Határfelületi jelenségek: fluid határfelületek



Hasonló dokumentumok
Határfelületi jelenségek: felületi feszültség koncepció

Határfelületi jelenségek: felületi feszültség koncepció

Határfelületi jelenségek: fluid határfelületek

Határfelületi jelenségek: szétterülés és nedvesítés

Határfelületi jelenségek: szétterülés és nedvesítés

A kolloidika alapjai. 4. Fluid határfelületek

Adszorpció, fluid határfelületeken. Bányai István

Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek. Szőri Milán: Kolloidkémia

FELÜLETI FESZÜLTSÉG. Jelenség: A folyadék szabad felszíne másképp viselkedik, mint a folyadék belseje.

Folyadékok. Molekulák: Gázok Folyadékok Szilárd anyagok. másodrendű kölcsönhatás növekszik. cseppfolyósíthatók hűtéssel és/vagy nyomással

Hidrosztatika, Hidrodinamika

6. Oldatok felületi feszültségének meghatározása. Előkészítő előadás

Többkomponensű rendszerek. Diszperz rendszerek. Kolloid rendszerek tulajdonságai. Folytonos közegben eloszlatott részecskék - diszperz rendszerek

Folyadékok. Molekulák: Gázok Folyadékok Szilárd anyagok. másodrendű kölcsönhatás növekszik. cseppfolyósíthatók hűtéssel és/vagy nyomással

Folyadékok és gázok mechanikája

Hidrosztatika. Folyadékok fizikai tulajdonságai

Spontaneitás, entrópia

Kész polimerek reakciói. Makromolekulák átalakítása. Makromolekulák átalakítása. Természetes és mesterséges makromolekulák átalakítása cellulóz, PVAc

Határfelületi jelenségek: fluid határfelületek

Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye

Jedlovszky Pál Eszterházy Károly Egyetem, Kémiai és Élelmiszerkémiai Tanszék Tanszék, 3300 Eger, Leányka utca 6

5. Állapotegyenletek : Az ideális gáz állapotegyenlet és a van der Waals állapotegyenlet

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája

Ideális gáz és reális gázok

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27

Spontaneitás, entrópia

Termodinamikai bevezető

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek. N m J 2

Az anyagi rendszer fogalma, csoportosítása

Méréstechnika. Hőmérséklet mérése

Számítógépek és modellezés a kémiai kutatásokban

Tiszta anyagok fázisátmenetei

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )

Biofizika szeminárium. Diffúzió, ozmózis

A nyomás. IV. fejezet Összefoglalás

ZERVES ALAPANYAGOK ISMERETE, DISZPERZ RENDSZEREK KÉSZÍTÉSE

Felületi feszültség és viszkozitás mérése. I. Felületi feszültség mérése. Felületi feszültség mérés és viszkozimetria 2. Fizikai kémia gyakorlat 1

Határfelületi reológia vizsgálata cseppalak analízissel

Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek E A J 2. N m

ozmózis osmosis Egy rendszer termodinamikailag stabilis, ha képződése szabadentalpia csökkenéssel jár, állandó nyomáson és hőmérsékleten.

Művelettan 3 fejezete

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

NEDVESEDÉS (KONTAKT NEDVESEDÉS TANULMÁNYOZÁSA TENZIDOLDATOKKAL)

Általános és szervetlen kémia Laborelıkészítı elıadás I.

Általános Kémia, BMEVESAA101

Kémiai reakciók sebessége

Elektronegativitás. Elektronegativitás

Katalízis. Tungler Antal Emeritus professzor 2017

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI II. Ismerjük fel, hogy többkomponens fázisegyensúlyokban a folyadék fázisnak kitüntetett szerepe van!

Folyadékok és gázok mechanikája

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

Szent István Egyetem FIZIKA. Folyadékok fizikája (Hidrodinamika) Dr. Seres István

Kolloid rendszerek definíciója, osztályozása, jellemzése. Molekuláris kölcsönhatások. Határfelüleleti jelenségek (fluid határfelületek)

Kolloid állapotjelzők. Molekuláris kölcsönhatások. Határfelületi jelenségek: fluid határfelületek

Légköri termodinamika

Altalános Kémia BMEVESAA101 tavasz 2008

Az élethez szükséges elemek

HIDROSZTATIKA, HIDRODINAMIKA

Célkitűzés/témák Fehérje-ligandum kölcsönhatások és a kötődés termodinamikai jellemzése

10.) Milyen alakja van az SF 4 molekulának? Rajzolja le és indokolja! (2 pont) libikóka; indoklás: 1 nemkötő és 4 kötő elektronpár

Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv

Folyadékok és gázok áramlása

5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével

Biológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László

Reológia Mérési technikák

Modellezési esettanulmányok. elosztott paraméterű és hibrid példa

Folyadékok és gázok áramlása

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1995 JAVÍTÁSI ÚTMUTATÓ

Dér András MTA SZBK Biofizikai Intézet

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

NE HABOZZ! KÍSÉRLETEZZ!

5. gy. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL

A kolloidika tárgya, a kolloidok osztályozása rendszerezése. Bányai István

A talajok fizikai tulajdonságai II. Vízgazdálkodási jellemzık Hı- és levegıgazdálkodás

Fluidum-kőzet kölcsönhatás: megváltozik a kőzet és a fluidum összetétele és új egyensúlyi ásványparagenezis jön létre Székyné Fux V k álimetaszo

Diffúzió 2003 március 28

Makroszkópos tulajdonságok, jelenségek, közvetlenül mérhető mennyiségek leírásával foglalkozik (például: P, V, T, összetétel).

Szilárd gáz határfelület. Berka Márta 2009/2010/II

HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA

Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.

5. előadás

Hidrosztatika, Hidrodinamika

Szűrés. Gyógyszertechnológiai alapműveletek. Pécsi Tudományegyetem Gyógyszertechnológia és Biofarmáciai Intézet

Határfelületi jelenségek

Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly

Az előadás vázlata: Állapotjelzők: Állapotjelzők: Állapotjelzők: Állapotjelzők: nagy közepes kicsi. Hőmérséklet, T tapasztalat (hideg, meleg).

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27

f = n - F ELTE II. Fizikus 2005/2006 I. félév

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Mivel foglalkozik a hőtan?

PHYWE Fizikai kémia és az anyagok tulajdonságai

Átírás:

Határfelületi jelenségek: fluid határfelületek Dr. Berka Márta 2010/2011/II 3. óra

Határfelületi jelenségek: fluid határfelületek A felület fogalma A felületi feszültség Kontaktszög, nedvesedés, szétterülés Adszorpció Biológiai határfelületek http://www.chem.elte.hu/departments/kolloid/kolloidjegyzet_ver1.0.pdf

A határfelület meghatározása, tipusai Két homogén fázis közötti véges vastagságú réteg, amelyen belül a sajátságok változnak Molekuláris szinten a határfelület vastagsága jelentős, nem nulla. Felületaktiv anyag Fluid határfelületek: G-L, L 1 -L 2 A felületaktív anyag feldúsul a felületen, így ez a sajátság nem monoton változik a határfelületen. Nem-fluid határfelületek : G-S, L-S, S 1 -S 2

Felületi feszültség A felületi molekulákra anizotrop erőtér hat. Egy befelé húzó nettó erő hat, ami annál nagyobb minél nagyobb az aszimmetria. Miután kialakul a minimális felszín a mechanikai egyensúly, az eredő erő nulla, a felszín nagysága nem csökken tovább. Növeléséhez energia kell. Az az erő amely összetartja a felszínt jellemző az anyagra Egységnyi felület szabad entalpiája, J/m 2 dg γ = da npt,, A összehúzó erő minimális nagyságú felület kialakítására törekszik. A felületi feszültség egységnyi új felület kialakulásához szükséges munka izoterm reverzibilis körülmények között, állandó n, p, V mellett tiszta folyadékok esetében. G =γa (tiszta folyadéknál nincsenek egyéb tagok, pl. koncentráció-változás) γ mindig pozitív ezért csak a felület, A, csökkenhet önként ameddig lehet.

Általános definíció: γ=f/2l A felületi feszültség jele γ, az az erő amely egy képzeletbeli, egységnyi hosszú vonal mentén hat, és amely erő parallel a felülettel és merőleges a vonalra, N/m. Ha a gravitációs erő kisebb mint a felületi feszültség akkor a tárgy úszik a felületen (rovar, tű, gyűrű). A felület megnöveléséhez munka kell.

példa A tű hossza 3,2 cm milyen maximum súlyú lehet a kísérlethez, hogy ne süllyedjen el Kérdés: ugyanez a tű megmarad-e az etilalkohol tetején? Mi történik ha függőlegesen ejtem a tűt a vízre? Megoldás: http://scipp.ucsc.edu/~haber/ph5b/bubble.pdf γ viz = 0.073 N/m γ etanol = 0.022 N/m Kb 0.47 g 1 g= 0.0098 N

Walking on Water Water Striders & Surface Tension Distilled Water (Control) 0.001M 0.002M 0.003M 0.004M 0.005M Kérdés: milyen nehéz az molnárka amely kb 1cm hosszan érintkezik a felszínnel és, amely az 0.005M os NaDS oldatban éppen elsüllyed? γ NaDS 0.05 M ~ 0.05 N/m 1 g= 0.0098 N http://www.woodrow.org/teachers/bi/1998/waterstrider/student_lab.html

Felületi feszültség, határfelületi fesz. A felületi feszültés annál nagyobb minél nagyobb a molekulák közötti kohézió (diszperziós kölcsönhatás, hidrogén kötés, aromás jelleg, fémes kötés) A határfelületi feszültség, γ AB általában annál nagyobb, minél nagyobb az aszimmetria a határfelületen, azaz a különbség a folyadékok között (ha nincs rendeződés vagy egyéb kölcsönhatás a határfelületen!). γ A *; γ B * a másik folyadékkal telitett oldat felületi feszültsége. * * γ AB ~ γ A γb

Érdekes? minimális felület, nemcsak gömb lehet A soap film minimizes its area under surface tension, so dipping a wire frame into soapy water produces a minimal surface geometry, as the following example illustrates. The simplest examples of minimal surfaces are the catenoid and helicoid which are illustrated below. Probáljunk ki különböző kereteket,kocka, tetraéder stb A szappan filmek jó példák a minimális illetve a nulla átlagos görbületű felületekre http://epinet.anu.edu.au/mathematics/minimal_surfaces http://www.funsci.com/fun3_en/exper2/exper2.htm

Laplace egyenlet Δ p = 2γ r P F Δ z F γ cosθ = Mechanikai egyensúlyban az eredő erő nulla: + z = 0 r α β P P πr 2πrγ cosθ = 0 A cseppen belüli nyomás nő, ahogyan a sugár csökken? ( ) 2 c ( ) Δ P = P P = c 2 r α β γ rc

Görbült felületek, Laplace nyomás Görbült felületnél a két oldali nyomás különbözik, (ez nem gőznyomás, sík felszínnél nulla) Mindig azon az oldalon nagyobb a nyomás amerre a felület görbül! Folyadék csepphez hasonlóan egy felszín van buborék p 2 >p 1 Δp p 2 >p 1 Szappan buborék p 1 p 2 szappanos víz levegő p 1 levegő p 2 Két felszín van ezért duplázódik 2γ Δ p = levegő 4γ r Δ p = m r m Egyensúlyban a felületi feszültség kompenzálja a nyomáskülönbséget a felszín két oldala között A cseppen belül a belső nyomás nő ahogyan a sugár csökken Δp Kérdés: ha egyforma buborékot fújunk a szappanos vízbe és ugyanabból a levegőbe egyforma lesz-e a belső nyomás?

a gömb sugara mindig pozitív, csak a meniszkusznál lehet negatív is, homorú felszínnél Görbült felületek, kapilláris nyomás Görbült felületnél a két oldali nyomás különbözik Mindig azon az oldalon nagyobb a nyomás amerre a felület görbül! A víz felemelkedik a kapillárisban a higany lesüllyed. A felületi feszültség és nedvesedési sajátságok különböznek. homorú r m < 0 domború r m >0 Ha r m a meniszkusz sugara: ha a folyadékon belül van r m >0, és ha kívül van r m < 0. Δ p = 2γ r m A meniszkusz az adhézió és kohézió arányától függ. Jól nedvesedő felület, nagy adhézió, felkúszik a folyadék. A felületi feszültség egyben tartja a felszínt, és ezért ahelyett, hogy a sarkoknál felkúszna, az egész folyadék felszín felfelé húzódik.

Kapilláris emelkedés vagy süllyedés γ π ρ π 2 2 r k =Δ gh r k 1 γ = Δρghr c 2 Ahol r c a kapillaris sugara (m), r a sűrűség (kg/m 3 ), h a folyadékoszlop magassága, g gravitációs gyorsulás (m/s 2 ) r k, μm h,m 100 0.1 10 1 1 10 0.1 100 Wilhelmy lemez du Noü gyűrű

r k, μm h,m 100 0.1 10 1 1 10 0.1 100 Fa gyökérzet 1 mikronos kapilláris max. 15 m

Görbült felületek feletti gőznyomás Kelvin egyenlet p γv 2 = p RT rm ln r L A folyadék és a gőze egyensúlyban vannak!! r m > 0 akkor p r /p >1 ha r m <0 p r /p <1 Ahol pr, p a gőz nyomása (Pa) az r m görbületű meniszkusz (m) és a sík felület felett, V L moltérfogat (m 3 /mol) A csepp sugara ΔP különböző sugarú vízcseppeknél 1 mm 0.1 mm 1 μm 10 nm ΔP (atm) 0.0014 0.0144 1.436 143.6 Következmények Ostwald-féle izoterm átkristályosodás (Ostwald ripening, durvulás) Túltelítés, másodlagos góchatás fázisképződéskor, kapilláris kondenzáció

A hőmérséklet hatása Eötvös ( Magyar fizikus bevezette a moláris felületi feszültség fogalmát): ( ) γ = 2/3 V ke Tc T 2/3 M E k ( 6) γ V = k T T d 2/3 ( γ ( M / ρ) ) dt = 2.12 10 J( mol ) K 7 2/3 1 Anomáliák! Víz, ecetsav~1 asszociáció Glicerin trisztearát ~6 rendezettseg A hm-el valtozik Számoljunk: ( γ ( ) 2/3 ( ) 2/3 1 M / ρ1 γ2 M / ρ2 ) T T 2 1 V M moláris térfogat, T k kritikus hm. Ramsay-Shields-Eötvös egyenlet http://www.elgi.hu/museum/elatud_.htm#label007 http://www-history.mcs.st-andrews.ac.uk/history/printonly/eotvos.html dγ ds = dt da p T Felületi entrópia mindig nő a hm.-el a felületi feszültség mindig csökken

Kontakt szög, nedvesedés, szétterülés egyensúlyban G L 1 L 2 γ = γ cosθ + γ cosθ 2 12 2 1 1 γ = γ + γ cosθ SG SL GL Miért van az hogy az egyik textília jól felszívja a vizet a másik nem? γ γ + γ SG SL GL A nedvesedés az adhézió és kohézió arányától függ.

Hidrofób, hidrofil felületek http://biodsign.wordpress.com/2008/08/27/lotus-effect-efecto-lotus/ http://www.youtube.com/watch?v=ljtq6dvcbog Az érdesség növeli a peremszöget S Rosszul nedvesedő, θ>90, (Teflon) Jól nedvesedő, θ<90 (θ=0 ) www.metacafe.com/watch/21435/magic_sand/ Impregnálás (beton, bőr, papír, textilia,fa stb.)

Kontakt szög, nedvesedés, szétterülés Amikor az adhéziós erő nagyobb mint a kohéziós akkor, a folyadék hajlamos nedvesíteni a felületet, amikor az adhéziós erő kisebb mint a kohéziós, akkor a folyadék nem hajlandó nedvesíteni a felületet W a -W k

Adhézió, kohézió, szétterülés W a =γ alsó +γ felső -γ határ W k =2γ felső felső fázis S=W a -W k, szétterülési együttható szétterül ha S>0 dg = 12 da TP, Az adhéziós munka két egymással nem elegyedő folyadék között egyenlő az egységnyi felületük szétválasztásához és egyúttal két új, tiszta folyadék-levegő határfelület létrehozásához szükséges munkával. Ábra a) kép A kohéziós munka egy egynemű folyadék esetében az a munka, amely ahhoz szükséges hogy a folyadék egységnyi keresztmetszetét szétválasszuk. Ábra b) kép S helyett σ is jelölik szétterül ha S>0 A szétterülési együttható a felület változásával járó szabad entalpia, ellentétes előjellel vagyis a munkavégzés S S=γ alsó -(γ felső +γ határ )

γ SG < γ SL Szétterülés S=γ alsó -(γ felső +γ határ ) γ SG γ γ SL + GL γ SG > γ SL http://www.boussey-control.com/en/surface-tension/measure-methods.htm

Szétterülés S 12 dg = da TP, szétterül ha S>0 S kezdeti =72.8-(24.8+6.8)=41.2 mj/m 2 S egyensulyi =28.5-(24.8+6.8)= -2.9 mj/m2

Hidrofób felületek C Polydimethylsiloxane PDMS. H Si O inert, non-toxic and non-flammable. As a food additive, it has the E number E900 and is used as an anti-foaming agent Polysiloxanes is hydrophobic and is good water repellant, as well as being slippery so other substances will not stick to it either. Also, since it is permeable to gases while being impermeable to particles, it is a good protective coating. The bonding is strong and so the polymer can be used as a good adhesive as well. These three applications are also enhanced because of the flexibility of the polymer going on in the application. Anti static, anti fog properties. Polytetrafluoroethylene (PTFE) is a fluoropolymer Teflon is often used to coat non-stick frying pans as it has very low friction and high heat resistance. Teflon Impregnálás (beton, bőr, papír, textilia,fa stb.)

Adszorpció és orientáció a határfelületen Hardy-Harkins elv: A legfolytonosabb átmenet vagy a polaritások kiegyenlítődésének az elve.

Elegyek felületi feszültsége Nem tökéletesen additív, ami azt mutatja hogy a mólarány a felületen különbözik a közegben lévőtől.

Felületaktivitás és inaktivitás B n+1 /B n ~3 Ugyanolyan hatáshoz kb harmadannyi anyag kell ahogyan a szénatomszám nő Számos szerves poláros oldott anyag csökkenti a víz felületi feszültségét. Ezek hajlamosak felhalmozódni (adszorbeálódni) az oldat felületén és monomolekulás réteget alkotni. A felületaktivitás nő a szénatom számmal (kb. háromszoros)

Felület-inaktivitás Erős elektrolitok, sóoldatok γ = γ 0 ( 1+ kc ) k függ a liotróp sortól, a hidratációval nő ionsugár Li + >Na + >K + >Rb + >Cs + >Fr + Hidratált ionsugár Minél inkább hidratálódik annál jobban elszegényedik a felület az adott anyagból

Monomolekuláris felületi rétegek Gibbs-féle monoréteg képződik a folyadékfázisban jól oldódó, és a határfelületen felhalmozódó vegyületből. Langmuir-Blodgett egyszeres vagy többszörös réteg képezhető egy a folyadék szubfázisban nem oldódó vegyületből szilárd felületre áthelyezve.

Gibbs-féle egyenlet és izoterma A Gibbs adszorpciós egyenlet két formában ismert híg oldatokra: Γ = c dγ RT dc Γ = 1 dγ RT d ln c Γ = A RT Bc 1+ Bc ahol c a koncentráció (mol m -3 ), T (K) az abszolut hm. R (8.314 JK-1 mol- 1), γ (Nm -1 ) a felületi feszültség, és Γ (mol m -2 ) a felületi többlet koncentráció. Következik az egyenletből, hogy Γ pozitív ha dγ/dc negativ, ekkor a felületi feszültség csökken a koncentráció növelésével. (és fordítva) levezetés

Langmuir monoréteg Agnes Pockels - Making History at the Kitchen Sink γ γ < γ 0 A tiszta víz felé mozdul!! γ 0 oldalnyomás π = γ0 γ Ideális gázanalóg filmre π A = kt Expandált folyadékanalóg filmre (van der Waals): ( π π )( ) A A = kt 0 0 A (or φ or σ) egy molekulára jutó felület Miss Pockels, Irving Langmuir es Katharine Blodgett http://cwp.library.ucla.edu/phase2/pockels,_agnes@871234567.html

Π-A görbe mirisztin sav σ m olajsav, elaidinsav

A monoréteg fizikai állapota Két dimenziós monoréteg különböző fizikai állapotokban létezhet: hasonlóan a 3 dimenzióshoz Gáz vagy gőz amelyben a molekulák távol és függetlenül mozognak egymástól Nagy összenyomhatóság (compressibility) Folyadék filmek, kis kompresszibilitás. A kondenzált és szilárd fázisokban a molekulák szorosan illeszkednek és a felület felé irányítódnak.

A monoréteg fizikai állapota

Monoréteg, több réteg, Langmuir-Blodgett filmek Analízis Molekula méret, alak, konformáció, térkitöltés Membrán modellezés Biológiai határfelületek Funkcionális nanorészecskék és filmek antireflexiós tulajdonság (napelemek), fotodegradációs tulajdonság (öntisztitó antibaktericid bevonat: CdS TiO 2 LB rétegek) Víz párolgás ellen A cetyl vagy stearyl alcoholokkat használhatjuk, 50% a párolgás (forró égövi tavak, bányák por) Molekuláris méretű elektronika Kapcsolók, diódák The goal is to produce electronics components as switches, diodes, and transistors using the smallest possible elements: single or very few molecules (other technique self-assembly) Kémiai és biológiai szenzorok Interaction between the target substance and LB film would change the signal from the detection systems

LB transfer on a surface Nem nedvesedő felület Nedvesedő felület nem megy át az LB réteg a hidrofil felületre ha lefele nyomjuk hidrofób felületre átmegy az LB réteg a ha lefele nyomjuk

LB layers Hidrofil felszin Tail-to-tail, head-to-head configuration

LB layers hydrophobic Head-to-tail, tail-to-head configuration Ha az első réteg láb-láb akkor gyenge, ha fej-fej akkor erős. Tipusok: Y HH, TT, X HT, Z TH. Egyszerű horizontálistechnika. Self-assembly later on.