapítást decibelben szokás megadni. A decibelskála két teljesítmény arányának (P 1 /P 2 ) logaritmikus skálán való kifejezése

27 A kommunikációban használt fontosabb fogalmak

A kommunikációban használt 28 fontosabb fogalmak A zaj és a jel/zaj viszonyszám Minden olyan jelet, ami nem része az információnak, a kommunikációs összeköttetésben zajnak tekintünk. Az áramkör, vagy berendezés kimenetén és bemenetén mérhető jel/zaj hányados a rendszer zajosságára jellemző. NF: noise figure Ha az NF értéke 1, azt jelenti, hogy a rendszer nem termel zajt. Ha egynél kisebb, a rendszer zajos.

29 A jelátvitel fizikai közegei

Történelem 30 A hálózatok fejlődésének kezdetén különféle célorientált hálózatok jöttek létre: távközlő hálózatok műsorelosztó hálózatok adathálózatok Fejlődés integrált hálózatok létrejötte NGN (Next Generation Networks) Újgenerációs hálózatok Megvalósult: eszközök szintjén hálózatok szintjén

31

32 T M A

Az átviteli rendszer tervezésekor a 33 legfontosabb szempontok a kívánt adatátviteli sebesség elérése megfelelő távolság áthidalása rendszer gazdaságos kihasználtsága

34 A jelátvitel fizikai közegei

35 Réz alapú kábelek

Rézalapú kábelek előnyei 36 Egyszerűbb szerelési technológia Alacsonyabb telepítési költségek Olcsó aktív eszközök Szennyeződésre kevésbé érzékeny csatlakozások Helyes telepítés után megbízható, sokoldalú, költséghatékony

Rézalapú kábelek hátrányai 37 Elektrosztatikus zavarokra érzékeny Mechanikai sérülésekre érzékeny A telepített infrastruktúra gátolhatja a jövőbeni fejlesztési törekvéseinket Hosszú telepítési idő Legnagyobb sebességek csak optimális feltételek mellett érhetők el

Vezetékes átvitel koaxiális kábelen 38 Elektromosan árnyékolt, kevésbé érzékeny az elektromos zajokra Alapsávú 10Base2 50 ohm, 10-100 Mbps, 200 m 10Base5 75 ohm, 10-100 Mbps, 500 m Széles sávú Kábel TV, 75 ohm, digitális átvitelnél 150 Mbps egy kábelen több csatorna, többféle kommunikáció Számítástechnikában ma már új hálózatok építésénél nem alkalmazzák!

Vezetékes átvitel koaxiális kábelen 39 Műanyag szigetelő Központi ér Szigetelő műanyag (gyakran műanyag hab, vagy magas frekvenciás esetben teflon) Árnyékoló harisnya Fonott réz AL fólia

Vezetékes átvitel koaxiális kábelen 40 Zaj, Zavar Z 0 Z 0 Z 0 Homogén hullámimpedancia Egyszerű meghajtó/vevő áramkör Mechanikai sérülésekre érzékeny (pl. megtörés Z 0 megváltozik)

Koaxiális kábelek típusai 41 RG 6 szélessávú TV-s átvitel 75 RG 8, RG 11, RG 58 vékony ethernet 50 RG 58/V a központi ér szilárd részből 50 RG 58 A/V a központi ér fonott részből 50 RG 59 szélessávú TV-s átvitel 75 RG 59 szélessávú 50

42 Koaxiális kábelek típusai

43 Koaxiális kábel csatlakozók

44 Csavart érpáras átviteli közeg (TP Twisted Pair) Zaj, Zavar Z 0 /2 Z 0 /2 Z 0 /2 Z 0 A zavarvédelmet az érpárok összecsavarása jelenti, valamint a szimmetrikus meghajtás UTP Unshilded Twisted Pair Árnyékolatlan csavart érpár

45 Csavart érpáras átviteli közeg (TP Twisted Pair) CAT - A rendszer komponensek elektronika jellemzőit meghatározó osztályrendszer. A nagyobb kategória jobb jellemzőket jelent CAT 1 - hang átvitel, telefon CAT 2-4 Mbps CAT 3-10 Mbps (10BaseT Ethernet) CAT 4 20 Mbps CAT 5-100 Mbps (100BaseT - Fast Ethernet) CAT 5E - 1 Gbps (1000BaseT - Gigabit Ethernet) CAT 6 1 Gbps nagyobb távolságra, kisebb távolságban 10 Gbps CAT 6a - 100m-ig 10 Gbps CAT 7-100 Gbps, 70 méterig (1200mhz)

46

47 Csavart érpáras átviteli közeg (STP Shilded Twisted Pair) Z 0 /2 Z 0 /2 Z 0 /2 Árnyékoló harisnya A zavarvédelmet az árnyékolás és az érpárok összecsavarása jelenti. STP Shilded Twisted Pair (Árnyékolt csavart érpár)

48

49 Kábel csatlakozások, csatlakozók

Kábelek fizikai osztályozása 50 Fali (Solid) kábel Fix telepítésre tervezték Rézvezetők tömörek Merev szerkezetű Sokkal jobb elektronikai paraméterek A teljes csatornában maximum 100m hosszban telepíthető

Kábelek fizikai osztályozása 51 Patch (Strainded) kábel Mobil használatra Jobban ellenáll a hajlító igénybevételnek Rézvezetők elemi szálakból sodrottak Gyakori csatlakoztatásra kifejlesztett elemek Puhább, könnyebb Maximum 10m hosszan telepíthető a csatornába

52 Üvegszál alapú kábelek

Üvegszál alapú kábelek előnyei 53 Magas fokú zavarvédettség Óriási távolságok hidalhatók át Elérhető legmagasabb átviteli sebesség Jövőálló Magas végpont sűrűségben telepíthető Csekély fizikai méret és súly

Üvegszál alapú kábelek hátrányai 54 Drága aktív és passzív elemek Drága telepítés A belső vezetőszál érzékeny a fizikai behatásokra A csatlakozás érzékeny a szennyeződésekre

Optikai kábel ötlete 55 A folyadéksugár csapdába ejti a fényt! Ez volt az alapötlet, ami az optikai szál technikai alkalmazásához vezetett.

Optikai kábel ötlete 56 Az optikai szál egy olyan hengeres, szigetelt, könnyen hajlítható szál, amely fényt továbbít az üvegmag belsejében, a teljes fényvisszaverődés elve alapján Ahhoz, hogy az optikai jel teljes fényvisszaverődéssel a magban terjedjen tovább, a mag törésmutatójának nagyobbnak kell lennie, mint a héjnak

57 Optikai kábel szerkezete

Kábel típusok 58 SM (Single Mode) 9 mikron mag Hosszú távolságok áthidalására (max 100 km) MM (Multi Mode) 50 mikron mag Rövidebb távolságok áthidalására (max 1-2 km)

Optikai szál gyártása 59 előforma készítése szál szerkezetének előállítása külső kémiai gőzlecsapatás belső kémiai gőzlecsapatás növesztéses eljárás szálhúzás szál átmérő primer védelem (esetleg festés) kábelgyártás több szál összefogása különböző védelmek kialakítása

Előforma készítése 60 Belső kémiai gőzlecsapatás tisztítás hordozócső készítés mag növesztése (lecsapatása) zsugorítás

Szálhúzás 61 Preform Grafit kemence Vezérlő egység Primer védelem Hűtőfolyadék Száldetektor Csévélő dob Feszítő dob

62

Kábelgyártás 63 Dobok a szálakkal SZ sodrat Vazelin Vezérlő egység Pászma növesztése Pászma átmérő detektor

64

LAN optikai kábelek fajtái 65 1. Single 2. Zipcord 3. Tight-buffered 4. Unitube glass armoured 5. Unitube standard with spl 6. Multitube glass armoured

66 Optikai kábel csatlakozók

67 Strukturált kábelezés

68 Épületek összekötése

69 Függőleges kábelezés

70 Vízszintes kábelezés

71 Szerelési szabályok

72

73 Vezeték nélküli átvitel

Optikai átvitel - Lézer átvitel 74 pont-pont közötti adatátvitel, láthatóság átvitel lézerrel néhány km távolság sávszélesség akár 2500Mbit/s időjárási viszonyok zavarják (sűrű eső, hó, köd, légköri szennyeződés)

Optikai átvitel - Infra átvitel 75 pont-pont közötti adatátvitel, láthatóság infravörös tartomány kis távolság sávszélesség 9,6 kbps - 4 Mbps nincs más eszköztől származó zavarás nincs szükség speciális adatvédelemre

Vezeték nélküli hálózatok 76 WLAN chipset gyártások alakulása (millió darab)

77 Mobile eszközök napjainkban

Mi az a WLAN? 78 A WLAN az angol Wireless Local Area Network szó rövidítése, melynek jelentése vezeték nélküli helyi hálózat, amit leginkább a vezeték nélküli hálózat, WiFi és a WLAN névvel illetnek. A WLAN működése hasonló a LAN hálózatokéhoz, csak a jelek más közegben terjednek. Míg a LAN vezetéket használ (hálózati kábel), addig a WLAN a levegőben továbbítja az információt.

A WLAN előnyei 79 Nincs szükség kábelezésre Az internetkapcsolatot meg lehet osztani Mobil eszközök kényelmes használata Egyszerűen telepíthető

A WLAN hátrányai 80 A rádiójeleket nem állítja meg a fal Illetéktelenek rácsatlakozhatnak hálózatunkra

81 Vezeték nélküli adatátvitel IEEE 802.11

82

WLAN frekvenciasávok 83 Rendszerint állami és nemzetközi szabályozás Mikrohullám ISM Industrial, Scientific and Medical 2.4 GHz (λ 12 cm) engedély általában nem szükséges sok zavaró jel DECT, mikrohullámú sütő, játékok, stb.

WLAN frekvenciasávok 84 U-NII Unlicensed National Information Infrastructure 5 GHz (λ 6 cm) kevés zavaró jel

85 WLAN frekvenciasávok

86 Egy tipikus rádiós hálózat

A WLAN hálózatok csoportosítása 87 Működésük szerint Az ad-hoc mód Az infrastruktúra mód

A WLAN hálózatok csoportosítása 88 Kiépítés szerint SOHO Enterprise

A WLAN hálózatok csoportosítása 89 Eszközök szerint Asztali Hordozható

A WLAN hálózatok csoportosítása 90 Antennák szerint Kör sugárzó Szegmens sugárzó Iránysugárzó

A WLAN hálózatok csoportosítása 91 Védelem szerint Nyilvános WLAN Jól védett WLAN Prompt WLAN

92 Antennák

Mi az antenna Az antenna elektromágneses hullámok egy tartományának, a rádióhullámoknak a sugárzására vagy vételére alkalmas elektrotechnikai eszköze. Elvileg bármelyik antenna lehet adó vagy vevő.

Adó és vevő Adó: adatot, hangot, képet átalakítja elektromos jellé és ezekkel változtatják az összeköttetést létesítő hullám jellemzőit, amplitúdóját, frekvenciáját, fázisát. Vevő: jeleket leválasztják a rádióhullámról felerősítik és visszaalakítják az eredeti jellé, adattá, hanggá, képpé.

Elektromágneses hullámok VLF- Very Low Frequency VHF Very High Frequency LF Low Frequency UHF Ultra High Frequency MF- Medium Frequency SHF Super High Frequency HF High Frequency EHF Extra High Frequency λ = c /f c = 3*10 8 m/s

97

Az elektromágneses hullámok terjedése Az elektromágneses hullámok terjedésében jelentős szerepe van a föld légkörének, az atmoszférának. Az atmoszféra mintegy 2.000-3.000 km magasságig terjed, nitrogénből, oxigénből, szén-dioxidból és vízgőzből áll. Három fő részére szokás osztani: troposzféra, sztratoszféra, ionoszféra.

Rádióhullám terjedés a mikrohullámú sugarak levegőben közel egyenesen haladnak a pontszerű sugárzó jele fokozatosan gyengül az adótól távolodva, a távolsággal négyzetes arányban iránya megváltozik különböző tereptárgyak miatt visszaverődés (reflexió): λ-nál jóval nagyobb felület visszaverheti a hullámot elhajlás (diffrakció): λ-hoz hasonló nagyságú élek mögé bekanyarodik a hullám törés (refrakció): közeghatárokon a terjedés iránya megváltozik, ha a két közegben más a terjedési sebesség

Rádióhullám terjedés elnyelődés (abszorpció) néhány km adó-vevő távolság felett a Föld görbülete is jelentős (9,7 km felett) D 0 optikai látóhatár r 0 földsugár D0 2r0 h

Fresnel zóna ellipszoid, fókuszai az antennák Fresnel zóna rmax = 0.5 * ( λ * D) 0.6 * rmax maximális sugarú üres ellipszoid szükséges a jó mikrohullámú átvitelhez AC

102

Antenna jellemzők izotropikus antenna: hipotetikus ideális gömbsugárzó karakterisztika: sugárzás, érzékenység irányonként más irányított vagy omni nyereség: adott irányba sugárzott teljesítmény (vagy vételi érzékenység) aránya az izotropikus antennához képest dbi: nyereség db-ben az izotropikus antennához képest dbd: nyereség db-ben a dipólus antennához képest (0 dbd = 2.14 dbi)

Antenna jellemzők polarizáció: az elektromos tér rezgésének módja lineáris függőleges vagy vízszintes síkban elliptikus, cirkuláris az adó és a vevő polarizációjának egyeznie kell

Antenna jellemzők

Antenna karakterisztika a valós antennák sugárzása/érzékenysége irányonként változik, ezt írja le az antenna karakterisztika oldalnézet / függőleges minta felülnézet / vízszintes minta

Antenna típusok Omni Dipólus co-linear

Antenna típusok Irányított Panel, patch Helix Yagi Parabola

Antenna típusok Panel, patch Helix

Antenna típusok Yagi Parabola

WLAN hőtérkép

WLAN hőtérkép

DIY antennák

Reflektor

Cantenna

Rekordok 124 mile 201 km

Hazai mérések 117 21 kilométeres távot 54 Mbps

118 Földkábelezés +

119 Szolgáltatók a föld alatt

Alépítmények 120 Generációi: Betoncsöves Műanyagcsöves ISDN- alépítmény

121 Alépítmény

122 Földmunka és csövek fektetése

123 Megszakító létesítmények

Alépítmény-hálózat csöveinek 124 többszörös kihasználása 100 mm belső átmérőjű csövek alkotják, Kábel átmérője nem lehet nagyobb mint a cső átmérőjének 80%, átmérő különbség >10mm.

125 Földkábel-fektetés

126 Optikai kábel telepítése

Földkábelek lefektetése 127 A földkábeleket két módon lehetséges elhelyezni: kézileg (emberi erővel, különösebb gépi segítség nélkül) vakond-ekés módszerrel (egy eke a kívánt mélységig felszántja a talajt, majd a kábelleeresztő szerkezet behelyezi a kábelt).

128 Kézi módszer

129 Vakond-ekés módszer

130

A vakond-ekés módszer jellemzői 131 Előnyei: nem szükséges alépítmény a gép kb. 10 km/nap teljesítményű gyors Hátrányai: köves-sziklás talajban nem alkalmazható nehezebben javítható (nem lehet tartalékból után húzni)

Optikai földkábelek behúzása 132 A kábelbehúzás többféleképpen is megvalósítható a már előre lefektetett alépítménybe: kézi, vagy csörlős behúzással átfúvatásos módszerrel beúsztatásos módszerrel

Kézi lefektetés (Csörlős behúzás) 133 Legnagyobb egyben behúzható hossz: 150-200 méter. Napi teljesítmény kb. 2000 méter. Viszonylag lassú A védőcső megbontása, illetve helyreállítása miatt egyéb járulékos költségek is felmerülnek A kábelre nagyjából 60 Kg tömeg által kifejtett mechanikai erő hat. Ebből kifolyólag és a lehetséges feszülések miatt a kábelek mechanikai sérülései nem zárhatóak ki.

134 Kézi, illetve csörlős behúzás

135 Átfúvatásos módszer

136 Digitális jelek előállítása

137 Beúsztatásos módszer

138

Eszközök 139 Föld alatti hálózatkiépítésnél: kábelbehúzó eszközök csörlők (elektromos) szivattyúk kompresszorok - egyéb (pl. pneumatikus berendezések)

140

141 Légvezetékes hálózat építése

Alkalmazási területei 142 Kertváros, falu Kis sűrűségű terület Az előfizetői pontok távol vannak egymástól Nem kell árkot ásni, járdát bontani, alépítményt betonozni

Légvezetékes hálózat összetevői 143 Légkábelek (réz / optikai) Oszlopok Kötődobozok Elosztók Rögzítők, feszítők Csigák, csigasorok

Légkábelek fajtái 144 Önhordó Külön tartóelemre nincs szükség, mert a kábelbe a nagy teherbírást biztosító elem be van építve. Nem önhordó Már meglévő acélsodronyra építik rá, megadott távolságonként rögzítik.

Légkábel elosztó 145 Réz Optika

Oszlopok 146 Fa oszlop Beton oszlop

Optikai önhordó légkábel 147 Acélsodrony Polietilén köpeny Központi elem Optikai szálak Pászma...... Kevlar...... Vakpászma

148 Optikai önhordó légkábel

149 Tengeri kábelezés

150

151

152 Informatikai, számítógépes hálózatok

Definíció 153 számítógépek és a hozzájuk kötődő eszközök meghatározott szabályok (protokoll) szerint együttműködő, összekapcsolt rendszere. (Magyar Nagylexikon 16.)

Hálózat erőforrás-megosztás 154 Erőforrás-megosztás - Az egész rendszer kiváltképp rugalmas, hiszen a feldolgozási kapacitás újabb számítógépek csatlakoztatásával növelhető, az hálózati erőforrások azonnal megoszthatók (nyomtató, tárterület - adatok, program stb.)

Hálózat költségtakarékosság 155 Költségkímélő - gazdaságilag előnyös, ugyanis a rendszer kiépítésekor és üzemeltetésekor (erőforrásmegosztás, kommunikáció költsége...) is takarékosabb megoldást jelent az önálló számítógépek helyett.

156

Hálózat osztott munkavégzés 157 A számítógépek közötti kommunikáció segítségével a velük dolgozó emberek is képesek közvetlen vagy közvetett (levél) kommunikációra és lehetőség van az osztott munkavégzésre.

Hálózat adatbiztonság 158 Az adatbiztonság jobb lehet hálózaton keresztül, hiszen így egyetlen szakember felügyelheti a rendszert, aki naprakészen alkalmazhatja az adatok biztonságos tárolását biztosító lehetőségeket.

Számítógépes hálózatok csoportosítása 159 Gépek feladata szerint Kiterjedés (méret) szerint Nyilvánosság szerint Az adatátvitel sebessége szerint Átviteli közeg szerint Topológia szerint Adattovábbítás módja szerint

Gépek feladata szerint 160 Kliens-szerver hálózatok Peer to peer

Kiterjedés (méret) szerint 161 LAN (Local Area Network) - helyi (lokális) hálózat lehet egy irodában, egy épületben, egy intézmény különböző épületeiben (peer to peer hálózat is) MAN (Metropolitan Area Network) - nagyvárosi hálózat egy városra vagy egy régióra (kistérség) kiterjedő hálózat WAN (Wide Area Network) - nagy kiterjedésű hálózat a távolsági hálózat országot, földrészt fedhet le GAN (Global Area Network) világhálózat az egész világra kiterjedő, a teljes Földet behálózó, világméretű hálózat pl.: internet

Nyilvánosság szerint 162 Nyitott rendszerek Zárt rendszerek

Adatátvitel sebessége szerint 163 A másodpercenkénti adatmennyiség továbbítása (sávszélesség kifejezés) alapján: megabit/másodperc gigabit/másodperc Mbps Gbps

Adatátviteli közeg szerint 164 Vezetékes Koaxiális kábel Sodrott érpár STP, árnyékolt UTP, árnyékolatlan Optikai kábel Vezeték nélküli rádiós infravörös fény lézer fény

Topológia szerint 165 Pont-pont: egy kommunikációs csatorna csak két gépet köt össze. Biztonságos, de kiépítése költséges. Üzenetszórásos: a hostok közös kommunikációs csatornát használnak. Az adó üzenetét mindenki megkapja, de csak a címzett olvassa el. Ha a csatorna meghibásodik, akkor az egész hálózat működésképtelen lehet.

Pont-pont topológiák 166 Csillag Teljes (részleges) Gyűrű Fa

Üzenetszórásos topológiák 167 Sín Gyűrű Rádiós

168 Távközlő hálózatok

169

Távközlés története Magyarországon 170 1939-ig Telefonhírmondó, 1938 10%-os telefonellátottság 1945-1990-ig Szolgáltatások lassú fejlődése 1990 10% telefonellátottság 1990-2000-ig Rohamos fejlődés (mobil, szoftver, hardver, ) 2000-től

Távközlési hálózat elemei 171 Használói végpont Hozzáférési pontok Hálózati csomópont Használói végpont Hálózati végződés Hálózati végződés Jelzésátvitel Üzenetátvitel Alkalmazások Használói és hálózat hozzáférési pont között hozzáférési hálózat (access network) Hálózati csomópontok és közöttük létesített hálózat maghálózat (core network)

Hálózati Topológiák (1) 172 Szövevényes (mesh) Részlegesen szövevényes Trönk áramkörök Gyűrű topológia Hátránya: - költséges - összeköttetések száma Előnye: - redundáns - hibatűrő - takarékosabb - redundáns - hibatűrő - nagy sebességű - takarékos - redundáns

Hálózati topológiák (2) 173 Hierarchikus Tandem összeköttetésű Haránt összeköttetés - takarékos - redundancia mentes - takarékos - redundáns - nagyforgalmi pontok között

Távbeszélő hálózat felépítése Nemzetközi irányok Szekunder sík Topológia: - szövevényes Primer sík Tandem Tandem Topológia: - hierarchikus - haránt - tandem Hozzáférési hálózat 174

175 Nemzetközi központok (2 darab) Szekunder központok (9 darab) Szövevényes hálózat Primer központok (45 darab) Gyűrűs hálózat Helyi központok Gyűrűs, vagy fa topológia Kihelyezett fokozat Előfizetők Fa hálózati topológia

176 Magyarországi hálózat

177 A budapesti hálózat

178 Szolgáltatási területek Magyarországon

PSTN - Public Switched Telephone Network 179 PSTN - kapcsolt közcélú hálózat A telefonhálózatokat korábban tervezték, kizárólag beszédátvitelre 1876 Graham Bell feltalálja a telefont Pár órával Elisha Gray előtt Készüléket lehetett vásárolni, a vezetéket a felhasználónak kellett kihúznia Minden felhasználó-pár között egy külön vezeték Egy év alatt a városokat behálózták a vezetékek

180 PSTN - Public Switched Telephone Network

PSTN 181 Gerinchálózat A A A A Központ Központ

Áramkörkapcsolás elve 182 E1 áramkör nyaláb (trönk) A 1. E4 E2 A 2. Ak. E5 E3 Jellemzők: Telefonközpont Fizikai összeköttetés Telefonközpont áramkör lefoglalás (pl. E1-A1-E6) hívás felépítés bontás alapsávi hang és kép/adatátvitel (0,3 3,4 khz) E6

Tárcsázás 183 Impulzus, tone (DTMF)

Digitális hangátvitel 184 A/D D/A P C M Gerinchálózat Gerinchálózat A D D A P C M Központ Központ

185 Modulációk

Mi az eszköze? 186 A berendezés, amely végrehajtja a modulációt: modulátor A berendezés, ami a visszaállításhoz szükséges inverz műveletet hajtja végre: demodulátor A mindkét művelet végrehajtására képes eszköz (a két kifejezés összevonásából): modem

Dial-up hozzáférés 187 Betárcsázós internet A computerek digitális információi analóg jellé alakíthatóak, és átvihetőek a hagyományos telefonhálózaton Modem modulator-demodulator Amplitúdó moduláció Frekvencia moduláció Fázis moduláció

188

Dial-up hozzáférés 189 A/D D/A A P C Gerinchálózat M A D D M A P C A A Központ Központ A D Modem D/A D PC PC

Modem szabványok 190 ITU-T V.22 1200 bps ITU-T V.22bis 2400 bps ITU-T V.32 9600 bps (1984) ITU-T V.32bis 14.4 Kbps (1991) ITU-T V.34 28.8 Kbps ITU-T V.34bis 33.6 Kbps (1994) ITU-T V.90 56.6 Kbps downstream, 33.6 Kbps upstream (1996) ITU-T V.92 56.6 Kbps downstream, 48 Kbps upstream

ISDN 191 Integrated Services Digital Network Digitális hang- és adatátvitelre alkalmas technológia Digitális Helyi Központ PCM Digitális összeköttetés Digitális Helyi Központ Alaphozzáférés (Basic Rate Access BRA) BRA 2B+D ( B = 64 kbit/s beszéd/adat, D = 16 kbit/s jelzés/adat) Primer hozzáférés (PRA)

ISDN - Interfész jellemzők 192 BRA 2B+D ( B = 64 kbit/s beszéd/adat, D = 16 kbit/s jelzés/adat) PRA 30B+D (B = 64 kbit/s, D = 64 kbit/s) jellemzők BRA PRA konfigurációk Vonali kód Pont - pont Pont- több pont S interfészen módosított AMI Pont-pont U interfészen HDB3 / AMI Jel sebesség 192 kbit/s 2048 kbit/sec impedancia Szimmetrikus 100 Ω Koax 75 Ω / szimm. 120 Ω Impulzus amplitudó 750 mv 2,37 V/ 3 V

193

Hozzáférési hálózatok xdsl 194 Telefonos ipar 56 Kbps (2000-ben) Kábeltévé ipar 10Mbps osztott kábeleken Műholdas cégek 50 Mbps ajánlatok Lépni kellett az internetezők megtartása érdekében xdsl különféle DSL változatok

Hozzáférési hálózatok ADSL 195 ADSL Asymmetrical Digital Subscriber Line Aszimmetrikus digitális előfizetői vonal Használói vonalon: beszéd adatátvitel Használói végződés PSTN/ ISDN ADSL DSLAM ATM Access Network

196 Hozzáférési hálózatok ADSL

Hozzáférési hálózatok ADSL 197 Repeater Regenerátor Visszaállítja a jelet Erősítő Felerősíti a jelet ADSL szolgáltatás akár 16 km-ig

Hozzáférési hálózatok ADSL 198 Paraméterek (példa) Maximális leltöltési sebesség 18 Mbit/s Maximális feltöltési sebesség 1,5 Mbit/s Garantált leltöltési sebesség 6 Mbit/s Garantált feltöltési sebesség 0,5 Mbit/s

Hozzáférési hálózatok SDSL 199 SDSL Symmetric Digital Subscriber Line Szimmetrikus digitális előfizetői vonal n x 64 kbit/s átvitelére vonali sebesség k x 384 kbaud egy érpáron áthidalható távolság: 2 4 km (regenerálás nélkül) n x 64 kbit/s SDSL SDSL n x 64 kbit/s

Hozzáférési hálózatok SDSL 200 Paraméterek (példa) Maximális leltöltési sebesség 2 Mbit/s Maximális feltöltési sebesség 2 Mbit/s Garantált leltöltési sebesség 1 Mbit/s Garantált feltöltési sebesség 1 Mbit/s

Hozzáférési hálózatok HDSL 201 HDSL High bit rate Digital Subscriber Line 2 Mbit/s- os adatátvitelre regenerálás nélkül 2-4 km között, egy érpáron (regenerálás nélkül) 2 Mbit/s HDSL vonali sebesség 1160kBaud HDSL 2 Mbit/s

Hozzáférési hálózatok VDSL 202 HDSL (High bit-rate DSL) ITU-T G.991.1 (1998) VDSL (Very-high-data-rate DSL) - ITU-T G.993.1 (2004) Lényegesen nagyobb sebességű adatátvitel kis távolságokon 52 Mbit/s downstream,16 Mbit/s upstream Lehet szimmetrikus is (26-26 Mbit/s) 12 MHz sávszélesség Max. 1 km hatótávolság Inkább 300 méter

Hozzáférési hálózatok VDSL 203 szolgáltató Optikai illesztő egység VDSL sodrott érpár Upstream Downstream DownStream Távolság UpStream VDSL elosztó Interaktív TV sodrott érpár koax kábel 12,96 13,8 Mbps 1500m 1,6 2,3 Mbps 25,92 27,6 Mbps 1000m 19,2 Mbps 51,84 55,2 Mbps 800m (egyenlő a Downstreammel)

204 Hozzáférési hálózatok VDSL

Sávszélesség - Távolság 205 100 60 20 8 Sávszélesség [Mbit/s] Kifejezetten rövid hurkos alkalmazásokra Túl kicsi sávszél több (3) HDTV csatornához Túl kicsi sávszél Triple Play alkalmazásokhoz 2 ADSL 1 km 2 km 3 km 4 km 5 km Távolság

206 Kábeltelevíziós hálózatok

A frekvenciasáv felosztása 207 5 65 87,5 862 MHz RETURN PATH VISSZA IRÁNYÚ SÁV FORWARD PATH ELŐFIZETŐI IRÁNYÚ SÁV 5 16,1 17,5 48,5 56,5 62 65 MHz HKR rádiósáv átm adatátvitelre felhasználható sáv RI TV csatorna adatátv átm 87,5 108 300/302 450/470 750 862 MHz FM rádiósáv analóg KTV sáv hipersáv UHF sáv UHF sáv A FREKVENCIASÁV FELOSZTÁSA

208 Erősítő és elosztó

209 Hálózat felépítése

210 IPTV szolgáltatás az interneten keresztül

211 FTTX hálózatok

212 FTTX = Fiber To The X X=Something FTTx Fiber To The x Fényvezető szállal a/az FTTB Fiber To The Building - épületig FTTC Fiber To The Curb - járdáig FTTD Fiber To The Desk asztalig FTTE Fiber To The Enclosure - kerítésig FTTH Fiber To The Home - lakásig FTTN Fiber To The Neighborhood - környékig FTTO Fiber To The Office - irodáig FTTP Fiber To The Premises helyiség/épületig FTTU Fiber To The User - felhasználóig

FTTx példák

FTTx előnyei Nagy adatátvitel akár nagy távolságra is Könnyen feljavítható / bővíthető Alacsony üzemeltetési költség Nem zavarja az elektromos interferencia

Az FTTX-hálózat nagysága 215 Felhasználó és a csomópont közti távolság lehet 10m és 10km között. Az FTTX-hálózat 100m és 2000m között változik az esetek többségében.

216

217 FTTH hálózat építő elemei

HFC hálózatok 218 Meglévő, kiépített infrastruktúra Nagy sávszélesség DS irányban Végponti eszközök cseréjével upgradelhető Analóg lekapcsolással a kapacitás nő Internet- sávszélesség igény nő

HFC hálózatok felépítése 219 Hybrid Fiber Coax (HFC) HOST Fejállomás Opt. Gyűrű (1550 nm) gerinc Kerületi optikai hálózat (1310 nm) ONU Családi házak HOST HOST ONU Lakótelep Passzív leágazó Kétirányú vonalerősítők

KábelTV hálózat, mint osztott média 220 A szegmensben lévő összes előfizető ugyanazt a frekvenciasávot és ugyanazt a fizikai közeget látja A szegmens mérete a lefedett hálózatrész nagyságától, valamint az optikai adók-vevők arányától függ Egy szegment tipikusan 2.000 lakás Downstream, és 500 lakás Upstream irányban

221 GPON

222 Szélessávú vezetékes elérési hálózati trendek

223 Optikai elérési hálózati megoldások

224 PON szabványosítás

225 PON szabványok összehasonlítása

226 GPON hálózat teljesítő képessége

227 PON technológia továbbfejlesztése

OLT helyszínek 228 Optikai vonalvégződtető (Optical Line Terminal - OLT)

229 OLT helyszínek

230 Műholdas kommunikáció

231 Helymeghatározás

232 Alkalmazott műholdpályák, tulajdonságaik

233 Alkalmazott műholdpályák, tulajdonságaik A LEO [Low Earth Orbiter ] magába foglalja az IRIDIUM (780 km ), ARIES (1018 km) és a GLOBALSTAR (1389 km ) rendszereket. A MEO [ Medium Earth Orbiter ] magába foglalja a ICO PROJECT 21 (10 355 km), és az ODYSSEY (10 373 km) valamint a ELLIPSO (7800 km) rendszereket. A GEO [Geostationary Earth Orbiter ] a maga 36 000 km magasan lévő pályájával, magába foglalja a AMSC ( US és CANADA ), AGRANI ( közép ÁZSIA és INDIA ) ACeS ( dél-kelet ÁZSIA ), és az APMT ( KÍNA ) műholdakat.

Global Positioning System 234 Globális helymeghatározó rendszer A Földön (és környezetében ) Időjárástól, helyszíntől független Csak látni kell az égboltot Bárki által használható (egyutas) Korlátozható (SA/katonaság)

A Global Navigation Satellite 235 System felépítése Űrszegmens Földi követő és vezérlőállomások Felhasználói szegmens

NAVSTAR (USA) 236 24/(31)/31 (terv./ker./műk.)műhold ~20.200 km magasságban (átlagos, Föld tömegk.) 6 pályasík (4-6 műhold/pályasík) 55 inklináció (a földi egyenlítőhöz viszonyítva) A pályasíkok 30 -onként az egyenlítő mentén 4 követő és 2 követő/vezérlő állomás (Hawaii, Ascencion, Diego Garcia, Kwayalein, Colorado Springs) 12 sziderikus óra a keringési idő: 11ó58p2,04527s ~1600-1800kg, ~6 m nyitott napelem

237 NAVSTAR (USA)

ГЛОНАСС 238 (CCCP, ma Oroszország) 24 (19keringő)/11 működő műhold ~19.100 km magasságban keringenek 3 pályasík (8+1 műhold/pályasík) 64.8 az egyenlítő síkjával bezárt szög A pályasíkok 120 -onként 11 óra 15 perc keringési idő ~1300-1500 kg, 3-7 év élettartam

239 ГЛОНАСС (CCCP, ma Oroszország)

240 Galileo (Európai Unió civil üzemeltetés) 27/30 műhold / 3 pályasík (9+1 műhold/pályasík) 2005.december végén = az 1. műhold már sugároz ~23 222 km, 56 p. inklináció, 14 óra 4 perc ker. ~675 kg, ígért teljes kiépítettség (FDS) ~2008 új frekvenciák L5 (E5A-B) 1164-1215MHz, (E6-1260- 1300 MHz), E2-L1-E1 1559-1591 MHz!!! Pozitívum: civil, független, pontosság, integritás adatok akár 6 másodpercen belül, ingyenes is Negatívum: civil (pénzforrás), várhatóan 4-8 év mire rendszerbe áll, új GNSS vevők kellenek L1!-L5-L2

241 Galileo (Európai Unió civil üzemeltetés)

BEIDOU-2 (Pejtou-2) / Compass 242 35 (5 GEO+30 MEO pályán) műhold 2007. november végén = az LBS Beidou-1 működik (3 műhold GEO-n, + 1 műhold MEO-n is sugároz ~21 500 km ígért teljes kiépítettség (FDS) ~2010 10 méter, open service Pozitívum: újabb globális helymeghatározó rendsz., még több műhold (műholdszegény helyeken is) Negatívum: új GNSS vevők kellenek, Galileo konkurens, katonai rendszer

243 BEIDOU-2 (Pejtou-2) / Compass

244

245

GPS adatok 246 Ismert, hogy a GPS által kisugárzott jelek rendkívül kis teljesítményűek: -130 dbmw (0 dbmw = 1 mw, 50 dbmw = 100W) Mint bármely más rádiójelet, a GPS jeleit is lehet zavarni Egy pikowatt (10-12 W) teljesítményű interferencia forrás is elegendő a GPS jel tönkretételéhez Jelenleg egyetlen civil GPS frekvencia létezik, a civil vevők döntő többsége egyfrekvenciás. A modulált kód jól ismert A GPS jamming technológia nem titkos, egyszerű, házilag összeszerelhető jammer modellek leírása megtalálható az Interneten, komolyabb berendezéseket meg is lehet vásárolni.

GPS adatok 247 A GPS műholdak két jelet sugároznak: L1 vivő 1575,42 MHz L2 vivő 1227,60 MHz Mindkét vivő frekvenciája nagypontosságú atomórához szinkronizált. Mindkét vivőt úgynevezett P kóddal modulálják, az L1-et továbbá úgynevezett C/A kóddal.

GPS civil felhasználása 248 Közlekedés/Áruszállítás Emberi élet védelme Földmérés/Térinformatika Környezetvédelem Időszinkronizálás Katasztrófa elhárítás Precíz mezőgazdálkodás Távközlés Bankügyletek

249 GPS katonai felhasználása

GPS sebezhetősége 250 Nem szándékos zavarás Az ionoszféra okozta interferencia Rádióforrások okozta nem szándékos interferencia Szándékos zavarás Jamming Spoofing Meaconing Emberi tényező GPS vevők tervezési hibái Navigációs rendszerek üzemeltetési hibái Felhasználói ismeretek hiánya

Nem szándékos zavarás 251 Az ionoszféra okozta interferencia Rádióforrások okozta nem szándékos interferencia URH adók 23-as, 66-os és 67-es TV csatornák Digitális TV adások Ultra szélessávú radar és kommunikációs berendezések Hibásan működő adók Műholdas Mobil Telekommunikációs Szolgáltatások Horizont feletti radar

Szándékos zavarás 252 GPS Jamming Elegendően nagy energiájú és megfelelő karakterisztikájú zavaró jel kibocsátása a GPS frekvenciákon interferenciát okoz. Zavaró jel típusa lehet: keskenysávú folyamatos adás a GPS sávban, szélessávú folyamatos adás sáv átfedéssel, szórt spektrumú (spread spectrum) GPS jelhez hasonló GPS Spoofing A gyanútlan GPS felhasználó megtévesztésére valódinak tűnő hamis C/A jelek kisugárzása -> a számított pozíció távolodik a valódi helyzettől GPS Meaconing jelvétel és késleltetett újrasugárzás, amellyel összezavarják a vevőket

253 Szándékos zavarás

Helymeghatározási példa 254 GPS/GSM modem személy, tehergépjárművekbe telepítve GSM/GPRS Application server Internet Felhasználói webes felület

255 Helymeghatározási példa

256 VSAT

Mi a VSAT? 257 A VSAT kisméretű, földi, telekommunikációs állomás, mely Internet hozzáférést, kétirányú adatkommunikációt és adattovábbítást, hang-, fax, video konferencia szolgáltatásokat tesz elérhetővé műholdas rendszeren.

A VSAT hálózat előnyei 258 Rugalmas, gyors telepíthetőség Ország régió teljes lefedése Azonnali kommunikáció lehetősége Földi infrastruktúrától független fejletlen területek kiszolgálása Magas rendelkezésre állás

VSAT felhasználási területek 259 Dedikált összeköttetések Földi ADSL jellegű szélessávú, kétirányú Internet elérés VPN hálózatok részleges vagy egységes kiszolgálása Nemzetközi hálózatok kialakítása Teljes értékű backup (földi hálózattól teljesen független összeköttetés biztosítása) Mobil szélessávú megoldások (Express, Mobil IP) Video és képi információk átvitele Trunking (pl. GSM, Tetra hálózatok) Támogatott protokol: TCP/IP Sávszélességek: 1M/256K - 18/4 Mbps (letöltés/feltöltés)

Mobil műholdas megoldások 260 1 gombnyomásra üzemképes Automatikus műholdra állás Gyors műholdra állás (kb. 5 perc) Könnyen szállítható Nem kell minden helyszínen összeszerelni szétszerelni Nem igényel szakértelmet Nem igényel fizikai munkát Tömege kompletten: <100kg

261

262 Mobilizált közvetítő kocsi

Műholdas telefonok 263 Inmarsat globális lefedettség egyidejű hang és szélessávú (max. 492 kbps) adatátvitel garantált sávszélességű adatátvitel (streaming), értéknövelt szolgáltatások. Kézi készülék Iridium globális lefedettség hang, korlátozott sávszélességű adatátvitel

Műholdas telefonok 264 Inmarsat Iridium Thuraya Hangátvitel van van van Adatátvitel max. 492 kbps alapszintű max. 444 kbps Garantált adat (Streaming) max. 256 kbps nincs max. 384 kbps GSM lehetőség nincs nincs van Lefedettség teljes Föld (kivéve a sarkok) teljes Föld Afrika, Európa, Ázsia WLAN van nincs nincs ISDN van nincs nincs Menet közbeni megoldás van van van

265 Eszközök és lefedettség

266

267 Lehetőségek

268

269

270 DVB

Digitális Televíziózás az EU-ban 271 1961, Stockholm: nemzetközi, analóg frekvenciakiosztás 1998, UK: az első digitális, földfelszíni sugárzás az EU-ban 2006, Genf: nemzetközi, digitális frekvenciakiosztás Az átállás lépésekben történik Előírás: digitális átállás 2014-ig

Magyarországon 272 1999: földfelszíni digitális sugárzás tesztelésének kezdete 2004-től: földfelszíni digitális műsorszórás kísérleti jelleggel 2006, Genf: digitális televíziós sugárzáshoz hazánk 8 multiplexet kap 2008-ban kell beindulnia a DVB-T szolgáltatásnak 3 multiplexen 2013 novemberig leállítják az analóg műsorsugárzást

Digital Video Broadcasting 273 Páneurópai szervezet 1993-ban jött létre a digitális műsorszórás rendszerének kiépítésére Feladata: a szabványos digitális televíziós sugárzás összehangolt bevezetésének koordinálása a különböző országokban

Digitális műsorszórás fajtái 274 DVB-S (műholdon keresztül): nagy terület fedhető le vele egyirányú kommunikáció

275 Digitális műsorszórás fajtái

Digitális műsorszórás fajtái 276 DVB-C (kábelen keresztül): az interaktivitáshoz szükséges válaszcsatornát magában foglalja, nagy kapacitást biztosít, nem befolyásolja az időjárás kétirányú kommunikáció

Digitális műsorszórás fajtái 277 DVB-T (földfelszíni): olcsó általában ingyenes mobil lehetőségek biztosít egyirányú kommunikáció

Digitális műsorszórás fajtái 278 DVB-H(mobil-tévé) A telefon bármikor kéznél van Kicsi és hordozható Zenehallgatással, videó-rögzítéssel összekapcsolható

DVB-T 279 Előnyei: Kiváló képminőség Zajmentesebb: nincs szellemkép, nincs szemcsésedés, nincs villódzás, nincs színtorzulás CD minőségű hang: sztereo, Dolby Surround vagy többnyelvű kísérőhang Mobilitás: mozgás közben, akár autóban ülve is ugyanolyan tökéletes vétel

280 DVB-T

DVB-T 281 Előnyei: Egy mai analóg csatorna helyén több (akár 6) kiváló minőségű műsor átvitele is lehetséges Lehetőség van HDTV adásokra Ráépíthető az analóg infrastruktúrára A kép- és hangjeleken kívül egyéb információk továbbítása (pl: a műsor adatai)

282 DVB-T

283

DVB-T 284 Hátrányai: A vétel minőségét szélsőséges időjárási viszonyok befolyásolhatják Alacsony vételi jelszintnél drop-out-os lehet a kép, a hang pedig kimaradozhat Nagyobb mértékű jelszint csökkenés a vétel hirtelen megszűnésével jár

285 DVB-T mérés

286 DVB-T antenna beállítása

DVB szolgáltatások 287 Programkalauz (EPG) Video-on-demand Sport és pay-per-view

288

289

A DAB műsorszórás 290 A DAB (Digital Audio Broadcasting = Digitális hang műsorszórás) múltja 1987-re mutat vissza, amikor a nyugat-európai kutatóintézetek megalapították erre a célra az EURÉKA 147 nevű konzorciumot. 1988-ban már sikeres földi bemutatókat tartanak, azonban az ezekhez szükséges vevőberendezések térfogata még elérte a hordónyi (100-150 liter) méretet. Csak 1995- re sikerült 5 liter alá szorítani a térfogatát a vevőknek, így addig az elterjesztéséről szó sem lehetett. Ebben az évben meg is indultak a kísérleti adások külföldön és Budapesten egyaránt.

Digital Audio Broadcasting (DAB) 291 CD minőségű hangtovábbítással az FM rendszerű műsorszórást próbálják leváltani vele. Budapesten 1995 december elsejétől DAB, 2009 január 23-tól DAB+ rendszerű sugárzás folyik a 11D csatornán (222,064 MHz-es frekvencia).

292 DAB csatornák

293 DAB lefedettsége

294 DAB rádiók

Forrás 295 HTE: TÁVKÖZLŐ HÁLÓZATOK ÉS INFORMATIKAI SZOLGÁLTATÁSOK Takács György: A távközlési hálózattervezés sajátosságai BME VIK: Infokommunikációs rendszerek és alkalmazásuk jegyzetek