Biostatisztika e-book Dr. Dinya Elek



Hasonló dokumentumok
4. előadás. Vektorok

Mátrixaritmetika. Tartalom:

Lineáris Algebra gyakorlatok

5. Előadás. Megyesi László: Lineáris algebra, oldal. 5. előadás Lineáris függetlenség

Lineáris algebra I. Kovács Zoltán. Előadásvázlat (2006. február 22.)

KOVÁCS BÉLA, MATEMATIKA I.

matematikai statisztika október 24.

MATEMATIKA FELADATGYŰJTEMÉNY

1.1. Gyökök és hatványozás Hatványozás Gyökök Azonosságok Egyenlőtlenségek... 3

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény

KOVÁCS BÉLA, MATEMATIKA I.

METROLÓGIA ÉS HIBASZÁMíTÁS

Az elektromos kölcsönhatás

Valószín ségelmélet házi feladatok

Lineáris algebra - jegyzet. Kupán Pál

KOVÁCS BÉLA, MATEMATIKA I.

Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc. Dr. Kersner Róbert

BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI EGYETEM. Puskás Csaba, Szabó Imre, Tallos Péter LINEÁRIS ALGEBRA JEGYZET

Statisztikai. Statisztika Sportszervező BSc képzés (levelező tagozat) Témakörök. Statisztikai alapfogalmak. Statisztika fogalma. Statisztika fogalma

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó

Széchenyi István Egyetem, 2005

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer

A lineáris tér. Készítette: Dr. Ábrahám István

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )

Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa

2. előadás: További gömbi fogalmak

Komputer statisztika gyakorlatok

NYUGAT-MAGYARORSZÁGI EGYETEM Faipari Mérnöki Kar. Mőszaki Mechanika és Tartószerkezetek Intézet. Dr. Hajdu Endre egyetemi docens MECHANIKA I.

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK

Analízisfeladat-gyűjtemény IV.

Matematikai és matematikai statisztikai alapismeretek

Valószínűségszámítás

5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke?

Környezetvédelmi analitika

Matematika emelt szintû érettségi témakörök Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár)

Konfidencia-intervallumok

LÁNG CSABÁNÉ SZÁMELMÉLET. Példák és feladatok. ELTE IK Budapest javított kiadás

Lineáris algebra I. Vektorok és szorzataik

Fuzzy rendszerek. A fuzzy halmaz és a fuzzy logika

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Diszkrét Matematika I.

MATEMATIKA 9. osztály Segédanyag 4 óra/hét

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

2. Halmazelmélet (megoldások)

10. Valószínűségszámítás

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor

Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak tanév 2. félév

A bankközi jutalék (MIF) elő- és utóélete a bankkártyapiacon. A bankközi jutalék létező és nem létező versenyhatásai a Visa és a Mastercard ügyek

Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László

TARTALOM. Ismétlő tesztek ÚTMUTATÁSOK ÉS EREDMÉNYEK...255

Valószínűségszámítás feladatgyűjtemény

Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK

Lineáris Algebra GEMAN 203-B. A három dimenziós tér vektorai, egyenesei, síkjai

Philosophiae Doctores. A sorozatban megjelent kötetek listája a kötet végén található

Ferenczi Dóra. Sorbanállási problémák

1. Lineáris leképezések

1.Tartalomjegyzék 1. 1.Tartalomjegyzék

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz

Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI. Pécsi Tudományegyetem, Bevezetés

Bemenet modellezése II.

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013

Komplex számok szeptember Feladat: Legyen z 1 = 2 3i és z 2 = 4i 1. Határozza meg az alábbi kifejezés értékét!

Összefoglaló valószínűségszámításból a Gépészmérnök Msc szak hallgatói számára

A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I.

Ismerkedés az Abel-csoportokkal

Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint

5.10. Exponenciális egyenletek A logaritmus függvény Logaritmusos egyenletek A szinusz függvény

Szennyvíztisztítási technológiai számítások és vízminőségi értékelési módszerek

8. Programozási tételek felsoroló típusokra

S T A T I K A. Az összeállításban közremûködtek: Dr. Elter Pálné Dr. Kocsis Lászlo Dr. Ágoston György Molnár Zsolt

Ahol mindig Ön az első! Segítünk online ügyféllé válni Kisokos

Matematika. Specializáció évfolyam

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások:

A mágneses tér energiája, állandó mágnesek, erőhatások, veszteségek

MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok

Vektorszámítás Fizika tanárszak I. évfolyam

Elsôfokú egyenletek, egyenletrendszerek, egyenlôtlenségek

Add meg az összeadásban szereplő számok elnevezéseit!

Bináris keres fák kiegyensúlyozásai. Egyed Boglárka

Elektromágneses hullámok - Hullámoptika

Halmazok. Halmazelméleti lapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai.

Tómács Tibor. Matematikai statisztika

Merev test mozgása. A merev test kinematikájának alapjai

Tanmenetjavaslat 5. osztály

Matematikai programozás gyakorlatok

Hitelderivatívák árazása sztochasztikus volatilitás modellekkel

Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged

Bevezetés a játékelméletbe Kétszemélyes zérusösszegű mátrixjáték, optimális stratégia

MITISZK Miskolc-Térségi Integrált Szakképző Központ

Illeszkedésvizsgálat χ 2 -próbával

Pontszerű test, pontrendszer és merev test egyensúlya és mozgása (Vázlat)

Bevezetés. Párhuzamos vetítés és tulajdonságai

Tartalomjegyzék. Typotex Kiadó III. Tartalomjegyzék

Méréssel kapcsolt 3. számpélda

Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára

Méréselmélet PE_MIK MI_BSc, VI_BSc 1

A pályázat címe: Új elméleti és numerikus módszerek tartószerkezetek topológiaoptimálására

Átírás:

TÁMOP-4../A/-/-0-005 Egészségügy Ügyvtelszervező Szakrány: Tartalomfejlesztés és Elektronkus Tananyagfejlesztés a BSc képzés keretében Bostatsztka e-book Dr. Dnya Elek

Tartalomjegyzék. Bevezetés a mátrok vlágába..... Vektorok..... Mátrok... 4.3. Determnánsok... 7.4. Fontosabb specáls mátrok... 5. Kombnatorka... 7.. Permutácók... 8.. Varácók... 8.3. Kombnácók... 9.4. Bnomáls együtthatók tulajdonsága... 9 3. Valószínűség-számítás... 3 3.. Kísérlet, esemény... 3 3.. Eseményalgebra... 3 3.3. Valószínűség fogalma... 33 3.4. Eloszlások... 4 4. Adattípusok... 60 4.. omnáls skála... 60 4.. Ordnáls skála... 60 4.3. Intervallum skála... 60 4.4. Arány skála... 6 5. Adatredukcó... 6 5.. Középérték... 6 5.. Szóródás mutatók... 69 5.3. Grafkus ábrázolás... 73 6. Konfdenca-ntervallum... 76 6.. Megbízhatóság tartomány jelentősége... 76 6.. Átlag megbízhatóság tartománya... 77 6.3. A t-eloszlás tulajdonsága:... 78 7. Hpotézs vzsgálat... 79 7.. Hpotézs fogalma... 79 7.. Szgnfkanca-sznt... 80 7.3. Statsztka próbák fajtá... 8 7.4. Hpotézs vzsgálat döntés táblázata... 83 7.5. Power-fogalma... 86 7.6. Hpotézs vzsgálat menete... 86 8. Power analízs... 87 8.. Mntaszám meghatározása... 87 9. Paraméteres eljárások... 9 9.. F - próba... 93 9.. Egymntás t-teszt... 95

9.3. Kétmntás t-teszt... 98 0. emparaméteres eljárások... 5 0.. Rangszámok tulajdonsága... 6 0.. Előjel teszt (sgn test)... 7 0.3. Wlcoon párosított teszt... 8 0.4. Mann Whtney U teszt... 8 0.5. Kolmogorov Szmrnov teszt... 9 0.6. Wald Wolfowtz runs teszt... 9 0.7. k független mnta összehasonlítása... 0 0.8. k számú összetartozó mnta vzsgálata... 0.9. Rangkorrelácós eljárások.... Regresszós vzsgálatok... 6.. Korrelácószámítás... 7.. Lneárs regresszó... 34.3. Többváltozós lneárs regresszó... 37.4. emlneárs regresszó... 38. Kontngenca táblák vzsgálata... 39.. Pearson-féle Ch-négyzet teszt (χ -teszt)... 40.. es kontngenca táblák... 4.3. Dagnosztka vzsgálatok... 45.4. Epdemológa vzsgálatok... 48.5. Terápa hatásosságát kfejező tényezők... 50 3. Túlélés analízs... 5 3.. Lfe table (Halandóság tábla) analízs... 53 3.. Kaplan-Meer eljárás... 56 3.3. Kaplan-Meer túlélés függvények összehasonlítása. Log rank módszer... 56 3.4. Co-regresszó... 58 4. Logsztkus regresszó... 6 5. Magasabbrendű eljárások... 63 5.. Általános lneárs modell (GLM)... 63 Modell komponensek... 64 5.. MIXED modell... 64 6. Idősoranalízs... 66 6.. Elmélet bevezető... 66 6.. Lneárs és nem lneárs trend modell... 68 6.3. Eponencáls smítás... 69 6.4. Wnters addtív modell... 70 6.5. Telítődés modell... 70 6.6. ARMA... 7 3

. Bevezetés a mátrok vlágába.. Vektorok Alapfogalmak: Skalármennység: konkrét számérték (terület, térfogat stb.). Vektormennység: rányított érték (erő, sebesség stb.). Szabadvektor: önmagával párhozamosan eltolható. Fvektor: f kezdőpont. Csúsztatható vektor: saját rányegyenesük mentén mozgatható. Defnícó: a tér rányított szakaszat nevezzük vektoroknak, amelyeknek adott a nagysága és ránya. Másképp fogalmazva a vektor egy rányított szakasz, vagy azzal jellemezhető mennység. Példák vektorokra: Jelölésük: a vektort megadhatjuk a kezdő és végpontja segítségével ( AB) vagy jelölhetjük ksbetűvel kétféle módon: a vagy a

Koordnáta rendszerben orgó kezdőpontú vektort rendezett számpár jellemz a síkban, térben pedg rendezett számhármas Defnícó: két vektor azonos (egyenlő), ha hosszuk (nagyságuk) s és rányuk s megegyezk.

Példa: Defnícó: vektorok egyenlősége ekvvalencarelácót jelent: - refleív: a: a a - szmmetrkus: a, b: ha a b b a - tranztív: a, b, c : ha a b és b c a c. Defnícó: a vektor hosszát a vektor abszolút értékének s nevezzük (nem negatív valós szám). A fent vektor hossza: V a + b + 3 4 5 5 Defnícó: az olyan vektort (0), amelynek megegyezk a kezdőpontja és a végpontja és abszolút értéke 0, nullvektornak nevezzük. Iránya tetszőleges, mnden vektorral párhuzamos és mnden vektorra merőleges. Ilyen vektorból csak egy létezk. Defnícó: ha egy vektor abszolút értéke, akor egységvektornak nevezzük. Ilyen vektorból végtelen sok létezk. Defnícó: az a vektor ellentettje: az a vektort, amelyk vele egyenlő abszolútértékű, egyező állású, de vele ellentétes rányú. Jelölése: a. 3

Defnícó: két vektor összegén egy harmadk vektort értünk, amelyet meghatározhatunk paralelogramma-módszer, vagy öszszefűzés (háromszögmódszer, sokszög-módszer) segítségével. Vektorműveletek A vektorösszeadás kommutatív és asszocatív: a, b esetén: a + b b + a a, b, c esetén: (a + b) + c a + (b + c). Defnícó: az a és b vektorok a b különbségén azt a c vektort értjük, melyre b + c a. 4

Koordnátákkal kfejezve: a (a,a) b (b,b) Összeadás a b a+b (a +b, a +b ) a+b Kvonás a b a-b a-b (a -b,a -b ) Megjegyzés: Két vektor különbségét megkapjuk úgy, hogy közös kezdőpontba toljuk őket, mert ekkor a különbségvektor a végpontjakat összekötő vektor lesz, a ksebbítendő felé rányítva. A vektorok összeadása, lletve kvonása során az eredmény esetleg a 0 s lehet. Bármely a vektor esetén a + 0 a és a 0 a. Defnícó: Egy a vektor és egy λ szám szorzata egy vektor, amelynek hossza λa λ a, párhuzamos a-val és λ > 0 esetén egyrányú, λ < 0 esetén ellentétes rányú a-val. 5

Vektor szorzása λ számmal (skalárral) Vektorok számmal való szorzására érvényesek a következő művelet szabályok: λ, µ skalár és a esetén: λ(µa)(λµ)a (asszocatvtás) λ és a, b vektor esetén: λ(a + b) λa + λb (dsztrbutívtás) λ, µ és a esetén: (λ + µ)a λa + µa (dsztrbutívtás) Defnícó: legyenek a, a,..., an tetszőleges vektorok a térben, c, c,..., cn pedg valós számok. Az c a +c a + +cnan kfejezést az a, a,..., an vektorok lneárs kombnácójának nevezzük. Példa: ha a, b, c vektorok, akkor 3a 4b + 6c egy lneárs kombnácójuk. Ha megadunk néhány vektort, akkor ezeknek végtelen sok lneárs kombnácója létezk, hszen az együtthatók tetszőleges valós számok lehetnek. Állítás: legyenek a, b és c a tér vektora. Ha a, b és c nncsenek egy síkban, akkor a tér mnden v vektora egyértelműen előállítható a, b és c lneárs kombnácójaként. 6

Defnícó: Az a, a,..., an vektorok trváls lneárs kombnácóján a 0 a + 0 a +... + 0 an kfejezést értjük. Megjegyzés: akkor beszélünk trváls lneárs kombnácóról, ha mnden együttható 0. Természetesen az eredmény csak a 0 vektor lehet. Defnícó: Az a, a,..., an vektorokat lneársan függetlennek nevezzük, ha csak a trváls lneárs kombnácójuk 0. Mnden más esetben a vektorokat lneársan összefüggőnek hívjuk. Állítás: két vektor lneársan összefüggő, ha párhuzamosak egymással. Állítás: A tér három vektora akkor lneársan összefüggő, ha egy síkban vannak. A tér pl. négy vektora mndenképpen lneársan összefüggő. Defnícó: A térbel vektorok egy lneársan független vektorhármasát bázsnak nevezzük. Defnícó: Ha e, e, e 3 a tér egy bázsa és v α e + α e + α 3 e 3, akkor az α, α, α 3 számokat a v vektor (e, e, e 3 bázsra vonatkozó) koordnátának nevezzük. Megjegyzés: a bázsvektorok általánosan használt jelölés rendszere (abszcssza), j (ordnata), k (kóta). Tulajdonságak: egységny hosszúságúak ( j k ), páronként ortogonálsak egymásra,, j, k sorrendben ún. jobbrendszert alkotnak. (ha k végpontja felől nézünk a másk két bázsvektor síkjára, akkor -t a j-be poztív rányú, óramutató járásával ellentétes,80 foknál ksebb szögű forgás vsz át. A tér egységvektora: 7

Defnícó: egy Q pont helyvektorán az OQ vektort értjük, ahol O az orgó. Az így defnált vector ún. kötöttvektor, mvel kezdőpontja rögzített. Defnícó: Egy Q pont koordnátán a helyvektorának a koordnátát értjük. Defnícó: Két vektor összegének koordnátá az eredet vektorok megfelelő koordnátának összegével egyenlő. Defnícó: Két vektor különbségének koordnátá az eredet vektorok megfelelő koordnátának különbségével egyenlő. Defnícó: Ha egy vektort egy c számmal szorzunk, akkor az így kapott vektor mnden koordnátája a eredet vektor megfelelő koordnátájának c-szerese lesz. Defnícó: Az a(a, a, a 3 ) vektor hossza a a a + + a 3 8

Defnícók: n koordnátával jellemzett vektorok féle megadás mód: oszlopvektor: a a a... a n sorvektor: * a [ a, a,... a ] n Adott két vektor. Számítsuk k a következőket: a+b; ab; a vektor hosszát valamnt a 3a-t, a*b! a 0 6 3a 3 0 6 Vektorokkal való műveletek 0 b 0 4 a + b 0 3 0 0 a*b [,,0, ] a ( ) + + 0 + 3 4 + 0 + 0 + 6 9

Defnícó: két vektor skalárs szorzatán az alább szorzatot értjük: Két tetszőleges a [a, a,..., a n ] és b [b, b,..., b n ] vektor skalárs szorzata alatt a következőt értjük: ahol Σ az összegzést és na vektortér dmenzóját jelöl. Skalárs szorzat tulajdonsága. Kommutatív: a b b a. A skalárs szorzás egy cskalárs tényezővel asszocatív: c(a b)(ca)b 3. Dsztrbutív: a (b+c) a b + a c Defnícó: az a és b vektorok skalárs szorzatán az ab a b cos ϕ 0

számot értjük, ahol ϕ az a és b vektorok hajlásszöge. Állítás: két vektor skalárs szorzata akkor és csak akkor 0, ha a két vektor merőleges egymásra. Két vektor skalárs szorzatának kommutatvtása ϕ cosφ b b a A kommutatvtás követezk a skalárs szorzat defnícójából vagy az ábrán látott két háromszög hasonlósága alapján, mvel, ahol a a b vet cosφ b b vet a a b vektor vetülete az a vektorra, és, b a vet cosφ a úgyhogy a bb a Defnícó: Az a és b vektorok vektoráls szorzatán azt az a b-vel jelölt vektort értjük. A vektoráls szorzatra vonatkozóan teljesülnek: - hossza a b a b sn ϕ, ahol ϕ az a és b vektorok hajlásszöge, - ránya merőleges az a és b vektorokra, a, b és a b ebben a sorrendben jobbrendszert alkot. Állítás: két vektor akkor és csak akkor párhuzamos, ha a b 0 Állítás: tetszőleges a és b vektorok és λ valós számesetén gaz az alább egyenlőség:

λ (a b) λa b a λb Állítás: az a (a, a, a 3 ) és b (b, b, b 3 ) vektorok vektoráls szorzata determnáns alakban a b a b j a b k a b 3 3 Állítás: az a és b vektorok által kfeszített paralelogramma területe a két vektor vektoráls szorzatának abszolút értékével egyenlő T a b Állítás: az a és b vektorok által kfeszített háromszög területe T a b / Defnícó: az a, b és c vektorokból képzett (a b) c kfejezést az a, b és c vektorok vegyesszorzatának nevezzük. Megjegyzések: Az elnevezés arra utal, hogy hogy a kfejezésen belül kétfajta szorzás s szerepel. A vegyesszorzat eredménye skalár. Állítás: ha a, b és c nem esnek egy síkba, akkor vegyesszorzatuk abszolút értéke megegyezk az általuk kfeszített paralelleppedon térfogatával: V (a b) c Állítás: az a, b és c vektorok akkor és csak akkor esnek egy síkba, ha (a b) c vegyesszorzatuk 0.

Felcserélés tétel (a vegyesszorzat eredménye nem változk ): tetszőleges a, b és c vektorok esetén (a b) c a (b c) Állítás: az a(a, a, a3), b(b, b, b3) és c(c, c, c3) vektorok vegyesszorzata a a b b c a b c a b c 3 3 3 Állítás: az a, b és c vektorok által kfeszített tetraéder térfogata egyenlő a vegyesszorzatuk abszolút értékének hatodrészével V abc /6 /6 Cauchy Bunyakowsk Schwarz egyenlőtlenség: ahol vagy másképpen kfejezve az egyenlőtlenséget: azaz ( a b + a b + + a b ) ( a + a +... + a )( b + b + + b )... n n n n... Mnkowsky (háromszög egyenlőtlenség): 3

4.. Mátrok Általánosságban mátrnak nevezünk egy téglalap elrendezésű, m n számú, a j valós számot (általában, de lehet komple szám s) tartalmazó táblázatot. A mátrokat nagy betűvel jelöljük és szögletes zárójelben adjuk meg: a a a a a a a a a mn m m n n A n m..................... ), ( Az adott mátr m n típusú: m sorból és n oszlopból áll, az a j a mátr -edk sorában és j-edk oszlopában lévő eleme. Ha mn, akkor a mátrot négyzetes mátrnak (vagy kvadratkus) nevezzük és a sorok száma a mátr rendjét s meghatározza. Ha egy A mátr sorat és oszlopat felcseréljük, akkor kapjuk az A* transzponált mátrt. a a a a a a a a a mn n n m m A m n..................... * ), ( A transzponálás során a kvadratkus mátr n rendje nem változk és a transzponált mátr transzponáltja az eredet mátrt adja eredményül.

5... Alapműveletek a) Mátrok egyenlősége Két mátr csak akkor egyenlő egymással, ha sorak és oszlopak száma egyenlő (azonos típusúak) és az azonos helyen álló elemek megegyeznek. b) Összeadás, kvonás A két művelet csak azonos típusú mátrokra értelmezett. Az eredmény mátr (összeg vagy különbség mátr) a két mátr típusával azonos, és eleme a két mátr azonos helyén lévő elemenek az összege vagy különbsége. A két művelet tetszőleges számú mátrokra s elvégezhető. C A + B + 7 4 0 4 4 0 3 5 0 4 3 5 3 C A - B 3 3 0 0 0 3 5 0 4 3 5 3 Egy mátr spurja (mátr nyoma) a főátlóban lévő elemeknek az összege. Pl. az A mátr spurja 5. Jelölésben Sp(A)3. c) Konstanssal való szorzás A mátr mnden elemét megszorozzuk az adott számmal C k A A 4 8 6 0 6 4 4 3 5 3 d) Mátr szorzása mátrszal Két mátr csak akkor szorozható össze, ha az A mátr oszlopanak a száma azonos a B mátr soranak a számával. Ha ez feltétel gaz az A, B mátrokra, akkor a két mátr az adott sorrendben konformábls. Vgyázzunk, mert a szorzás általában nem kommutatív művelet, vagys az A B B A nem mndg gaz. Ezalól csak a dagonál mátrok szorzása kvétel, mert az lyen mátrokra a szorzás művelete kommutatív. A műveletnél az A mátr megfelelő sorat szorozzuk a B mátr megfelelő oszlopaval:

6. Az A mátr. sora * a B mátr. oszlopával, utána a. sor* az. oszloppal, majd a 3. sor*az. oszloppal stb.. Az A mátr. sora * a B mátr. oszlopával, utána a. sor* a. oszloppal, majd a 3. sor*a. oszloppal stb. 3. az eljárást a fenteknek megfelelően mnden sorra és oszloppal elvégezzük. Példa: A B + + + + + + + + + + + + 7 7 0 0 3 0 3 0 3 3 0 3 3 0 3 0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (... Azonosságok E A A E A Egységmátrszal szorozva az eredet mátrt kapjuk. 0 A A 0 0 Zérusmátrszal való szorzás zérusmátrt eredményez...3. Többtényezős mátr szorzás A két tényezős konformabltást tetszőleges tagra s kterjeszthetjük és szorzás lyen sorrendben elvégezhető: D p l C l k B n k A n m ), ( ), ( ), ( ), ( Specáls eset a mátr hatványozása, amt a mátr n-szer smételt szorzásával kapunk meg: A A A A A n Megállapodás szernt A 0 E. Az egységmátr n-edk hatványa szntén egységmátr, a zérusmátr n-edk hatványa pedg zérusmátr. lpotensnek nevezzük az A mátrt, ha n-edk hatványára gaz, hogy a zérusmátrt adja eredményül:

A n 0 Idempotens az A mátr (önnmagát vsszaadó), ha teljesül rá: A n A.3. Determnánsok A két smeretlent (, y) tartalmazó un. elsőfokú (az smeretlen tényezők az elsőhatványon szerepelnek) egyenletrendszerek megoldására három lehetőségünk van: a) helyettesítő módszer alkalmazása b) egyenlő együtthatók módszerének alkalmazása c) determnánsok módszerének alkalmazása. Tekntsük az általános egyenletrendszer alakját: a +b yc a +b y c Képezzük az együtthatókból az alább másodrendű determnánsokat és adjuk meg az értéküket meghatározó formulákat s: a D ) ( ) a c b b ( a b b a D ) ( ) c a b b ( c b b c D y ) ( ) a c c ( a c c a Az egyenletrendszer megoldása a determnánsok segítségével: D D lletve y Dy D ylván D 0 esetén van csak megoldás. 7

8 Példa: Oldjuk meg az alább elsőfokú egyenletrendszert a determnánsok segítségével: 4+3y6 +y 4 Vegyük az egyenletrendszer másodrendű determnánsát, amt az együtthatókból képzünk (főátló szorzata mellékátló szorzata): D 3 4 3 4 ) ( ) ( Mvel a D 0, ezért az egyenletrendszer megoldható. 3 6 3 4 6 3 4 4 3 6 D D ) ( ) ( y 4 6 4 4 3 4 4 6 4 y D D ) ( ) ( Tehát a keresett megoldások: 3 és y-. A fent elv három vagy több smeretlenes egyenletrendszer esetén s alkalmazható, de lyenkor fgyelemmel kell lenn az aldetermnánsok előjelére..3.. Mátr determnánsa Csak kvadratkus mátrnak van determnánsa, amt a mátr elemeből képzünk. Ha a mátr determnánsa deta 0, akkor a mátr regulárs, ha deta 0, akkor a mátr szngulárs. Vzsgáljuk meg a következő mátr determnánsát: 3 0 A Fejtsük sorba a mátrt az első sora szernt. A determnánst bármelyk sora vagy oszlopa szernt kfejthetjük, csak vegyük fgyelembe az együtthatók előjelszabályát. Az előjel szabály

(sakktábla szabály) pl. egy harmadrendű determnánsra (de ez értelemszerűen kbővül a feladatnak megfelelően) + + + + + A kfejtés azt jelent, hogy a kszemelt sor vagy oszlop együtthatóval szorozzuk a hozzátartozó aldetermnánsokat. Most fejtsük k a determnánst az első sora szernt (a kfejtés technkája: pl. a -hez tartozó aldetermnánst megkapjuk, ha letakarjuk az első sort és az első oszlopot, a megmaradt elemek lesznek az a -hez tartozó determnáns eleme): 0 det A 3 3 0 3 0 + 0 + 0 0 Mvel a determnáns 0, ezért a mátr regulárs..3.. Mátr rangja Az A mátr rangja az a ρ(a) r természetes szám, ha az r-edrendű kvadratkus mnormátra között van legalább egy olyan, amely regulárs, de az összes r+-edrendű már szngulárs. Következésképp, az m n mátr rangja nem lehet nagyobb sem soranak, sem oszlopanak számánál. A rang fontos szerepet játszk pl. a lneárs egyenletrendszerek megoldásánál. Az előbb mátr rangja ρ(a) 3, mvel a determnánsa láttuk, hogy 0..3.3. Inverz mátr agyon fontosak a lneárs egyenletrendszerek megoldásában vagy egyes többváltozós statsztka módszerek elméletében. Vezessük be az adjungált mátr fogalmát: egy négyzetes mátr adjungáltján azt a transzponált hpermátrt értjük, amelynek eleme szntén mátrok, mégpedg az a j elemehez tartozó előjeles aldetermnánsok (lásd a fent előjelszabályt) alkotják a mátr elemet. 9

adja A A... A n A A... A n............ A A. A n n nn.. ézzük meg a fent mátr adjungáltját. Vegyük sorba az egyes elemekhez tartozó előjeles aldetermnánsokat: A 0 3 A 0 A 3 0 3 A 0 3 3 A 4 A 3 0 3 3 0 A 3 A 3 4 0 A 33 A kapott adjungált mátr (transzponált mátr): 0 adja 0 0 3 4 3 4 égyzetes mátr esetén, ha A 0, akkor megtudjuk határozn az nverz vagy recprok mátrt, az A - mátrt. Ekkor gazak a következő azonosságok: A A - E és A - A E Vagys akár jobbról vagy balról szorozzuk az A mátrt az nverzével, mndg az E egységmátrt kapjuk eredményül. Az nverz mátrt a következő módon határozzuk meg, ha A 0 (ellenkező esetben A-nak nem létezk nverze) feltétel esetén: 0

A - adja A Mvel az előbb mátr determnánsára gaz, hogy A 0, ezért létezk az nverze. Ismerjük az adja mátrt, végezzük el az osztás műveletét, hogy megkapjuk az nverz mátrt: A - adja A 0 0 0 3 4 3 0 4 0. 5 0 0. 5 0. 5 0. 0. 5 0. 0. 0. Önadjungált mátr: az A önadjungált, ha A*A (lásd szmmetrkus mátrok)..3.4. Sajátérték, sajátvektor A két fogalom központ helyet foglal el a bostatsztkában. Számos statsztka módszer alapszk ezeken a számításokon pl. PCA (főkomponens analízs), faktoranalízs. Ezeknél a többváltozós módszereknél az alapmátr az R (korrelácós mátr). A téma tárgyalása előtt nézzünk meg néhány alapfogalmat: Skalárs mennység (skalármennység): olyan mennység, amely jellemzésére a számérték s elegendő pl. térfogat, terület, hosszúság stb. Vektoráls mennység (vektormennység): olyan mennység, amely jellemzésére a számértéken felül a mennység rányára és rányítására s szükség van. Ezt megfelelő rányú egyenes szakasszal ábrázoljuk, melyen az rányítást a nyíl jelz. Vektorok például a rendezett zámpárok, számhármasok stb., azaz a sík- lletve térbel koordnáták. Pl. erő, gravtácós térerősség stb. Vektor-tér (vagy lneárs tér): a lneárs algebra legalapvetőbb strukturáls fogalma. A vektorokkal végezhető műveletek legelembb tulajdonságat aomatkusan defnálja. A lneárs tér a m szokásos síkunk és terünk általánosítása többdmenzós terekre. Eukldesz tér: azon T számtest felett vektortereket, melyekben a vektorterek aómán felül értelmezve van egy ún. skalárs szorzat (eukldesz norma). Legyen V egy vektortér egy T test felett (pl. a valós számok halmaza, R), és legyen A egy n- edrendű kvadratkus mátr, amely a V vektortér egy lneárs leképezését adja:

A: V V és legyen v V egy nem nulla tetszőleges vektor (v[v, v, v 3,,v n ]). A v vektort az A leképezés sajátvektorának nevezzük, ha létezk olyan λ skalárérték (λ0 s lehetséges), hogy λ T, és teljesül a következő egyenlőség: A v λ v A λ érték az A egy v sajátvektorához tartozó sajátértéke. Legyen A egy kvadratkus mátr. A sajátérték egyenlet az előzőek alapján: A v λ v Használjuk fel az E egységmátrt, amely nem változtatja meg az egyenletet: Rendezzük át az egyenletet: A v λ E v A v - λ E v 0 ahonnan (A - λ E) v 0 Az adott A mátr karaktersztkus polnomja (det a determnánst jelöl): P(λ) det(a - λ E) A polnom fokszáma megegyezk a mátr rendjével, így legfeljebb n sajátérték lehetséges, amknek a megkeresése magasrendű mátrok esetén különösen nehéz. Az alább determnánst kfejtve (A karaktersztkus determnánsa), λ-ra pontosan n-edfokú polnomot kapunk, amelynek a gyöke lesznek a keresett sajátértékek: a λ a. a n a. a. λ.. a. A λe 0 a n a n. a nn λ A λ -hez tartozó sajátvektorokat a

(A - λ E) v 0 egyenlet alapján határozzuk meg. Megjegyzés: - A sajátértékek összege, λ + λ + + λ n Sp(A), am a mátr nyoma. - A sajátértékek szorzata, λ λ λ n det(a). Példa: Határozzuk meg az egyk ún. Paul mátr sajátértéket és vektorat. Megjegyzés: a Paul mátrok -es hermtkus mátrok, amelyek nyoma 0. Három féle lyen mátr van. A mátr alakja: 0 [ A ] Írjuk fel a karaktersztkus egyenletet: 0 λ A λe λ 0 0 λ A sajátértékek: λ ±. A kapott sajátértékek teljesítk a következőket: A keresett saját vektorok: λ esetén: Sp(A) +(-) 0 és det(a) (-) - 0 Felhasználva a fent egyenletet: Végezzük el a beszorzást. v v ( ) ( ) 0 -v () + v () 0 v () v () 0 3

4 Amből a v () v () egyenlőség adódk (a felső nde a szóbanforgó sajátértéket jelöl). A keresett vektor alakja: v ) ( Ennek normált alakja ( s + felhasználásával): v ) ( λ - esetén: Felhasználva a fent egyenletet: 0 v v ) ( ) ( Végezzük el a beszorzást. -v () + v () 0 v () v () 0 Amből a v () v () egyenlőség adódk. A keresett vektor alakja: v ) ( Ennek normált alakja ( s + felhasználásával): v ) ( A saját vektorok mátra tehát: 0 0 A A főátlóban a sajátértékek állnak.

.4. Fontosabb specáls mátrok a) Sormátr (sorvektor) Egyetlen sorból álló mátr: a[a, a,, a n ] b) Oszlopmátr (oszlopvektor) Egyetlen oszlopból álló mátr: a a a a... m c) Zérus-mátr Mnden eleme 0: 0 A 0 0 0 0 0 0 0 0 d) Dagonál mátr Csak a főátlóban lévő elemek nem 0-ák. Megadás módja A a, a,., a mn e) Egységmátr 5

6 A főátlóban mnden elem, a több zérus. Megadáskor a rendszámot s feltüntetjük: E 3 0 0 0 0 0 0,, A mátr egyes oszlopa (sora) adják az egységvektorokat, pl. az oszlopmátrok: e 0 0 e 0 0 e 3 0 0 f) Szmmetrkus mátr Olyan négyzetes mátr, amelynek eleme szmmetrkusak (tükörképek) a főátlóra, vagys a j a j. Ilyen pl. a korrelácós mátr. Az lyen mátr azonos a transzponáltjával, azaz AA*. 3 6 5 6 4 5 4 S Antszmmetrkus mátr esetén nylván a j -a j. Az lyen mátr főátlójában csak 0 áll. g) Háromszögmátr A főátló alatt vagy felett csak 0 elem áll. Így megkülönböztetünk alsó és felső háromszögmátrt. Példa egy felső háromszögmátrra: H f 5 0 0 3 0 4 4 h) Mnormátr Tetszőleges sor(oka)t és oszlop(oka)t elhagyva a mátrból kapjuk az A mátr mnormátrát. Például vegyük a fent S mátrt. Hagyjuk az első sort és a harmadk oszlopot. A kapott S mátr mnormátra a következő: 6 5 4 S

) Konjugált mátr Az A mátr elemenek (komple számok) konjugálásával kapott mátr: A [ a ] eleme valós számok, akkor j) Untér mátr a j a j. A komple A untér mátr kvadratkus mátr, melyre gazak az alábbak: A A * A * A E j. Ha az A Vagys, ha az A mátrt megszorozzuk a konjugált mátr transzponáltjával (akár balról vagy jobbról), akkor az E egységmátrt kapjuk eredményül. Továbbá A mátr transzponáltja egyben nverze s. k) Ortogonáls mátr A - A * Ha az A R (az untér mátr eleme valós számok), akkor azonosság: *, és gaz a következő A A A A * A * A E l) Hpermátr: amelynek eleme szntén mátrok.. Kombnatorka A kombnatorka (kapcsolástan) az elemek csoportosításával foglalkozó önálló tudományága a matematkának. Elsődleges feladata az elemek csoportjanak előállítása, valamnt a csoportok számának meghatározása. Az elemek egy elrendezését kompleónak nevezzük. Az elemek elrendezésének három legfontosabb fogalma a permutácó, a varácó és a kombnácó témaköréhez tartozk. 7

.. Permutácók Ha n db egymástól különböző elemünk van és ezeket az elemeket az összes lehetséges módon sorba rendezzük (sorba rakjuk őket), akkor azt mondjuk, hogy az elemeket permutáljuk. Az egyes elrendezések a kompleók. Ha az elrendezendő elemek mnd különbözők, akkor smétlés nélkül, ha az elemek között azonosak s vannak, akkor smétléses permutácóról beszélhetünk. Megegyezés szernt az azonos elemek felcserélését nem tekntjük különböző sorrendnek. Az smétlés nélkül permutácók száma: P n 3... n n! vagy rövden P n n! az n elem től n g terjedő egész számok szorzata. Jelölésben n! (ejtsd: n faktoráls), am az n elem faktoráls értékét jelöl. Megállapodás szernt 0!. Ismétléses permutácók száma: k p, k, k 3,..., k n n n! k!, k!, k 3!,..., k n! ahol k,k,k 3,...,k n az egymás közt megegyező elemek számát jelöl... Varácók Ha n számú különböző elemből kválasztunk k(k n) számú elemet úgy, hogy fgyelembe vesszük ezek sorrendjét s, akkor n elem k ad osztályú varácójáról beszélünk. Az összes varácó számát a kfejezés adja. V k n k! n( n ) ( n ) ( n 3)... ( n k + ) ( n k)! Ha az n elemből úgy választunk k elemet tartalmazó csoportokat, hogy a csoportban egy elem többször s szerepelhet és az elemek sorrendje s fontos, akkor az n elem k ad osztályú smétléses varácóját határozzuk meg: 8

V k, n n A felső ndeben az betű jelöl az smétléses varácót. k.3. Kombnácók Ha az n számú különböző elemből úgy választunk k k (k n) számút mnden lehetséges módon, hogy a kválasztás során a csoportokon belül az elemek sorrendje nem fontos, akkor n elem k ad osztályú kombnácójáról beszélünk. Az összes lehetséges kválasztás száma: C k n n n! n( n ) ( n ) ( n 3)... ( n k + ) k k!( n k)! k( k )... n Az k jelölést úgy olvassuk, hogy n alatt a k. Ha a k elem között egy elem többször s előfordulhat, akkor n elem k ad osztályú smétléses kombnácójáról beszélünk. Az összes kválasztás lehetőségek száma: C k, n n + k k Az Ecelben a COMBI függvénnyel lehet kombnácót számítan..4. Bnomáls együtthatók tulajdonsága Az olyan kfejezéseket amelyek két tagból állnak bnomáls kfejezéseknek nevezzük, pl. (a+b) vagy (a b). agyon érdekes tulajdonságot fedezett fel Pascal (63 66) franca matematkus a bnomok hatványozásával kapcsolatban. Vegyük az (a + b) bnom hatványat sorba egészen az 5. hatványg (n 0,,,3,4,5): (a + b) 0 (a + b) a + b (a + b) a + ab + b (a + b) 3 a 3 + 3a b + 3ab + b 3 (a + b) 4 a 4 + 4a 3 b + 6a b + 4ab 3 + b 4 (a + b) 5 a 5 + 5a 4 b + 0a 3 b + 0a b 3 + 5ab 4 + b 5 9

Ha az egyes tagok együtthatót egymás alá írjuk, akkor az ún. Pascal háromszöget kapjuk, ahol a külső szárak mentén csak es áll. A háromszög belsejében álló bármely szám a közvetlen felette lévő és attól balra álló két szám összege: n 0 n n n 3 3 3 n 4 4 6 4 n 5 5 0 0 5 Pascal háromszög A Pascal háromszög ktöltését tovább lehet folytatn az n értékének megfelelően (az n tetszőleges, nem negatív egész szám). A Pascal háromszög révén bármely (a±b) n bnom kfejtett polnomáls alakját fel lehet írn, mvel az egyes sorok a kívánt polnom tagjanak együtthatót tartalmazza. Az egyes tagok hatványanak a meghatározása úgy történk, hogy az első tagnak az a nak a hatványa balról jobbra gyel csökkennek, n től 0 g, a b együttható hatványa balról jobbra gyel nőnek. (0 tól n g). Vegyük fgyelembe a hatványozásnál, hogy a 0 és b 0, így ezen tagokat nem s írjuk k a hatványozás során. Pl. a teljes alak az (a+b) kfejezésnél a következő lenne: (a+b) a b 0 + a b + b a 0 a + ab + b Vezessük be az tételt: n n 0, n jelöléseket és írjuk fel a ewton féle bnomáls n n n n n n ( a b) a n a n b a n b n... ab n n b n + + + + + + 0 n k 0 n k a nk b k ahol az n k együtthatókat bnomáls együtthatóknak nevezzük. A bnomáls együtthatókra gaz az alább kfejezés: 30

n n n + k k + k A tételt a kfejtett bnomáls együtthatókkal s felírhatjuk: n ( ) ( a b) a a n n b + + + a b +... +!! n n n n n A tételnek egy következménye az alább kfejezés: (+) n +n (n közel van a 0 hoz). 3. Valószínűség-számítás 3.. Kísérlet, esemény Véletlen kísérlet: olyan folyamatot, jelenséget értünk, amelynek a kmenetele előre bzonyosan nem mondható meg, de az gen, hogy mlyen módon fejeződhet be. Azaz előre tudható, hogy mlyen végállapotok lehetnek. A véletlen kísérletet azonos feltételek mellett, függetlenül meg lehet fgyeln, akárhányszor végre lehet hajtan. Esemény: a véletlen kísérlettel kapcsolatos eseménynek nevezünk mnden olyan logka állítást, melynek gaz vagy hams értéke egyértelműen megállapítható a kísérlet befejezésekor. Az esemény bekövetkezk, ha az állítás gaz értéket kap a kísérlet végén, és nem következk be, ha logka érték hams. Jelölésük. A, B stb. Eseménytér: az elem események halmaza. Jelölés: Ω Defnícó: az A esemény maga után vonja a B eseményt, ha az A esemény bekövetkezéséből a B esemény bekövetkezése s következk. Jelölés: A B Aóma: A véletlen kísérlettel kapcsolatos összes események Ω rendszere (eseménytér) a) I Ω O Ω b) ha A Ω A C Ω c) Ha A, A, A 3,., A n Ω A Ω 3

3.. Eseményalgebra HALMAZOK ESEMÉYEK Uno: A B Összeg: A+B Metszet: A B Szorzás: AB Komplementer: A C Ellentett esemény: A C Alaphalmaz: H Bztos esemény: I Üres halmaz: Lehetetlen esemény: O Részhalmaz: A B A maga után vonja B-t: A B Egymást kzáró események: ha A és B-re gaz, hogy ABO Elem esemény: a K véletlen kísérlet egy A O eseménye, ha nncs olyan B esemény, amely A-t maga után vonná. Azaz B ( O és A) olyan, hogy B A. Az elem események jelölése ω. A+BB+A (A+B)+CA+(B+C) A+AA A+II A+OA Esemény algebra Összeadás Kvonás Szorzás Komplementer Több művelet A-BAB ABBA c A(B+CAB+AC (AB)CA(BC) ( A C ) A AOO AAA AII I C O O C I A+A C I AA C O De Morgan: (A+B) C A C B C (AB) C A C +B C 3... Teljes esemény rendszer Az A, A, A 3, A 4,..A n események teljes esemény rendszert képeznek, ha a) A +A +A 3 +A 4 +..+A n I b) A A j O, ha j (,, 3,,n és j,, 3,,n) 3

3.3. Valószínűség fogalma Valószínűség aómája Adott P: Ω [0, ] valószínűség függvény. A P kelégít az alábbakat:. P(I). Ha A, A, A 3, A Ω, és A A j O akkor gaz a σ-addtívtás(ha n, akkor véges addtvtás): P ( A ) P ( A ) ahol P(I): Bztos esemény valószínűsége P(O): Lehetetlen esemény valószínűsége 33

Kolmogorov-féle valószínűség mező: (I, Ω, P) Valószínűség alapfogalmak. Valószínűség: Eseményeken értelmezett számértékű függvénymérték. Jelölésben P(A)p Kolmogorov aómák: 0 P(A) P(O)0 és P(I) Ha AB O P(A+B) P(A) + P(B). Valószínűségszámítás: klasszkus valószínűség modell: k kedvez ő események száma P ( A) p n összes események száma 3. Statsztka próba (teszt): A mért adatokon értelmezett függvény. 4. Szgnfkanca értelmezése : p < 0.05 A valószínűség másk smert megadás módja a százalékos forma, amkor pl. p 0.60 helyett 60 % os esélyt mondunk egy esemény bekövetkezésére. Ha magát az A eseményt s jelöljük a valószínűségével együtt, akkor a P(A) jelölést használjuk. 34

Feltételes valószínűség P(AB) P(A B) P(B) Teljes valószínűség tétele Ha B, B, B 3,., B n események teljes esemény rendszert alkotnak és P(B I ) 0, akkor egy tetszőleges A esemény valószínűsége P(A)Σ P(A B ) P(B ) Bayes elmélet Ha a B, B, B 3,., B n események teljes esemény rendszert alkotnak és P(B) 0, valamnt egy tetszőleges A eseményre gaz, hogy P(A) 0, akkor a B eseményekre gaz posteror valószínűség P(A B ) P(B ) P(B A) Σ P(A B k ) P(B k ) k a pror valószínűség Markov-egyenlőtlenség Legyen ξ poztív valószínűség változó véges M(ξ) várható értékkel. Ekkor tetszőleges λ > 0 valós számra gaz az alább egyenlőtlenség: P ( ξ λ M( ξ)) λ 35

Csebsev-egyenlőtlenség Legyen ξtetszőleges valószínűség változó, melynek van szórása. Ekkor ε > 0 esetén gaz: P( ξ ξ ε D ( ) M( ) ) ε ξ Ha ξsmeretlen (várható érték és szórás gen), akkor felső korlátot tudunk megadn a várható érték körül szmmetrkus ntervallumokba esés valószínűségere. agy számok Bernoull-féle gyenge törvénye Legyen ξbnomáls eloszlású valószínűség változó, mely k k(k0,,,,n)értéket vesz fel, ha az A esemény az n kísérlet során k-szor k következett be. Legyen az A esemény n relatív gyakorsága, P(A) p az esemény valószínűsége. Ekkor ε> 0esetén gaz: q p P(A) P ( k n p ) ε p q ε n k P ( n p < ) ε p q ε n 36

. agyszámok gyenge és Erős törvénye 3.3.. Valószínűség változók jellemzése A valószínűség változó egy olyan függvény, amely az eseménytér elemehez valós számokat rendel: ξ: Ω R Valószínűség változó: ha az elem események mndegykéhez egyértelműen hozzárendelünk egy számot, akkor az eseménytéren egy függvényt értelmezünk, és ezzel megadunk egy valószínűség változót. Dszkrét eloszlások: értékkészletük megszámlálhatóan véges vagy. Eloszlásfüggvénye: A ξ dszkrét valószínűség változó F() eloszlás lépcsős függvénye: F() P(ξ < ) k< p k Az F() eloszlásfüggvény tulajdonsága: balról folytonos, 37

monoton növekedő, értéke 0 és l között. Folytonos eloszlások: értékkészletük megszámlálhatatlanul. Sűrűségfüggvénye: a ξ adateloszlását, sűrűségét jellemző folytonos függvény. Jelölése: f() Eloszlásfüggvénye: F() P(ξ < ) és értékkészlete a [0, ] között ntervallum. Grafkonja folytonos: görbe A sűrűségfv. "görbe alatt területét" egy [-, ] ntervallumban az eloszlásfv. adja meg. F ( ) f ( ) d A sűrűségfüggvény tulajdonsága, hogy értéke 0 (hszen a valószínűség nem lehet negatív értékű), a függvény görbe alatt területe l. f() Infleós pont Π 34, % 34, % 3,6 % 3,6 %, %, % 0, % 0, % µ-3σ µ-σ µ-σ µ µ+σ µ+σ µ+3σ ormáleloszlás sűrűségfüggvénye 38

Sűrűségfüggvénye f e σ π ( µ ) σ ( ) ormáleloszlás eloszlásfüggvénye.000.96; 0.975 0.900 0.800 0.700 0.600 0.500 0; 0.500 0.400 0.300 0.00 0.00 -.96; 0.05 0.000-4 - 0 4 39

Eloszlásfüggvénye F ) e ( µ ) σ ( σ π d 3.3.. Valószínűség változók várható értéke és szórása Várható érték (M(ξ)): az a szám, amely körül megfgyelt értékenek átlaga ngadozk. Dszkrét esetben: M ( ξ ) n k p k k Folytonos esetben: M (ξ ) f ( ) d Szórás (D(ξ )): a ξ várható értékétől való átlagos eltérését jellemz. égyzete a varanca: V(ξ) D (ξ) 40

A szórásnégyzet: Var(ξ) D (ξ) M[(ξ M(ξ)] M(ξ ) M (ξ) Dszkrét esetben: Var(ξ) D (ξ) n k pk k n pk k k Folytonos esetben: ) D( ξ ) f( ) d( f( ) d 3.4. Eloszlások 3.4.. evezetes dszkrét eloszlások 3.4...Bnomáls eloszlás Végezzünk el egy kísérletet n szer egymástól függetlenül. A kísérlet során egy A esemény bekövetkezésének valószínűsége legyen P(A) és az ellentett esemény valószínűsége pedg P( A) q p. A p ről feltesszük, hogy konstans a kísérlet folyamán. A ξ valószínűség változó az A esemény bekövetkezésenek a számát jelent. Ekkor annak valószínűsége, hogy a kísérlet során az A esemény k szor következk be a következő alakban adható meg: p k P(ξ k) n p k k q nk (k 0,,,..., n) A ξ valószínűség változó eloszlását bnomáls eloszlásnak nevezzük, amelynek várható értéke: és szórása: M(ξ) n p D(ξ) n p q 4

3.4...Hpergeometrkus eloszlás Az számú elemből jelöljünk meg M darabot. Random módon vsszatevés nélkül válasszunk k n darabot az számú elemből úgy, hogy teljesüljön a választásra az n M és n M feltétel. Jelölje ξ azoknak a megjelölt elemeknek a számát, amelyek az n kválasztott elemek között előfordulnak. Ekkor ξ értékere az alább valószínűségek adódnak. M M k n k p k P(ξ k) (k 0,,,.., k) n A ξ valószínűség változó eloszlását hpergeometrkus eloszlásnak nevezzük. Az eloszlás várható értéke és szórása: M(ξ) n p D(ξ) n M M n M 3.4..3. egatív bnomáls eloszlás Végezzünk el több egymástól független kísérletsorozatot, amelyben egy A esemény valószínűsége P(A) konstans a kísérlet folyamán és az ellentett esemény valószínűsége a P(A) p. Legyen r egy természetes szám és ξ olyan valószínűség változó, amely ha az A esemény r szer éppen az r+k adk kísérletben következk be az k k+r értéket vesz fel. ylván az ezt megelőző kísérletekben az A esemény r szer, az A esemény k szor következk be. Ekkor annak valószínűsége, hogy az A esemény a k+r kísérletsorozatban r szer következk be. k + r p k P(ξ k ) p r r ( p) k (k 0,,,...) A ξ eloszlását r ed rendű negatív bnomáls eloszlásnak nevezzük. Az eloszlás várható értéke és szórása: 4

M(ξ) r p D(ξ) r( p) p 3.4..4. Posson eloszlás A p k P(ξ k) λ k k! e λ (k 0,,,...) eloszlást a ξ valószínűség változó Posson eloszlásának nevezzük, ahol λ>0 egy tetszőleges valós szám. Posson eloszlást követnek pl. adott dő alatt lejátszódó események száma, baktérumok, sejtek száma.egy adott téfogatban, balesetek száma egy dőntervallumban, stb. A Posson eloszlás és a bnomáls eloszlás között szoros a kapcsolat. Ha a bnomáls eloszlásban n nagy és a vzsgált esemény valószínűsége a p értéke 0 hoz közel érték (az n p szorzat értéke < 5), lyenkor a λ n p választással a bnomáls eloszlás jól közelíthető a Posson eloszlással: n k p k q nk k λ k! e A Posson eloszlás várható értéke és szórása: M(ξ) λ λ D(ξ) λ 43

3.4.. evezetes folytonos eloszlások 3.4... Egyenletes eloszlás Az egyenletes eloszlás sűrűségfüggvénye: 0 ha a f() ha a < b b a 0 ha > b Eloszlásfüggvénye: F() P(ξ<) 0 a b a ha a ha a < b ha > b A várható érték és szórás: M(ξ) a + b D(ξ) b a 44

Az egyenletes eloszlás eloszlásfüggvénye Az egyenletes eloszlás sűrűségfüggvénye 3.4...Eponencáls eloszlás Az eponencáls eloszlás sűrűségfüggvénye: 0 ha 0 f() λe λ ha > 0 ahol >0 tetszőleges poztív szám. Az eponencáls eloszlásfüggvény alakja A várható érték és szórás: F() P(ξ<) 0 ha 0 λ e ha > 0 M(ξ) λ D(ξ) λ 45

Eponencáls eloszlás Az eponencáls eloszlás sűrűségfüggvénye: Eponencáls eloszlás A valószínűség változót paraméterű eponencáls eloszlásúnaknevezzük, ha eloszlásfüggvénye: ahol rögzített Az eponencáls eloszlásfüggvény Az eponencáls eloszlás általánosított alakja a Webull eloszlás, amelynek sűrűségfüggvénye (c > 0 és α > 0 állandók): 46

f() c α 0 α e c α ha ha 0 > 0 Eloszlásfüggvénye: e F() 0 c α ha 0 ha < 0 A Webull eloszlás egyk sajátságos felhasználás területe a gyógyszerknetka vzsgálatok. 3.4..3.Gamma eloszlás A ξ valószínűség változó λ paraméterű, Γ edrendű λ eloszlás sűrűségfüggvénye az alább formában adható meg: f() p p λ Γ( p) 0 e λ ahol λ>0 és p>0 állandók. Ha p egész szám, akkor: Γ(p) (p )! A várható érték és szórás: ha ha 0 < 0 M(ξ) p λ D(ξ) p λ 47

3.4..4.Béta eloszlás A ξ valószínűség változó (p, q) rendű béta eloszlású, ha sűrűségfüggvénye: f() Γ p + q) Γ( p) Γ( q) 0 ( p q ahol p > 0 és q > 0 állandók. Az eloszlás várható értéke és szórása: M(ξ) ( ) p p + q ha 0 < < egyébként D(ξ) p q p + q p + q + A szabadságfok fogalmát Sr R.A. Fsher vezette be. Egy statsztka szabadságfokát amelyet df el (degrees of freedom) jelölünk a továbbakban, úgy defnáljuk, hogy az mntaszámból levonjuk az adott statsztka kszámításhoz szükséges, az adatokból már meghatározott paraméterek k számát. df k 3.4..5.F eloszlás Legyen az összehasonlítan kívánt két mnta normáls eloszlású, elemszámuk és, az egyes populácók varancája (szórásnégyzete) σ és σ. Az F statsztkát a következőképpen defnáljuk: ahol s és s szabadságfoka: F ( ( s s ) σ ) σ a mntákból számolt korrgált varancák (lásd később). Az eloszlás df és df 48

Az eloszlás sűrűségfüggvénye: f f, f f+ ( ) f K F F + ahol K a df és df szabadságfokoktól függő konstansérték. Az eloszlás görbe alatt területe. Az eloszlás alakja az df és df értékektől függ. f f f Az F eloszlás várható értéke: M ha 3 és szórása D ( + ) ( ) ( 4) (ha 5) F eloszlás f (n-) f (n-) 49

3.4..6. ormáls eloszlás Általános jelölése: (µ, σ). Az eloszlást Gauss-görbének vagy harang görbének s hívjuk. Sűrűségfüggvény f e σ π ( µ ) σ ( ) f() Infleós pont Π 34, % 34, % 3,6 % 3,6 %, %, % 0, % 0, % µ-3σ µ-σ µ-σ µ µ+σ µ+σ µ+3σ ormáls eloszlás tulajdonsága 50

Eloszlásfüggvény F ) e ( µ ) σ ( σ π d ormáleloszlás eloszlásfüggvénye.000.96; 0.975 0.900 0.800 0.700 0.600 0.500 0; 0.500 0.400 0.300 0.00 0.00 -.96; 0.05 0.000-4 - 0 4 5

Standard normáls eloszlás jelölése: (0, ) ϕ() nfleós pont ~ 0,4 Π nfleós pont 34, % 34, % 3,6 % 3,6 %, %, % 0, % 0, % -3 - - 0 3 z Standard normáls eloszlás -µ z σ z a transzformácós képlet, amely segítségével tetszőleges normáls eloszlást standard normáls eloszlásba (egyetlen lyen alak van) transzformálhatunk. 5

Standard normáls eloszlás sűrűségfüggvénye φ( ) e π Standard normáls eloszlás eloszlásfüggvénye Φ ( ) e π d 53

Aszmmetrkus normáls eloszlások: POSITIVELY SKEWED EGATIVELY SKEWED 54

BI-MODAL 3.4..6.. ormáls eloszlás aszmmetra mutató Pearson-féle A mutató: A mérőszám (önmagában a számláló) előjele az aszmmetra rányát mutatja. Bal oldal, jobbra elnyúló aszmmetra esetén A > 0, jobb oldal, balra elnyúló aszmmetra esetén A < 0. Szmmetrkus eloszlás esetén A 0. A mérőszám abszolút értékének nncs határozott felső korlátja, azonban már -nél nagyobb abszolút érték a gyakorlatban rtkán fordul elő és meglehetősen erős aszmmetrára utal. A Mo σ F- mutató: E mutatószám ugyanolyan feltételek mellett ad nulla, poztív és negatív eredményt, mnt az A mutató. Az F mutató lényegesen ksebb értékkel jelz a már nagyfokúnak teknthető aszmmetrát, mnt az A. (Q F (Q 3 3 Me) (Me Q ) Me) + (Me Q ) 55

Kurtoss: a görbe csúcsosságát jellemz. Poztív érték esetén csúcsosabb, negatív érték esetén lapultabb a görbe. Értéke lehetőleg legyen 0 vagy 0 közel. Skewness: a szmmetra tengelytől való eltolás mértékét jellemz. Poztív érték esetén jobbra, negatív érték esetén balra eltolt az eloszlás. Értéke lehetőleg legyen 0 vagy 0 közel. Ha mndkét érték egyszerre 0 vagy 0 közel, akkor az eloszlás normáls. 3.4..7.. Inverz normáls eloszlás (vagy Wald): agyon sok hasonlóságot mutat a normáls eloszláshoz. Balra eltolt eloszlások esetén használatos. 3.4..7. t-eloszlás Az ξ valószínűség változót n szabadság fokú Student-eloszlásúnak (t-eloszlásúnak vagy t n - eloszlásúnak) nevezzük, ha sűrűségfüggvénye: 56

Látható, hogy fent sűrűségfüggvény a 0-ra szmmetrkus: n szabadság fok esetén a Student-eloszlás a (λ, µ0) paraméterű Cauchy-eloszlás. 3.4..8. Lognormáls eloszlás Egy ξvalószínűség változó lognormáls eloszlású, ha a változó logartmusa: ϕ ln ξ normáls eloszlású. Az eloszlás sűrűségfüggvénye: f() e πσ 0 ( ln m) σ ha ha > 0 0 Sűrűségfüggvénye: 57

Az eloszlás várható értéke és szórásnégyzete: M(ξ) e m+ σ D m+ σ σ (ξ) e ( e ) 3.4..9. Érdekes eloszlások 3 dmenzós normáls eloszlás sűrűségfüggvénye 58

z.00 0.33-0.33 4.9.6 -.00 4.9.6 y -.7-5.0-5.0 -.7 z 5.00 8.33-8.33 4.9.6-5.00 4.9.6 y -.7-5.0-5.0 -.7 59

4. Adattípusok A statsztkában egy ξ változó mérésének a skálája olyan osztályozást jelent, amely lehetővé tesz a változón különböző matematka műveletek végrehajtását. A megjelenítés módszerét egyrészt a megfgyelt ξ változó természete (dszkrét vagy folytonos valószínűség változó), lletve a vzsgálat célja határozza meg. Ennek megfelelően a következő négy fontosabb skálatípust különböztetjük meg, megjegyezvén, hogy mnden következő skálatípus örökl a felette lévő művelet tulajdonságat lletve újabbakkal bővülnek: 4.. omnáls skála A legegyszerűbb skálatípus, ahol a mérés eredménye között csak az egyenlőséget és a nem egyenlőséget tudjuk defnáln. A statsztka vzsgálat eredményet osztályokra, kategórákra osztjuk. A nomnáls adatok nem számszerűsíthetőek, és így a legtöbb tárgyalt statsztka művelet nem használható velük kapcsolatban. A skálaértékeket pusztán kódszámoknak tekntjük, amelyek között semmlyen matematka vszonyt nem feltételezünk pl. nem (férf) és nem (nő). A nomnáls skála esetében a skálaérték előfordulásának gyakorsága (modusz) vzsgálható, vagy kontngencatábla s készíthető, azonban sem medán, sem átlag használatának nncs értelme a nomnáls skálánál. ξ -n értelmezhető műveletek:, 4.. Ordnáls skála Az ordnáls (rendezett) adatokról nem csak egyezőségüket állapíthatjuk meg, hanem valamlyen elv szernt sorba s rendezhetjük őket. Az skola osztályzatok tpkus ordnáls skálájú adatok. Megállapítható, hogy egy négyesnél jobb az ötös, de nem mondható, hogy a hármas és a négyes között ugyanakkora a tudáskülönbség, mnt a négyes és az ötös között. Továbbá nem gaz, hogy egy négyes kétszer jobb, mnt egy kettes (sem az, hogy fele annyt tud). Szntén ordnáls pl. a dohányzás mértéke (nem, mérsékelt, erős dohányos). A legtöbb ordnáls skálán mért adatot elvleg arány vagy ntervallum skálán s mérhetnénk, de ezt valamlyen okból nem tesszük (például jegyek helyett a szerzett pontok jobban tükröznék az skola teljesítményt). E skálatípus esetében a medán vzsgálható, az átlag használatának ellenben tt nncs értelme. Ordnáls adatok esetében általában a nem paraméteres statsztkákat kell alkalmaznunk. ξ -n értelmezhető műveletek:,, <, > 4.3. Intervallum skála Az ntervallum skálánál az egyes értékek között különbség azonos, de mvel nncs eleve adott 0 pontjuk, így arányaknak sncs értelme. A számértékek mnd a nagyság szernt vszonyokat 60

megmutatják, mnd az eltérés mértékét meghatározzák, a skálaértékek különbségét tt már értelmezn tudjuk. Legsmertebb ntervallumskála a Celsus-fok skála vagy Fahrenhet skála. Igaz, hogy a 0 C és a C között különbség azonos a 3 C és 34 C között különbséggel. Azonban nem gaz, hogy a 0 C kétszer olyan meleg, mnt az 5 C. Intervallum skálán adjuk meg a dátumokats vagy az IQ értéket s. Az ntervallumskála nullapontjának és egységpontjának a meghatározása s megállapodás kérdése. Itt már számolhatunk átlagot, mvel a nullapont eltolása nem változtatja meg az átlag relatív helyét az átlagolt számok között. ξ -n értelmezhető műveletek:,, <, >, 4.4. Arány skála Az arányskála az ntervallumskála jellemzővel rendelkezk, emellett tartalmaz egy abszolút nullapontot s. Az arányskálára gaz, hogy az értékek arányának jelentése van, például a 6 kgos cukroszacskó kétszer anny tömegű, mnt egy 3 kg-os. Ehhez az kell, hogy legyen a skálának nulla pontja, és ezen nulla pont ne önkényes legyen. Magasságméréseknél a nullapont a 0 magassághoz tartozk, ugyanígy tömegmérésnél a 0 tömeghez. A Kelvn hőmérsékletsálának 0 pontja s adott, nem úgy a Celsus skála 0 pontja, amelyek önkényesen választottak (pl. víz fagyáspontja). A legtöbb mért adatunk aránysálán mért, a legtöbb tt tárgyalt statsztka alkalmazható arányskálára. ξ -n értelmezhető műveletek:,, <, >,, / 5. Adatredukcó Azt az eljárást, amelynek során az adatokból olyan számértékeket (paramétereket), statsztka mutatókat határozunk meg, amelyek az adatok statsztka vselkedését jól jellemzk, statsztka redukcónak nevezzük. Az eljárás révén az adatok jellemzőt egyetlen számértékbe tömörítjük. 5.. Középérték M a középérték: azonos fajta számszerű adatok közös jellemzője. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el az adatok között, azaz 6

mn középérték ma b) Helyzet középérték: tpkus értékek legyenek (az adatok között gyakran forduljon elő). c) Legyenek könnyen meghatározhatók és egyértelműen defnálva. Középérték fajták: Középértékek Számított középértékek Helyzet középértékek Artmetka Harmonkus Módusz Medán átlag: X átlag: Mo Me X h Geometra átlag: Xg Kvadratkus átlag: Xq 5... Számított középértékek 5... Artmetka átlag (Számtan átlag) Az a szám, amelyet az átlagolandó értékek helyébe téve azok összege nem változk + + 3 +... + + + +... + Súlyozott számtan átlag A mért értékek között egyes értékek többször s előfordulnak változó gyakorságokkal. Ebben az esetben a számtan átlag meghatározásának módja 6

f ahol f az egyes értékek gyakorsága és f. f Az artmetka átlag általános formája + + 3 +... + n Megjegyzések: a) Az általánosan elfogadott szokás az átlag értékének megadására, hogy jegyenek száma egy értékkel legyen több, mnt a mért adatok jegyenek száma. b) Az átlagtól való eltérések algebra összege 0 mert a ( ) 0 -kra vonatkozó azonosságokat felhasználva rható ( ) 0 c) Hányzó értékek esetén (ha számuk nem nagy), ha ezeket az értékeket az adatok átlagával helyettesítjük, akkor a helyettesítéssel elkövetett hbák négyzetösszege a mnmáls lesz. d) Ha egy mnta két (vagy több) részmntából állítható elő, akkor a teljes mnta átlagára gaz + ahol és az első mnta, és a másodk mnta nagysága és átlaga, az egyesített mnta nagysága ( + ). e) A számtan átlag out lers (klógó vagy etrém) adatok esetén nem jellemz jól a sokaságot, érzékeny az lyen adatokra. 63

5... Mértan átlag A mértan átlag tulajdonsága, hogyha a megfgyelt értékeket a mértan átlaggal helyettesítjük, akkor szorzatuk az eredet értékek szorzatával egyezk g g g... g g 3... Az,, 3,..., megfgyelt poztív értékek mértan (geometra) átlaga g 3... ahol a produktum jele. A mértan átlagot gyorsabban megkaphatjuk, ha az eredet adatok logartmusának összegét elosztjuk az elemszámmal log g Innen az átlagot az antlogartmus felhasználásával nyerjük g ant log(log g ) A mértan átlag kszámításánál ügyeln kell arra, ha az értékek között az 0 érték s szerepel akkor a szorzat s és a mértan átlag s 0 lesz. Ilyen esetekben a mértan átlag meghatározásának nncs értelme. Súlyozott mértan átlag kszámítása a log g K f f f3 3... f k k formulával történk ahol K f + f + f 3 +... + f k A mértan átlagot akkor célszerű alkalmazn, ha az értékek szorzata 0 nál nagyobb szám és a mért értékek eponencáls eloszlásúak (eponencálsan nőnek vagy csökkennek). 64

65 Etrém adatokra kevésbé érzékeny. A számtan és a mértan átlag vszonyára a következő relácó az gaz g 5...3. Harmonkus átlag Ha az megfgyelt értékek helyébe a harmonkus átlagot tesszük, akkor recprokak összege az eredet értékek recprokanak összegével egyezk + + + + + + + + 3 h h h h h... n... A harmonkus átlag kszámítás formulája h A harmonkus átlag kevésbé érzékeny a szélsőséges értékekre. Az h értéket mnt átlagos túlélés dőt, átlagsebességet, átlagteljesítményt (azonos dőtartamra vonatkozóan) számítjuk. A súlyozott harmonkus átlag meghatározása h f f formula alapján történk. Az h g, és értékek között érvényes a következő összefüggés h g 5...4. égyzetes átlag

Meghatározása q Ha az értékek helyébe az q t tesszük, és vesszük négyzetek összegét, akkor fennáll a következő egyenlőség q A súlyozott négyzetes átlag a következő módon határozható meg q k k f f A négyzetes átlag érzékeny a out lers adatokra. Alkalmazása akkor kerül előtérbe, ha a mért értékek között poztív és negatív értékek egyaránt előfordulnak, de csak az értékek abszolút nagyságát kívánjuk középértékkel jellemezn. Ilyen esetben az előjelek jelentőségétől eltekntünk. Jelentősége az adatok szórásánál lesz. Az q és az értékek között a kapcsolat q Átlagokkal kapcsolatos megjegyzések a) Poztív értékek esetén, a négyfajta átlag vszonyára mndg gaz az alább összefüggés: mn < h q q < Konstans értékek esetén nylván mndegyk átlag azonos. b) A mértan és a harmonkus átlag a nagyon alacsony, a kvadralkus átlag a nagyon magas értékekre érzékeny. c) Használatos az ún. trmmed mean, amkor klógó értékek matt pl. elhagyjuk a mnta alsó és felső 5%-át. 66 ma

5... Helyzet középértékek 5... Módusz A módusz (M o vagy sűrűsödés középpont) a mntában az az érték, amely a leggyakrabban fordul elő. Ha az értékek egyforma gyakorsággal fordulnak elő a mntában, akkor a móduszt nem lehet egyértelműsíten. Elsősorban ntervallum vagy arányskálán mért adatok jellemzésére szolgál, de kvaltatív adatok esetén s használható. Több csúcsú eloszlásnál szntén hasznos az adatok jellemzésére. Folytonos eloszlás esetén (pl. normáls eloszlás) a módusz a görbe mamum értékénél van. Ebben az esetben nem beszélhetünk olyan értékről, amely a leggyakrabban fordul elő az adatok között. Meghatározása az osztályközös gyakorság ntervallumok alapján becsléssel történk. Csoportosított adatok (egyenlő hosszúságú ntervallumok) esetén a módusz meghatározása a formulával történk, ahol 0 Mo : a modáls osztályköz alsó határa 0 Mf + Mf + Mf Mf : a modáls osztályköz és az azt megelőző osztályköz gyakorságának különbsége Mf : a modáls osztályköz és az azt követő osztályköz gyakorságának különbsége h : a modáls osztályköz hossza * h 5... Medán A medán (Me) a nagyság szernt növekvő (csökkenő) sorrendbe rendezett adatok között a középső érték, az az 50%-os metszés pont vagy az adatok felező pontja (. kvartlse), mvel a nálánál ksebb lletve nagyobb értékek gyakorsága azonos. A medán a kugró értékekre nem érzékeny, mvel a szélső értékek nem befolyásolják nagyságát. A medán a számtan közepet pótolja ferde (aszmmetrkus) eloszlásoknál vagy etrém értékek előfordulása esetén. Ordnáls, ntervallum vagy arányskálán mért adatok 67