3. HÍRADÁSTECHNIKA I. Dr.Varga Péter János
Digitális modulációk 2 A digitális moduláció célja a lehető legtöbb információ átvitele a legkisebb sávszélesség felhasználásával, a legkisebb hibavalószínűséggel. Ellentétben az analóg modulációs eljárásokkal, itt nem feltétel a jelek alakhű átvitele, a digitális üzenet hibaaránya minősíti az átviteli rendszert.
Digitális modulációs technikák 3 Az amplitúdóeltolás-billentyűzés (ASK, Amplitude- ShiftKeying) véges számú amplitúdót használ, és nagyon hasonlít az impulzus-kód modulációhoz. A frekvenciaeltolás-billentyűzés (FSK, frequency- Shift Keying) véges számú frekvenciát használ. A fáziseltolás-billentyűzés (PSK, phase-shiftkeying) véges számú fázist használ.
4 Vivőfrekvenciás digitális modulációs rendszerek ASK FSK PSK AM-DSB A moduláló jel alapsávi Impulzus formálás után
5 Amplitúdó billentyűzés ASK (Amplitude Shift Keying) Amplitúdó billentyűzés esetén a vivő jel szinuszos, a moduláló jel pedig digitális (értékkészlete 0 vagy 1 ). A moduláló jel jelen esetben a vivő jel amplitúdóját változtatja ( kapcsolgatja ). Az így előállított jel (modulált jel) teljesítményszintje folyamatosan ingadozó, mivel a logikai 0 - hoz A0, a logikai 1 -hez pedig A1 amplitudó tartozik. u ASK (t) = A* sin (2 * π* f + φ)
6 Frekvencia billentyűzés FSK (Frequency Shift Keying) Frekvencia billentyűzés esetén a vivő jel szinuszos, a moduláló jel pedig digitális (értékkészlete 0 vagy 1 ). A moduláló jel jelen esetben a vivő jel frekvenciáját (f p ) változtatja, például a logikai 0 -hozf 0, míg a logikai 1 -hezf 1 tartozik. u FSK (t) = A * sin (2 * π * f p + φ), ahol A az FSK jel amplitúdója, f p a vivő jel pillanatnyi frekvenciája (f 0 vagy f 1 ), φpedig a vivőjel kezdőfázisa.
7 Fázis billentyűzés PSK (Phase Shift Keying) Fázis billentyűzés esetén a vivő jel szinuszos, a moduláló jel pedig digitális (értékkészlete 0 vagy 1 ). A moduláló jel jelen esetben a vivő jel fázisát változtatja. u PSK (t) = A * sin (2 * π * fp+ φ) ahol az A a PSK jel amplitúdója, az f a vivő jel frekvenciája, a φpedig a vivőjel pillanatnyi fázisa (φ 0 vagy φ 1... φ n ).
Többszintű fázis billentyűzés (QPSK) 8 PSK egyfrekvenciás hordozó 2 n fázishelyzetbe kódolják. Pl.: n=2 8 fázisú jellel 3 bit kódolható Jel és zaj elválasztása 8 fázisú PSK esetén Tovább nem növelhető így, mert nehéz a fázishelyzetek megállapítása a zaj miatt. Referencia jel szükséges, amihez a pillanatnyi fázishelyzetet viszonyítják.
Többszintű fázis billentyűzés (QPSK) 9 Scatter plot 1 0.8 10 0.6 0.4 2 Zajos csatornán továbbított jel konstellációs ábrája Quadrature 0.2 0-0.2-0.4-0.6-0.8-1 01 11 00 Quadrature 1.5 1 0.5 0-0.5-1 -1-0.5 0 0.5 1 In-Phase -1.5-2 -2-1 0 1 2 In-Phase
Digitális modulációk 10 QAM (quadratura amplitudo modulation) A PSK továbbfejlesztésének tekinthető, bár a jel előállítása és detektálása eltérően történik. 16 állapotú QAM: Fázis és amplitúdó is változik
11 Digitális modulációk
12 4 1024 QAM
13 DVB-C beállítása
14 A jelátvitel fizikai közegei
Történelem 15 A hálózatok fejlődésének kezdetén különféle célorientált hálózatok jöttek létre: távközlő hálózatok műsorelosztó hálózatok adathálózatok Fejlődés integrált hálózatok létrejötte Megvalósult: eszközök szintjén hálózatok szintjén
16
17 T M A
Az átviteli rendszer tervezésekor a 18 legfontosabb szempontok a kívánt adatátviteli sebesség elérése megfelelő távolság áthidalása reflexiómentesség (visszaverődés nélküli rendszer) Minden esetben igyekszünk a reflexió mértékét az egész átviteli frekvenciasávban a lehető legalacsonyabban tartani
19 A jelátvitel fizikai közegei
20 A telekommunikáció elektromágneses spektruma Frekvencia (Hertz) 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 10 13 10 14 10 15 ELF VF VLF LF MF HF VHF UHF SHF EHF Energia, telefon Forgó generátorok Telefon Zenei berendezések Mikrofonok Csavart érpár Rádió Rádió, televízió Elektroncsövek Integrált áramkörök Koaxiális kábel Mikrohullám Radar Mikrohullámú antennák Magnetronok Infravörös Lézerek Irányított rakéták Látható fény Optikai szál AM rádió FM rádió és TV Földi és műholdas mikrohullámú átvitel
21 Réz alapú kábelek
Rézalapú kábelek előnyei 22 Egyszerűbb szerelési technológia Alacsonyabb telepítési költségek Olcsó aktív eszközök Szennyeződésre kevésbé érzékeny csatlakozások Helyes telepítés után megbízható, sokoldalú, költséghatékony
Rézalapú kábelek hátrányai 23 Elektrosztatikus zavarokra érzékeny Mechanikai sérülésekre érzékeny A telepített infrastruktúra gátolhatja a jövőbeni fejlesztési törekvéseinket Hosszú telepítési idő Legnagyobb sebességek csak optimális feltételek mellett érhetők el
Vezetékes átvitel koaxiális kábelen 24 Elektromosan árnyékolt, kevésbé érzékeny az elektromos zajokra Alapsávú 10Base2 50 ohm, 10-100 Mbps, 200 m 10Base5 75 ohm, 10-100 Mbps, 500 m Széles sávú Kábel TV, 75 ohm, digitális átvitelnél 150 Mbps egy kábelen több csatorna, többféle kommunikáció Számítástechnikában ma már új hálózatok építésénél nem alkalmazzák!
25 Vezetékes átvitel koaxiális kábelen
Vezetékes átvitel koaxiális kábelen 26 Homogén hullámimpedancia Egyszerű meghajtó/vevő áramkör Mechanikai sérülésekre érzékeny (pl. megtörés Z 0 megváltozik)
Koaxiális kábelek típusai 27 RG 6 szélessávú TV-s átvitel RG 8, RG 11, RG 58 vékony ethernet RG 58/V a központi ér szilárd részből RG 58 A/V a központi ér fonott részből RG 59 szélessávú TV-s átvitel RG 59 szélessávú 75 Ω 50Ω 50Ω 50Ω 75 Ω 50 Ω
28 Koaxiális kábelek típusai
29 Koaxiális kábel csatlakozók
30 Csavart érpáras átviteli közeg (TP Twisted Pair) Zaj, Zavar Z 0 /2 Z 0 /2 Z 0 /2 Z 0 A zavarvédelmet az érpárok összecsavarása jelenti, valamint a szimmetrikus meghajtás UTP UnshildedTwisted Pair Árnyékolatlan csavart érpár
31 Csavart érpáras átviteli közeg (TP Twisted Pair) CAT - A rendszer komponensek elektronika jellemzőit meghatározó osztályrendszer. A nagyobb kategória jobb jellemzőket jelent CAT 1 - hang átvitel, telefon CAT 2-4 Mbps CAT 3-10 Mbps (10BaseT Ethernet) CAT 4 20 Mbps CAT 5-100 Mbps (100BaseT - Fast Ethernet) CAT 5E - 1 Gbps (1000BaseT - Gigabit Ethernet) CAT 6 1 Gbps nagyobb távolságra, kisebb távolságban 10 Gbps CAT 6a - 100m-ig 10 Gbps CAT 7-100 Gbps, 70 méterig (1200mhz)
32
33 Csavart érpáras átviteli közeg (STP ShildedTwisted Pair) A zavarvédelmet az árnyékolás és az érpárok összecsavarása jelenti. STP Shilded Twisted Pair (Árnyékolt csavart érpár)
34
35 Kábel csatlakozások, csatlakozók
Kábelek fizikai osztályozása 36 Fali (Solid) kábel Fix telepítésre tervezték Rézvezetők tömörek Merev szerkezetű Sokkal jobb elektronikai paraméterek A teljes csatornában maximum 100m hosszban telepíthető
Kábelek fizikai osztályozása 37 Patch (Strainded) kábel Mobil használatra Jobban ellenáll a hajlító igénybevételnek Rézvezetők elemi szálakból sodrottak Gyakori csatlakoztatásra kifejlesztett elemek Puhább, könnyebb Maximum 10m hosszan telepíthető a csatornába
38 Üvegszál alapú kábelek
Üvegszál alapú kábelek előnyei 39 Magas fokú zavarvédettség Óriási távolságok hidalhatók át Elérhető legmagasabb átviteli sebesség Jövőálló Magas végpont sűrűségben telepíthető Csekély fizikai méret és súly
Üvegszál alapú kábelek hátrányai 40 Drága aktív és passzív elemek Drága telepítés A belső vezetőszál érzékeny a fizikai behatásokra A csatlakozás érzékeny a szennyeződésekre
Optikai kábel ötlete 41 A folyadéksugár csapdába ejti a fényt! Ez volt az alapötlet, ami az optikai szál technikai alkalmazásához vezetett.
42
Optikai kábel ötlete 43 Az optikai szál egy olyan hengeres, szigetelt, könnyen hajlítható szál, amely fényt továbbít az üvegmag belsejében, a teljes fényvisszaverődés elve alapján Ahhoz, hogy az optikai jel teljes fényvisszaverődéssel a magban terjedjen tovább, a mag törésmutatójának nagyobbnak kell lennie, mint a héjnak
44 Optikai kábel szerkezete
Kábel típusok 45 SM (SingleMode) 9 mikron mag Hosszú távolságok áthidalására (max 100 km) MM (Multi Mode) 50 mikron mag Rövidebb távolságok áthidalására (max 550 m)
Optikai szál gyártása 46 előforma készítése szál szerkezetének előállítása külső kémiai gőzlecsapatás belső kémiai gőzlecsapatás növesztéses eljárás szálhúzás szál átmérő primer védelem (esetleg festés) kábelgyártás több szál összefogása különböző védelmek kialakítása
Előformakészítése 47 Belső kémiai gőzlecsapatás tisztítás hordozócső készítés mag növesztése (lecsapatása) zsugorítás
Szálhúzás 48 Preform Grafit kemence Vezérlő egység Primer védelem Hűtőfolyadék Száldetektor Csévélő dob Feszítő dob
49
Kábelgyártás 50 Dobok a szálakkal SZ sodrat Vazelin Vezérlő egység Pászma növesztése Pászma átmérő detektor
LAN optikai kábelek fajtái 51 1. Single 2. Zipcord 3. Tight-buffered 4. Unitube glass armoured 5. Unitube standard with spl 6. Multitube glass armoured
52 Optikai kábel csatlakozók
53 Strukturált kábelezés
54 Épületek összekötése
55 Függőleges kábelezés
56 Vízszintes kábelezés
57 Szerelési szabályok
58
Forrás 59 Lukács-Mágel-Wührl: Híradástechnika I. (prezentáció) Lukács-Wührl: Híradástechnika I. (könyv)