Bolyai Farkas Országos Fizika Tantárgyverseny 2014 Bolyai Farkas Elméleti Líceum Marosvásárhely X. Osztály. Válaszoljatok a következő kérdésekre:



Hasonló dokumentumok
1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

Feladatlap X. osztály

Fizika minta feladatsor

Hőtan I. főtétele tesztek

1. Feladatok a termodinamika tárgyköréből

Gáztörvények tesztek

Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete

Felvételi, 2017 július -Alapképzés, fizika vizsga-

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

Bor Pál Fizikaverseny, középdöntő 2012/2013. tanév, 8. osztály

Felvételi, 2018 szeptember - Alapképzés, fizika vizsga -

Légköri termodinamika

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A

Belső energia, hőmennyiség, munka Hőtan főtételei

FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása

Hatvani István fizikaverseny Döntő. 1. kategória

(2006. október) Megoldás:

A következő keresztrejtvény minden helyes megoldása 1-1 pontot ér. A megfejtés + 1 pont. Így összesen 15 pontot szerezhetsz a megfejtésért.

= 163, 63V. Felírható az R 2 ellenállásra, hogy: 163,63V. blokk sorosan van kapcsolva a baloldali R 1 -gyel, és tudjuk, hogy

Bor Pál Fizikaverseny Eötvös Loránd Fizikai Társulat Csongrád Megyei Csoport DÖNTŐ április osztály

Termodinamika. Belső energia

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

MŰSZAKI TERMODINAMIKA 1. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat

Méréstechnika. Hőmérséklet mérése

2011/2012 tavaszi félév 2. óra. Tananyag:

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2.

Az Ohm törvény. Ellenállás karakterisztikája. A feszültség és az áramerősség egymással egyenesen arányos, tehát hányadosuk állandó.

Szakmai fizika Gázos feladatok

ÖVEGES JÓZSEF FIZIKAVERSENY

Folyadékok és gázok mechanikája

Termodinamika (Hőtan)

SZÁMÍTÁSOS FELADATOK

3. Gyakorlat Áramlástani feladatok és megoldásuk

Mechanika - Versenyfeladatok

DÖNTŐ április évfolyam

A 2009/2010. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai. I. kategória

A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p

Termodinamika. 1. rész

8. A vezetékek elektromos ellenállása

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3

1. Az egyenes vonalú egyenletes mozgás kísérleti vizsgálata és jellemzői. 2. A gyorsulás

Osztályozó vizsga anyagok. Fizika

XXIII. ÖVEGES JÓZSEF KÁRPÁT-MEDENCEI FIZIKAVERSENY M E G O L D Á S A I ELSŐ FORDULÓ. A TESZTFELADATOK MEGOLDÁSAI (64 pont) 1. H I I I 2.

Szakács Jenő Megyei Fizika Verseny, I. forduló november 14.

Számítási feladatok a 6. fejezethez

EMELT SZINTŰ ÍRÁSBELI VIZSGA

58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Okresné kolo kategórie E Texty úloh v maďarskom jazyku

MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PRÓBAÉRETTSÉGI FELADATSORHOZ 11. ÉVFOLYAM

Elektromos áramerősség

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04.

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra

Digitális tananyag a fizika tanításához

FIZIKA II. Egyenáram. Dr. Seres István

Folyadékok és gázok mechanikája

Termodinamikai bevezető

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből december 8. Hővezetés, hőterjedés sugárzással

FIZIKA. Ma igazán belemelegszünk! (hőtan) Dr. Seres István

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI. Termodinamika. Név: Azonosító: Helyszám: Munkaidő: 80 perc I. 50 II. 50 ÖSSZ.: 100. Javította: Képzési kódja:

58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Okresné kolo kategórie F Texty úloh v maďarskom jazyku

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

FIZIKA ZÁRÓVIZSGA 2015

FIZIKA FELMÉRŐ tanulmányaikat kezdőknek

Hőtan 2. feladatok és megoldások

TestLine - Csefi tesztje-01 Minta feladatsor

Elektromos ellenállás, az áram hatásai, teljesítmény

LY) (1) párhuzamosan, (2) párhuzamosan

Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne:

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, március óra 11. osztály

Országos Szakiskolai Közismereti Tanulmányi Verseny 2008/2009 MATEMATIKA FIZIKA

Elektromos áram, egyenáram

U = 24 V I = 4,8 A. Mind a két mellékágban az ellenállás külön-külön 6 Ω, ezért az áramerősség mindkét mellékágban egyenlő, azaz :...

FIZIKA Tananyag a tehetséges gyerekek oktatásához

Függvények Megoldások

D. Arkhimédész törvénye nyugvó folyadékokra és gázokra is érvényes.

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

3. Az alábbi adatsor egy rugó hosszát ábrázolja a rá ható húzóerő függvényében:

Jedlik Ányos Fizikaverseny 3. (országos) forduló 8. o A feladatlap

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

Hidrosztatika, Hidrodinamika

Oktatási Hivatal FIZIKA. I. kategória. A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny 1. forduló. Javítási-értékelési útmutató

Elektrosztatika Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

ÖVEGES JÓZSEF FIZIKAVERSENY Iskolai forduló

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Hidrosztatika. Folyadékok fizikai tulajdonságai

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2

38. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló március óra A verseny hivatalos támogatói

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Elektromos áram, áramkör

Átírás:

Válaszoljatok a következő kérdésekre: 1. feladat Adott mennyiségű levegőt Q=1050 J hőközléssel p 0 =10 5 Pa állandó nyomáson melegítünk. A kezdeti térfogat V=2l. (γ=7/5). Mennyi a végső térfogat és a kezdeti térfogat aránya? A) 2 B) 2,5 C) 3 D) 3,5 Indoklás: Q=7/2pΔV ΔV=3l V 2 =5l V 2 /V 1 =2,5 2. feladat Egy termodinamikai rendszer az ábrán látható körfolyamatban vesz részt. Az adott körfolyamat során a rendszer által végzett hasznos munka u=p 1 V 1 mértékegységben kifejezve: A) 24u B) 19u C)8u D9 5u Indoklás: A mechanikai munka grafikus értelmezés alapján: L=(5-1)p 1 (5-1)V 1 /2 3. feladat A mellékelt ábrán egy elektromos ellenállás változását ábrázoltuk a hőmérséklet függvényében. Az ellenállás értéke 2000 C o hőmérsékleten egyenlő: A) 120 Ω B) 180 Ω C) 3,22 kω D) 180 kω Indoklás: Az ellenállás lineárisan nő, minden 500 C 0 hőmérsékletnövekedésnek 40 Ω ellenállásnövekedés felel meg. 2000 C 0 -on az ellenállás: 20 Ω+160 Ω=180 Ω 4. feladat Két egyenlő tömegű, de különböző hőmérsékletű testet termikus kapcsolatba hoznak. A két test fajhője között a következő összefüggés van: c 2 =c 1 /3, a kezdeti hőmérsékleteik közti viszony pedig: T 2 =3T 1. A hőegyensúly beállta után a végső hőmérséklet: A) T=2,5T 1 B) T=1,5T 1 C) T=T 1 D) T=0,5T 1 Indoklás: A testek csak egymással cserélnek hőt, ezért Q 1 = - Q 2 1

Tehát: T=(c 1 T 1 +c 2 T 2) /(c 1 +c 2) =1,5T 1 5. feladat Az R 1 =5Ω ellenálláson P 1 = 20W, valamint az R 2 =2Ω ellenálláson P 2 =18W engedhető meg. Mennyi a maximálisan nyerhető teljesítmény, ha a két ellenállást sorosan kapcsoljuk: A) 28W B) 20W C) 18W D) 19W Helyes válasz: A Indoklás: R 1 ellenálláson legfennebb 2A erősségű áram, R 2 -n legfennebb 3A erősségű áram haladhat át. Ha sorosan kapcsoljuk őket, akkor a kisebb áramerősség mehet át rajtuk, azaz 2A. P max =4.7=28W 6. feladat Egy ideális gáz izobár átalakulása során a végzett mechanikai munka 3-szor kisebb, mint a felvett hő. Ha R az egyetemes gázállandó és µ a móltömeg, akkor az izokhór fajhő: A) R/µ A) 3R/2µ C) 2R/µ D) 5R/2µ Indoklás: Izobár átalakulásban: L/Q= C p /R, tehát C p =3R, C v =2R c v =2R/µ 7. feladat Adott tömegű ideális gáz a mellékelt grafikonon látható (p, T) koordinátarendszerben ábrázolt körfolyamatot ír le. A gáz térfogata maximális a következő állapotban: A) 1 A) 2 C) 3 D) 4 Indoklás: A gáz térfogata maximális, ha T/p maximális és p/t minimális. Legkisebb az iránytényezője a 4. ponton áthaladó egyenesnek. 8. feladat Egy ideális gáz (C v =5/2 R) a T=aV 2 egyenlet szerint az 1 állapotból a 2 állapotba megy át. A belső energia változása: U 12 =200 J. Számítsuk ki a végzett mechanikai munkát. A) 40J B) 80J C) 120J D) 200J Helyes válasz: A Indoklás: T=aV 2 és az állapotegyenletből következik, hogy p=áll.v Feltételezve, hogy a kezdeti állapothoz képest k-szor növekedett a nyomás is, a térfogat is ΔU=5(k 2-1)p 1 V 1 /2 és L=(k 2-1)p 1 V 1 /2, tehát L=ΔU/5=40J 9. feladat Ha egy adott gázmennyiség térfogata csökken, akkor a hőmérséklete: A) nő B) csökken C) állandó marad D) nem tudjuk megmondani, hogy nő-e vagy pedig csökken 2

Indoklás: Adott gázmennyiség hőmérsékletét a nyomás és térfogat együttesen határozza meg. 10. feladat A mellékelt ábrán négy azonos ellenállást kötünk össze. Ha az A és B pontokra kapcsoljuk egy áramforrás sarkait, akkor az eredő ellenállás R AB, ha az A és C pontokra kapcsoljuk egy áramforrás sarkait, akkor az ellnállás R AC.. Mennyi az R AB / R AC arány értéke? A) 1 B) 3 C) 4 D) 3/4 Indoklás: A és B pontok között R és 3R van párhuzamosan kötve. R AB =4/3R A és C pontok között2r és 2R van párhuzamosan kötve. R AC =R. Tehát R AB /R AC =3/4 11. feladat Egy egyszerű áramkör egy áramforrást és egy változtatható ellenállású fogyasztót tartalmaz. Ha a fogyasztó ellenállását növeljük, akkor: A) az áramerőség nő és a kapocsfeszültség is nő B) az áramerősség csökken és a kapocsfeszültség is csökken C) az áramerősség csökken, a kapocsfeszültség nő D) az áramerősség nő, a kapocsfeszültség csökken Indoklás: I=E/(R+r), ha R nő, I csökken U/E= R/(R+r). Ha R nő, U is nő. 12. feladat A mellékelt ábrán lévő áramköri kapcsolást három R ellenállású fogyasztó alkotja. Az A és B pontok között az eredő ellenállás: A) 3R B) R/3 C) 2R/3 D) R Indoklás: az ábrán a három ellenállás párhuzamosan van kötve, tehát eredő ellenállásuk R/3 13. feladat Egy dugattyúval elzárt tartályban 0,2 m 3 100 C-os telített vízgőz van. A gőz sűrűsége 0,6 kg/m 3. A dugattyút lassan benyomva a tartály térfogatát tizedére csökkentjük. Mekkora a lecsapódó víz tömege? A) 12 g B) 54 g C) 108 g D) 120 g Indoklás: Mivel a víz sűrűsége jóval nagyobb, mint a vízgőzé, ezért a lecsapódó víz térfogatát elhanyagoljuk. Annyi gőz csapódik le, amennyivel a tartály térfogata csökkent, vagyis 0,2 m 3. 0,9=0,18 m 3. Ekkora térfogatú gőz tömege: 108 g. 14. feladat. Az ábrán látható függőleges, mindkét végén nyitott cső felső keresztmetszete 20 cm 2 -rel nagyobb, mint az alsó. A csőben 1 mol egyatomos 3

ideális gáz van, melyet két, egyenként 1 kg-os, súrlódás nélkül mozgó dugattyú zár el a külső levegőtől, amelynek nyomása 10 5 Pa. A két dugattyút súlytalannak tekinthető feszes, nyújthatatlan fonál köti össze. A rendszer kezdetben egyensúlyban van. Mennyivel kell felmelegíteni a gázt, hogy a dugattyúk 8 cm-rel mozduljanak el? A) 1,7 K B) 1,8 K C) 1,9 K D) 2,1 K Indoklás: Legyenek a gáz állapotváltozói kezdetben p1, V1 és T1, melegítés után pedig p2, V2 és T2. Mivel kezdetben egyensúly van, ezért a dugattyúkra felfele és lefele ható erők megegyeznek: Ebből a gáz nyomása: Látható, hogy ez csak külső paraméterektől függ, ezért a melegítés során állandó marad. Az egyesített gáztörvény alapján írjuk fel a hőmérsékletkülönbséget: 15. feladat Két egyforma, azonos T hőmérsékletű gömbbel ugyanakkora hőt közlünk. Az egyik gömb (A) hőszigetelő lapon fekszik, a másik gömb (B) hőszigetelő fonálon függ. Melyiknek a hőmérséklete lesz magasabb a hőközlés után? A) T A =T B = T B) T A =T B > T C) T A > T B D) T B > T A Indoklás: A hőtágulás miatt mindkét gömb mérete megnő. A lapon fekvő gömb súlypontja kissé megemelkedik, ennek helyzeti energiája nő, a felfüggesztett gömb súlypontja kissé leereszkedik, ennek helyzeti energiája valamennyit csökken. Az energiamérleg értelmében a helyzeti energia csökkenése hozzájárul a hőmérséklet növekedéséhez. 16. feladat Egy hengerben, melynek térfogata V=5l, m=0,8kg oxigén van, T=320K hőmérsékleten. A gáz térfogata izoterm úton V 2 =4l térfogatra csökken. Számítsátok ki mennyivel változik a gáz sűrűsége. A) 10 kg/m 3 B) 15 kg/m 3 C) 20 kg/m 3 D) 40 kg/m 3 Indoklás: a sűrűség értelmező képletéből: ρ 1 =m/v 1 =160kg/m 3 és ρ 2 =m/v 2 =200kg/m 3 Δρ=40kg/m 3 17. feladat Egy kör alakú homogén vezető, ellenállása R=8Ω. Az A és B pontok a vezetőt AC 1 B és AC 2 B körívekre osztják, amelyek hossza 1/3 arányban van egymással. Egy I=4A áram lép be az A pontban és a B ponton keresztül lép ki. Az A és B pontok közötti potenciálkülönbség: 4

A) 6V B) 7,5V C) 10V D) 12V Helyes válasz: A Indoklás: A vezető két szakaszának ellenállása: R 1 =2Ω és R 2 =6Ω, az eredő ellenállás R=1,5Ω U=IR=6V 18. feladat Egy mérőműszer ellenállása r 0 =9,8Ω és i 0 =0,1A áramerősséget enged áthaladni. Az előtét ellenállás értéke, amelyet a műszerrel sorba kötünk azért, hogy vele feszültséget mérhessünk 30V-ig: A) 4Ω B) 100Ω C) 128,5Ω D) 290,2Ω Indoklás: Az előtét ellenállásra U-I 0 R=29,02V feszültég kell essék, az áthaladó áram erőssége pedig I 0 =0,1A. R e = 29,02V/0,1A=290,2Ω 19. feladat. Legalább hány 10 Ω-os ellenállásra van szükségünk, hogy 6 Ω eredő ellenállást állítsunk elő? A) 2 B) 3 C) 4 D) 6 Indoklás: Tisztán soros kapcsolással az eredő 10 Ω.n, tisztán párhuzamosnál pedig 10 Ω/n, tehát a 6 Ω-ot így nem kaphatjuk meg. 3 ellenállás esetén két vegyes (nem tisztán soros vagy párhuzamos) kapcsolás van: két ellenállást sorosan majd egy harmadikat rájuk párhuzamosan kapcsolva az eredő 20/30 Ω míg kettőt párhuzamosan és a harmadikat hozzájuk sorosan kapcsolva az eredő 15 Ω, vagyis 3 ellenállás nem elég. Néggyel azonban már megoldható, az ábrán látható kapcsolás eredője 6 Ω. 20. feladat A rajzon látható áramkört a következő elemek alkotják: E= 40V elektromotoros feszültségű és r=1ω belső ellenállású áramforrás, R 1 =6Ω és R 2 =12 Ω értékű ellenállások, valamint egy AB huzalellnállást, amelynek l=0,8m hosszú és R=6 Ω ellenállást képviselő szálán a C csúszóértintkező mozog, zárva az áramkört. Mekkora az X=AC vezetőszakasz hossza akkor, amikor az A és C pontok közötti feszültség értéke 15V? A) X=0,2m B) X= 0,3m C) X=0,4m D) X=0,5m Indoklás: U AB =E R x /(R 12 +R x +r), Innen R x =3ohm, tehát X=0,4m 21. feladat Az ábrán látható, egyik végén beforrasztott, S keresztmetszetű, derékszögben kétszer meghajlított cső függőleges síkban helyezkedik el. A cső függőleges részében levő, kezdetben L hosszúságú levegőoszlopot 2L hosszúságú higanyoszlop zárja el. A külső p 0 légnyomás 2L hosszúságú higanyoszlop hidrosztatikai nyomásával egyenlő. Legyen V 0 =LS. Ekkor az elzárt levegő hőmérséklete T 0. A levegőt, amit nagyon lassan melegíteni kezdünk, 5

tekintsük ideális gáznak. A cső vízszintes részének hossza L. I. Adjuk meg p 0 V 0 egységekben, hogy mekkora munkát végez a táguló levegő azon folyamat során, mialatt a higany éppen átfolyik a felső csőbe A)5 p 0 V 0 B) 4p 0 V 0 C) 3 p 0 V 0 D) 2p 0 V 0 II. A levegővel közölt hő hány százaléka növelte a belső energiát? A) 33,33 B) 50 C) 66,66 D) 75 III. Mennyi a levegő hőmérséklete az elzárt levegő hőmérséklete T 0 egységekben, akkor amikor az elzárt levegőoszlop hossza 3L ill. 4L. A) 1,5 T 0 ill. 2 T 0 B) 1,5 T 0 ill. 2,5 T 0 C) 2,25 T 0 ill. 4T 0 D) 2 T 0 ill. 4T 0 Helyes válaszok: I. A II. D III. C Indoklás: I. Az alábbi grafikon ábrázolja a levegő nyomását a térfogat függvényében a levegő tágulása során. A munka grafikus értelmezéséből kiszámítható: L= 1,5 p 0 V 0 + 3,5 p 0 V 0 =5 p 0 V 0 II. ΔU = νr (p 4 V 4 -p 1 V 1 )=15p 0 V 0 Q= L+ νr (p 4 V 4 -p 1 V 1 )=20p 0 V 0 =75% III. A grafikon adataiból: T=PV/ νr képlettel T 3 =2,25 T 0 és T 4 =4T 0 22. feladat 4 darab azonos, egyenként r=2ω belső ellenállású és E=3V elektromotoros feszültségű áramforrást az ábrán látható módon kötünk össze. Az összekötő vezetékek ellenállása elhanyagolható. I. Mekkora az R= 5Ω ellenálláson áthaladó áram erőssége? A) 0,53A B) 0,69A C) 1,18A D) 2A II. Mekkora üresjáratban az U AB feszültség értéke? A) 6V B) 4,5V C) 3V D) 0V III. Az alsó ágban található áramforrás polaritását felcseréljük. Ebben az esetben mekkora üresjáratban az U AB feszültség értéke? A) 6V B) 4,5V C) 3V D) 0V Helyes válaszok: I. B II. B III. D Indoklás: I. Kirchoff törvényeit alkalmazva: I=6E/(3r+4R)= 0,69A II. Üresjáratban az áramforrásokon csak az áramforrásokon keresztül záródik az áramkör. Ebben I=E/2r =0,75A erősségű áramfolyik. U AB =V A -V B = 3E-3Ir= 3E/2=4,5V III. Az áramkörben I=E/r áramerősség folyik, ami egyenlő egy áramforrás rövidzári áramerősségével. Az egyes áramforrások sarkain külön-külön is nulla a feszültség, és ugyanannyi 6

A és B között is. Pontozás: 70 pont feladatok 1-5: 1pont feladatok 6-20: 2pont feladatok 21-22: 15pont hivatalból: 5 pont Munkaidő: 2 óra Mindenkinek eredményes versenyzést! 7