Határfelületi jelenségek: fluid határfelületek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Határfelületi jelenségek: fluid határfelületek"

Átírás

1 Határfelületi jelenségek: fluid határfelületek Dr. Berka Márta 3. óra

2 Határfelületi jelenségek: fluid határfelületek A felület fogalma A felületi feszültség Kontaktszög, nedvesedés, szétterülés Adszorpció Biológiai határfelületek

3 A határfelület meghatározása, tipusai Két homogén fázis közötti véges vastagságú réteg, amelyen belül a sajátságok változnak Molekuláris szinten a határfelület vastagsága jelentős, nem nulla. Felületaktiv anyag Fluid határfelületek: G-L, L 1 -L 2 A felületaktív anyag feldúsul a felületen, így ez a sajátság nem monoton változik a határfelületen. Nem-fluid határfelületek : G-S, L-S, S 1 -S 2

4 Felületi feszültség A felületi molekulákra anizotrop erőtér hat. Egy befelé húzó nettó erő hat, ami annál nagyobb minél nagyobb az aszimmetria. Miután kialakul a minimális felszín a mechanikai egyensúly, az eredő erő nulla, a felszín nagysága nem csökken tovább. Növeléséhez energia kell. Az az erő amely összetartja a felszínt jellemző az anyagra Egységnyi felület szabad entalpiája, J/m 2 dg γ = da npt,, A összehúzó erő minimális nagyságú felület kialakítására törekszik. A felületi feszültség egységnyi új felület kialakulásához szükséges munka izoterm reverzibilis körülmények között, állandó n, p, V mellett tiszta folyadékok esetében. G =γa (tiszta folyadéknál nincsennek egyéb tagok, pl. koncentráció-változás) γ mindig pozitív ezért csak a felület, A, csökkenhet önként ameddig lehet.

5 Általános definíció: γ=f/2l A felületi feszültség jele γ, az az erő amely egy képzeletbeli, egységnyi hosszú vonal mentén hat, és amely erő parallel a felülettel és merőleges a vonalra, N/m. Ha a gravitációs erő kisebb mint a felületi feszültség akkor a tárgy úszik a felületen (rovar, tű, gyűrű). A felület megnöveléséhez munka kell.

6 példa A tű hossza 3,2 cm milyen maximum súlyú lehet a kísérlethez, hogy ne süllyedjen el Kérdés: ugyanez a tű megmarad-e az etilalkohol tetején? Mi történik ha függőlegesen ejtem a tűt a vízre? Megoldás: γ viz = N/m γ etanol = N/m Kb 0.47 g 1 g= N

7 Walking on Water Water Striders & Surface Tension Distilled Water (Control) 0.001M 0.002M 0.003M 0.004M 0.005M Kérdés: milyen nehéz az molnárka amely kb 1cm hosszan érintkezik a felszínnel és, amely az 0.005M os NaDS oldatban éppen elsüllyed? γ NaDS 0.05 M ~ 0.05 N/m 1 g= N

8 Felületi feszültség, határfelületi fesz. A felületi feszültés annál nagyobb minél nagyobb a molekulák közötti kohézió (diszperziós kölcsönhatás, hidrogén kötés, aromás jelleg, fémes kötés) A határfelületi feszültség, γ AB általában annál nagyobb, minél nagyobb az aszimmetria a határfelületen, azaz a különbség a folyadékok között (ha nincs rendeződés vagy egyéb kölcsönhatás a határfelületen!). γ A *; γ B * a másik folyadékkal telitett oldat felületi feszültsége. * * γ AB ~ γ A γb

9 Érdekes? minimális felület, nemcsak gömb lehet A soap film minimizes its area under surface tension, so dipping a wire frame into soapy water produces a minimal surface geometry, as the following example illustrates. The simplest examples of minimal surfaces are the catenoid and helicoid which are illustrated below. Probáljunk ki különböző kereteket,kocka, tetraéder stb A szappan filmek jó példák a minimális illetve a nulla átlagos görbületű felületekre

10 Görbült felületek, Laplace nyomás Görbült felületnél a két oldali nyomás különbözik, (ez nem gőznyomás, sík felszínnél nulla) Mindig azon az oldalon nagyobb a nyomás amerre a felület görbül! Folyadék csepphez hasonlóan egy felszín van buborék p 2 >p 1 Δp p 2 >p 1 Szappan buborék p 1 p 2 szappanos víz levegő p 1 levegő p 2 Két felszín van ezért duplázódik 2γ Δ p = levegő 4γ r Δ p = m r m Egyensúlyban a felületi feszültség kompenzálja a nyomáskülönbséget a felszín két oldala között A cseppen belül a belső nyomás nő ahogyan a sugár csökken Δp Kérdés: ha egyforma buborékot fújunk a szappanos vízbe és ugyanabból a levegőbe egyforma lesz-e a belső nyomás?

11 Surface tension at a curved interface the Laplace equation for a spherical liquid surface: Δ P = 2γ r F Δ P z + F γ z = 0 cosθ = rc r ( α β ) 2 c P P ( πr ) (2 πr ) γ cosθ = 0 c ( ) Δ P = P P = Perimeter=2πr c 2 r α β γ Projected area =πr c 2 r c radius of spherical cup

12 Surface tension at a curved interface Laplace egyenlet görbült felszinre: Δ P = 2γ r Szappan buborék két felszin van, kétszeres nyomás különbséggel tud egyensúlyt tartani

13 a gömb sugara mindig pozitív, csak a meniszkusznál lehet negatív is, homorú felszínnél Görbült felületek, kapilláris nyomás Görbült felületnél a két oldali nyomás különbözik Mindig azon az oldalon nagyobb a nyomás amerre a felület görbül! A víz felemelkedik a kapillárisban a higany lesüllyed. A felületi feszültség és nedvesedési sajátságok különböznek. homorú r m < 0 domború r m >0 Ha r m a meniszkusz sugara: ha a folyadékon belül van r m >0, és ha kívül van r m < 0. Δ p = 2γ r m A meniszkusz az adhézió és kohézió arányától függ. Jól nedvesedő felület, nagy adhézió, felkúszik a folyadék. A felületi feszültség egyben tartja a felszínt, és ezért ahelyett, hogy a sarkoknál felkúszna, az egész folyadék felszín felfelé húzódik.

14 Kapilláris emelkedés vagy süllyedés γ π ρ π 2 2 r k =Δ gh r k 1 γ = Δρghr c 2 Ahol r c a kapillaris sugara (m), r a sűrűség (kg/m 3 ), h a folyadékoszlop magassága, g gravitációs gyorsulás (m/s 2 ) r k, μm h,m Wilhelmy lemez du Noü gyűrű

15 r k, μm h,m

16 Görbült felületek feletti gőznyomás Kelvin egyenlet p γv 2 = p RT rm ln r L A folyadék és a gőze egyensúlyban vannak!! r m > 0 akkor p r /p >1 ha r m <0 p r /p <1 Ahol pr, p a gőz nyomása (Pa) az r m görbületű meniszkusz (m) és a sík felület felett, V L moltérfogat (m 3 /mol) A csepp sugara ΔP különböző sugarú vízcseppeknél 1 mm 0.1 mm 1 μm 10 nm ΔP (atm) Következmények Ostwald-féle izoterm átkristályosodás (Ostwald ripening, durvulás) Túltelítés, másodlagos góchatás fázisképződéskor, kapilláris kondenzáció

17 A hőmérséklet hatása Eötvös ( Magyar fizikus bevezette a moláris felületi feszültség fogalmát): ( ) γ = 2/3 V ke Tc T 2/3 M E k ( 6) γ V = k T T d 2/3 ( γ ( M / ρ) ) dt = J( mol ) K 7 2/3 1 Anomáliák! Víz, ecetsav~1 asszociáció Glicerin trisztearát ~6 rendezettseg A hm-el valtozik Számoljunk: ( γ ( ) 2/3 ( ) 2/3 1 M / ρ1 γ2 M / ρ2 ) T T 2 1 V M moláris térfogat, T k kritikus hm. Ramsay-Shields-Eötvös egyenlet dγ ds = dt da p T Felületi entrópia mindig nő a hm.-el a felületi feszültség mindig csökken

18 Kontakt szög, nedvesedés, szétterülés egyensúlyban G L 1 L 2 γ = γ cosθ + γ cosθ γ = γ + γ cosθ SG SL GL Miért van az hogy az egyik textília jól felszívja a vizet a másik nem? γ γ + γ SG SL GL A nedvesedés az adhézió és kohézió arányától függ.

19 Kontakt szög, nedvesedés, szétterülés egyensulyban γ = γ + γ cosθ SG SL GL Kontakt szög θ Spreading (cos θ<1): γ γ γ SG SL + GL A kontakt szöget definicó szerint a folyadék fázisban mérjük Viz szilárd felületeken: Paraffin wax : 110º. Teflon: 108 º, polyethylene 95º, mica: 7º, gold, glass: 0º, Hg on glass 135º A nedvesedés az adhézió és kohézió viszonyától függ

20 plastic surfaces and pens szétterülés γ SG γ γ SL + GL γ SG < γ SL Nem terül szét, cseppeket ad Szétterül ha kis fel.fesz. folyadékot helyezünk nagy fel.fesz. Felületre. Teszt folyadékok. γ SG > γ SL

21 Hidrofób, hidrofil felületek Az érdesség növeli a peremszöget S Rosszul nedvesedő, θ>90, (Teflon) Jól nedvesedő, θ<90 (θ=0 ) Impregnálás (beton, bőr, papír, textilia,fa stb.)

22 Kontakt szög, nedvesedés, szétterülés Amikor az adhéziós erő nagyobb mint a kohéziós akkor, a folyadék hajlamos nedvesíteni a felületet, amikor az adhéziós erő kisebb mint a kohéziós, akkor a folyadék nem hajlandó nedvesíteni a felületet W a -W k

23 Kontakt szög, nedvesedés, szétterülés Oldthatalan olaj csepp γ = γ cosθ + γ cosθ lencse alakú lesz 2 vékony filmet képez, mutathat interferencia szineket, majd duplex film lesz 3 monoréteget képez, a többlet lencse alakot Olaj csepp a viz tetején S szétterülési együttható (nem entrópia) S=γ lower -(γ upper +γ interfac ) a szétterőlés az adhézió és kohézió viszonyától függ

24 Adhézió, kohézió, szétterülés W a =γ alsó +γ felső -γ határ W k =2γ felső felső fázis S=W a -W k, szétterülési együttható szétterül ha S>0 dg = 12 da TP, Az adhéziós munka két egymással nem elegyedő folyadék között egyenlő az egységnyi felületük szétválasztásához és egyúttal két új, tiszta folyadék-levegő határfelület létrehozásához szükséges munkával. Ábra a) kép A kohéziós munka egy egynemű folyadék esetében az a munka, amely ahhoz szükséges hogy a folyadék egységnyi keresztmetszetét szétválasszuk. Ábra b) kép S helyett σ is jelölik szétterül ha S>0 A szétterülési együttható a felület változásával járó szabad entalpia, ellentétes előjellel vagyis a munkavégzés S S=γ alsó -(γ felső +γ határ )

25 Szétterülés S 12 dg = da TP, szétterül ha S>0 S kezdeti =72.8-( )=41.2 mj/m 2 S egyensulyi =28.5-( )= -2.9 mj/m2

26 Hidrofób felületek C Polydimethylsiloxane PDMS. H Si O inert, non-toxic and non-flammable. As a food additive, it has the E number E900 and is used as an anti-foaming agent Polysiloxanes is hydrophobic and is good water repellant, as well as being slippery so other substances will not stick to it either. Also, since it is permeable to gases while being impermeable to particles, it is a good protective coating. The bonding is strong and so the polymer can be used as a good adhesive as well. These three applications are also enhanced because of the flexibility of the polymer going on in the application. Anti static, anti fog properties. Polytetrafluoroethylene (PTFE) is a fluoropolymer Teflon is often used to coat non-stick frying pans as it has very low friction and high heat resistance. Teflon Impregnálás (beton, bőr, papír, textilia,fa stb.)

27 Adszorpció és orientáció a határfelületen Hardy-Harkins elv: A legfolytonosabb átmenet vagy a polaritások kiegyenlítődésének az elve.

28 Elegyek felületi feszültsége Nem tökéletesen additív, ami azt mutatja hogy a mólarány a felületen különbözik a közegben lévőtől.

29 Felületaktivitás és inaktivitás B n+1 /B n ~3 Ugyanolyan hatáshoz kb harmadannyi anyag kell ahogyan a szénatomszám nő Számos szerves poláros oldott anyag csökkenti a víz felületi feszültségét. Ezek hajlamosak felhalmozódni (adszorbeálódni) az oldat felületén és monomolekulás réteget alkotni. A felületaktivitás nő a szénatom számmal (kb. háromszoros)

30 Felület-inaktivitás Erős elektrolitok, sóoldatok γ = γ 0 ( 1+ kc ) k függ a liotróp sortól, a hidratációval nő ionsugár Li + >Na + >K + >Rb + >Cs + >Fr + Hidratált ionsugár Minél inkább hidratálódik annál jobban elszegényedik a felület az adott anyagból

31 Monomolekuláris felületi rétegek Gibbs-féle monoréteg képződik a folyadékfázisban jól oldódó, és a határfelületen felhalmozódó vegyületből. Langmuir-Blodgett egyszeres vagy többszörös réteg képezhető egy a folyadék szubfázisban nem oldódó vegyületből szilárd felületre áthelyezve.

32 Gibbs-féle egyenlet és izoterma A Gibbs adszorpciós egyenlet két formában ismert híg oldatokra: Γ = c dγ RT dc Γ = 1 dγ RT d ln c Γ = A RT Bc 1+ Bc ahol c a koncentráció (mol m -3 ), T (K) az abszolut hm. R (8.314 JK-1 mol- 1), γ (Nm -1 ) a felületi feszültség, és Γ (mol m -2 ) a felületi többlet koncentráció. Következik az egyenletből, hogy Γ pozitív ha dγ/dc negativ, ekkor a felületi feszültség csökken a koncentráció növelésével. (és fordítva) levezetés

33 Gibbs-féle egyenlet 80 80, mn m -1, mn m -1 γ γ 1 γ c c c, mol dm -3 γ 2 ln c ln c 2 8 ln c, c in mol m 3 c dγ Γ = 1 dγ Γ i = RT dc RT d ln c Meredekség (tg α)

34 Gibbs-féle izoterma Γ = A RT Bc 1+ Bc c c 1 = + Γ Γ BΓ 6.0E E E E E+05 Γ c, mol/m 2 2.5E E E-06 Γ/c, l/m 2 2.0E+05 y = x R 2 = E E E c, mol/l 0.0E c, mol/l 1, m 2 / mol Γ 1 = A A molekula m (vagy σ m, φ m ) 1 molekula rendelkezésére Γ N álló felület A

35 Langmuir monoréteg Agnes Pockels - Making History at the Kitchen Sink γ γ < γ 0 A tiszta víz felé mozdul!! γ 0 oldalnyomás π = γ0 γ Ideális gázanalóg filmre π A = kt Expandált folyadékanalóg filmre (van der Waals): ( π π )( ) A A = kt 0 0 A (or φ or σ) egy molekulára jutó felület Miss Pockels, Irving Langmuir es Katharine Blodgett

36 Π-A görbe mirisztin sav σ m olajsav, elaidinsav

37 A monoréteg fizikai állapota Két dimenziós monoréteg különböző fizikai állapotokban létezhet: hasonlóan a 3 dimenzióshoz Gáz vagy gőz amelyben a molekulák távol és függetlenül mozognak egymástól Nagy összenyomhatóság (compressibility) Folyadék filmek, kis kompresszibilitás. A kondenzált és szilárd fázisokban a molekulák szorosan illeszkednek és a felület felé irányítódnak.

38 A monoréteg fizikai állapota

39 Monoréteg, több réteg, Langmuir-Blodgett filmek Analízis Molekula méret, alak, konformáció, térkitöltés Membrán modellezés Biológiai határfelületek Funkcionális nanorészecskék és filmek antireflexiós tulajdonság (napelemek), fotodegradációs tulajdonság (öntisztitó antibaktericid bevonat: CdS TiO 2 LB rétegek) Víz párolgás ellen A cetyl vagy stearyl alcoholokkat használhatjuk, 50% a párolgás (forró égövi tavak, bányák por) Molekuláris méretű elektronika Kapcsolók, diódák The goal is to produce electronics components as switches, diodes, and transistors using the smallest possible elements: single or very few molecules (other technique self-assembly) Kémiai és biológiai szenzorok Interaction between the target substance and LB film would change the signal from the detection systems

40 LB transfer on a surface Nem nedvesedő felület Nedvesedő felület nem megy át az LB réteg a hidrofil felületre ha lefele nyomjuk hidrofób felületre átmegy az LB réteg a ha lefele nyomjuk

41 LB layers Hidrofil felszin Tail-to-tail, head-to-head configuration

42 LB layers hydrophobic Head-to-tail, tail-to-head configuration Ha az első réteg láb-láb akkor gyenge, ha fej-fej akkor erős. Tipusok: Y HH, TT, X HT, Z TH. Egyszerű horizontálistechnika. Self-assembly later on.

Határfelületi jelenségek: fluid határfelületek

Határfelületi jelenségek: fluid határfelületek Határfelületi jelenségek: fluid határfelületek Dr. Berka Márta 2010/2011/II 3. óra Határfelületi jelenségek: fluid határfelületek A felület fogalma A felületi feszültség Kontaktszög, nedvesedés, szétterülés

Részletesebben

Határfelületi jelenségek: felületi feszültség koncepció

Határfelületi jelenségek: felületi feszültség koncepció Határfelületi jelenségek: felületi feszültség koncepció Bányai István www.kolloid.unideb.hu 3. óra Kolloidok és a határfelület A kolloidméret felé haladva a fajlagos felület rohamosan növekszik Határfelületi

Részletesebben

Határfelületi jelenségek: felületi feszültség koncepció

Határfelületi jelenségek: felületi feszültség koncepció Határfelületi jelenségek: felületi feszültség koncepció Bányai István www.kolloid.unideb.hu 3. óra Határfelületi jelenségek: fluid határfelületek A felület fogalma A felületi feszültség Kontaktszög, nedvesedés,

Részletesebben

Határfelületi jelenségek: szétterülés és nedvesítés

Határfelületi jelenségek: szétterülés és nedvesítés Határfelületi jelenségek: szétterülés és nedvesítés Bányai István Kolloid.unideb.hu 1 A felületi feszültség koncepció A felületi feszültség a felület egységnyi vonaldarabjára ható, arra merőleges a és

Részletesebben

Határfelületi jelenségek: szétterülés és nedvesítés

Határfelületi jelenségek: szétterülés és nedvesítés Határfelületi jelenségek: szétterülés és nedvesítés Bányai István Kolloid.unideb.hu 1 A felületi feszültség koncepció A felületi feszültség a felület egységnyi vonaldarabjára ható, arra merőleges a és

Részletesebben

A kolloidika alapjai. 4. Fluid határfelületek

A kolloidika alapjai. 4. Fluid határfelületek A kolloidika alapjai 4. Fluid határfelületek Kolloid rendszerek csoportosítása 1. Folyadék-gáz határfelület Folyadék-gáz határfelület -felületi szabadenergia = felületi feszültség ( [γ] = mn/m = mj/m 2

Részletesebben

Adszorpció, fluid határfelületeken. Bányai István

Adszorpció, fluid határfelületeken. Bányai István Adszorpció, fluid határfelületeken Bányai István 1 A felületi feszültség mérése, de minek? 2 2 r k gh r k 1 ghr c 2 Ahol r c a kapilláris sugara (m), r a sűrűség (kg/m 3 ), h a folyadékoszlop magassága,

Részletesebben

Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek. Szőri Milán: Kolloidkémia

Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek. Szőri Milán: Kolloidkémia Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek 1 Határfelületi rétegek 2 Pavel Jungwirth, Nature, 2011, 474, 168 169. / határfelületi jelenségek

Részletesebben

Folyadékok. Molekulák: Gázok Folyadékok Szilárd anyagok. másodrendű kölcsönhatás növekszik. cseppfolyósíthatók hűtéssel és/vagy nyomással

Folyadékok. Molekulák: Gázok Folyadékok Szilárd anyagok. másodrendű kölcsönhatás növekszik. cseppfolyósíthatók hűtéssel és/vagy nyomással Folyadékok Molekulák: másodrendű kölcsönhatás növekszik Gázok Folyadékok Szilárd anyagok cseppfolyósíthatók hűtéssel és/vagy nyomással Folyadékok Molekulák közti összetartó erők: Másodlagos kötőerők: apoláris

Részletesebben

FELÜLETI FESZÜLTSÉG. Jelenség: A folyadék szabad felszíne másképp viselkedik, mint a folyadék belseje.

FELÜLETI FESZÜLTSÉG. Jelenség: A folyadék szabad felszíne másképp viselkedik, mint a folyadék belseje. Jelenség: A folyadék szabad felszíne másképp iselkedik, mint a folyadék belseje. A felületen leő molekulákra a saját részecskéik onzása csak alulról hat, a felülettel érintkező leegő molekulái által kifejtett

Részletesebben

Határfelületi jelenségek: fluid határfelületek

Határfelületi jelenségek: fluid határfelületek Határfelületi jelenségek: fluid határfelületek Bányai István 3. óra Határfelületi jelenségek: fluid határfelületek A felület fogalma A felületi feszültség Kontaktszög, nedvesedés, szétterülés Adszorpció

Részletesebben

6. Oldatok felületi feszültségének meghatározása. Előkészítő előadás

6. Oldatok felületi feszültségének meghatározása. Előkészítő előadás 6. Oldatok felületi feszültségének meghatározása Előkészítő előadás 2017.02.13. Elméleti áttekintés Felületi feszültség: a szabadentalpia függvény felület szerinti parciális deriváltja. Ez termodinamikai

Részletesebben

Hidrosztatika, Hidrodinamika

Hidrosztatika, Hidrodinamika Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást fejtenek

Részletesebben

Folyadékok. Molekulák: Gázok Folyadékok Szilárd anyagok. másodrendű kölcsönhatás növekszik. cseppfolyósíthatók hűtéssel és/vagy nyomással

Folyadékok. Molekulák: Gázok Folyadékok Szilárd anyagok. másodrendű kölcsönhatás növekszik. cseppfolyósíthatók hűtéssel és/vagy nyomással Folyadékok Molekulák: másodrendű kölcsönhatás növekszik Gázok Folyadékok Szilárd anyagok cseppfolyósíthatók hűtéssel és/vagy nyomással Folyadékok Molekulák közti összetartó erők: Másodlagos kötőerők: apoláris

Részletesebben

Kész polimerek reakciói. Makromolekulák átalakítása. Makromolekulák átalakítása. Természetes és mesterséges makromolekulák átalakítása cellulóz, PVAc

Kész polimerek reakciói. Makromolekulák átalakítása. Makromolekulák átalakítása. Természetes és mesterséges makromolekulák átalakítása cellulóz, PVAc Kész polimerek reakciói 8. hét Természetes és mesterséges makromolekulák átalakítása cellulóz, PVAc szabad funkciós csoportok reakciói bomlási folyamatok Térhálósítási folyamatok A cellulóz szabad alkoholos

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája A folyadékok nyomása A folyadék súlyából származó nyomást hidrosztatikai nyomásnak nevezzük. Függ: egyenesen arányos a folyadék sűrűségével (ρ) egyenesen arányos a folyadékoszlop

Részletesebben

NE HABOZZ! KÍSÉRLETEZZ!

NE HABOZZ! KÍSÉRLETEZZ! NE HABOZZ! KÍSÉRLETEZZ! FOLYADÉKOK FELSZÍNI TULAJDONSÁGAINAK VIZSGÁLATA KICSIKNEK ÉS NAGYOKNAK Országos Fizikatanári Ankét és Eszközbemutató Gödöllő 2017. Ötletbörze Kicsiknek 1. feladat: Rakj három 10

Részletesebben

Spontaneitás, entrópia

Spontaneitás, entrópia Spontaneitás, entrópia 6-1 Spontán folyamat 6-2 Entrópia 6-3 Az entrópia kiszámítása 6-4 Spontán folyamat: a termodinamika második főtétele 6-5 Standard szabadentalpia változás, ΔG 6-6 Szabadentalpia változás

Részletesebben

Többkomponensű rendszerek. Diszperz rendszerek. Kolloid rendszerek tulajdonságai. Folytonos közegben eloszlatott részecskék - diszperz rendszerek

Többkomponensű rendszerek. Diszperz rendszerek. Kolloid rendszerek tulajdonságai. Folytonos közegben eloszlatott részecskék - diszperz rendszerek Többkomponensű rendszerek 7. hét Folytonos közegben eloszlatott részecskék - diszperz rendszerek homogén - kolloid - heterogén rendszerek - a részecskék mérete alapján Diszperz rendszerek Homogén rendszerek

Részletesebben

Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik.

Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik. Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik. Mérése: L huzalkeret folyadékhártya mozgatható huzal F F = L σ két oldala van a hártyának

Részletesebben

Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye

Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye Folyadékok áramlása Folyadékok Folyékony halmazállapot nyíróerő hatására folytonosan deformálódik (folyik) Folyadék Gáz Plazma Talián Csaba Gábor PTE ÁOK, Biofizikai Intézet 2012.09.12. Folyadék Rövidtávú

Részletesebben

Jedlovszky Pál Eszterházy Károly Egyetem, Kémiai és Élelmiszerkémiai Tanszék Tanszék, 3300 Eger, Leányka utca 6

Jedlovszky Pál Eszterházy Károly Egyetem, Kémiai és Élelmiszerkémiai Tanszék Tanszék, 3300 Eger, Leányka utca 6 Jedlovszky Pál Eszterházy Károly Egyetem, Kémiai és Élelmiszerkémiai Tanszék Tanszék, 33 Eger, Leányka utca 6 - Fluid határfelületek modellezésének alapkérdései -Ízelítő a csoportunkban több évtizede folyó

Részletesebben

Spontaneitás, entrópia

Spontaneitás, entrópia Spontaneitás, entrópia 11-1 Spontán és nem spontán folyamat 11-2 Entrópia 11-3 Az entrópia kiszámítása 11-4 Spontán folyamat: a termodinamika második főtétele 11-5 Standard szabadentalpia változás, ΔG

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek

Részletesebben

Számítógépek és modellezés a kémiai kutatásokban

Számítógépek és modellezés a kémiai kutatásokban Számítógépek és modellezés a kémiai kutatásokban Jedlovszky Pál Határfelületek és nanorendszerek laboratóriuma Alkímia ma 214 április 3. VALÓDI RENDSZEREK MODELL- ALKOTÁS MODELL- RENDSZEREK KÍSÉRLETEK

Részletesebben

Hidrosztatika. Folyadékok fizikai tulajdonságai

Hidrosztatika. Folyadékok fizikai tulajdonságai Hidrosztatika A Hidrosztatika a nyugalomban lévő folyadékoknak a szilárd testekre, felületekre gyakorolt hatásával foglalkozik. Tárgyalja a nyugalomban lévő folyadékok nyomásviszonyait, vizsgálja a folyadékba

Részletesebben

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom: 1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:

Részletesebben

Elektronegativitás. Elektronegativitás

Elektronegativitás. Elektronegativitás Általános és szervetlen kémia 3. hét Elektronaffinitás Az az energiaváltozás, ami akkor következik be, ha 1 mól gáz halmazállapotú atomból 1 mól egyszeresen negatív töltésű anion keletkezik. Mértékegysége:

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók

Részletesebben

Ideális gáz és reális gázok

Ideális gáz és reális gázok Ideális gáz és reális gázok Fizikai kémia előadások 1. Turányi Tamás ELTE Kémiai Intézet Állaotjelzők állaotjelző: egy fizikai rendszer makroszkoikus állaotát meghatározó mennyiség egykomonensű gázok állaotjelzői:

Részletesebben

Határfelületi reológia vizsgálata cseppalak analízissel

Határfelületi reológia vizsgálata cseppalak analízissel Határfelületi reológia vizsgálata cseppalak analízissel A reológia alapjai Reológiai folyamatról akkor beszélünk, ha egy anyagra erő hat, mely az anyag (vagy annak egy darabjának) deformációját eredményezi.

Részletesebben

Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek. N m J 2

Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek. N m J 2 Határelületi jelenségek 1. Felületi eszültség Fogorvosi anyagtan izikai alapjai 3. Általános anyagszerkezeti ismeretek Határelületi jelenségek Kiemelt témák: elületi eszültség adhézió nedvesítés ázis ázisdiagramm

Részletesebben

NEDVESEDÉS (KONTAKT NEDVESEDÉS TANULMÁNYOZÁSA TENZIDOLDATOKKAL)

NEDVESEDÉS (KONTAKT NEDVESEDÉS TANULMÁNYOZÁSA TENZIDOLDATOKKAL) NEDVESEDÉS (KONTAKT NEDVESEDÉS TANULMÁNYOZÁSA TENZIDOLDATOKKAL) /Az elméleti számonkérés mindig a gyakorlatok legelején írásos formában történik az előadások idetartozó anyaga, valamint Szekrényesy T.:

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a

Részletesebben

Kémiai reakciók sebessége

Kémiai reakciók sebessége Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását

Részletesebben

ozmózis osmosis Egy rendszer termodinamikailag stabilis, ha képződése szabadentalpia csökkenéssel jár, állandó nyomáson és hőmérsékleten.

ozmózis osmosis Egy rendszer termodinamikailag stabilis, ha képződése szabadentalpia csökkenéssel jár, állandó nyomáson és hőmérsékleten. ozmózis osmosis termodinamikai stabilitás thermodynamic stability kinetikai stabilitás kinetic stability felületaktív anyagok surfactants, surface active materials felületinaktív anyagok surface inactive

Részletesebben

5. Állapotegyenletek : Az ideális gáz állapotegyenlet és a van der Waals állapotegyenlet

5. Állapotegyenletek : Az ideális gáz állapotegyenlet és a van der Waals állapotegyenlet 5. Állapotegyenletek : Az ideális gáz állapotegyenlet és a van der Waals állapotegyenlet Ideális gáz Az ideális gáz állapotegyenlete pv=nrt empírikus állapotegyenlet, a Boyle-Mariotte (pv=konstans) és

Részletesebben

Általános Kémia, BMEVESAA101

Általános Kémia, BMEVESAA101 Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:

Részletesebben

Az anyagi rendszer fogalma, csoportosítása

Az anyagi rendszer fogalma, csoportosítása Az anyagi rendszer fogalma, csoportosítása A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 1 A rendszer fogalma A körülöttünk levő anyagi világot atomok, ionok, molekulák építik

Részletesebben

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens. Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/

Részletesebben

Diffúzió 2003 március 28

Diffúzió 2003 március 28 Diffúzió 3 március 8 Diffúzió: különféle anyagi részecskék (szilárd, folyékony, gáznemű) anyagon belüli helyváltozása. Szilárd anyagban való mozgás Öndiffúzió: a rácsot felépítő saját atomok energiaszint-különbség

Részletesebben

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27 Az egyensúly 6'-1 6'-2 6'-3 6'-4 6'-5 Dinamikus egyensúly Az egyensúlyi állandó Az egyensúlyi állandókkal kapcsolatos összefüggések Az egyensúlyi állandó számértékének jelentősége A reakció hányados, Q:

Részletesebben

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,

Részletesebben

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3 Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy

Részletesebben

Felületi feszültség és viszkozitás mérése. I. Felületi feszültség mérése. Felületi feszültség mérés és viszkozimetria 2. Fizikai kémia gyakorlat 1

Felületi feszültség és viszkozitás mérése. I. Felületi feszültség mérése. Felületi feszültség mérés és viszkozimetria 2. Fizikai kémia gyakorlat 1 Fizikai kémia gyakorlat 1 Felületi feszültség mérés és viszkozimetria 2 I. Felületi feszültség mérése 1. Bevezetés Felületi feszültség és viszkozitás mérése A felületi feszültség fázisok határfelületén

Részletesebben

Termodinamikai bevezető

Termodinamikai bevezető Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren

Részletesebben

Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek E A J 2. N m

Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek E A J 2. N m Határelületi jelenségek 1. Felületi eültség Fogorvosi anyagtan izikai alapjai 3. Általános anyagerkezeti ismeretek Határelületi jelenségek Kiemelt témák: elületi eültség adhézió nedvesítés ázis ázisdiagramm

Részletesebben

Altalános Kémia BMEVESAA101 tavasz 2008

Altalános Kémia BMEVESAA101 tavasz 2008 Folyadékok és szilárd anayagok 3-1 Intermolekuláris erők, folyadékok tulajdonságai 3-2 Folyadékok gőztenziója 3-3 Szilárd anyagok néhány tulajdonsága 3-4 Fázisdiagram 3-5 Van der Waals kölcsönhatások 3-6

Részletesebben

Kolloid állapotjelzők. Molekuláris kölcsönhatások. Határfelületi jelenségek: fluid határfelületek

Kolloid állapotjelzők. Molekuláris kölcsönhatások. Határfelületi jelenségek: fluid határfelületek Kolloid állapotjelzők. Molekuláris kölcsönhatások. Határfelületi jelenségek: fluid határfelületek Dr. Berka Márta Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék http://dragon.unideb.hu/~kolloid/

Részletesebben

10.) Milyen alakja van az SF 4 molekulának? Rajzolja le és indokolja! (2 pont) libikóka; indoklás: 1 nemkötő és 4 kötő elektronpár

10.) Milyen alakja van az SF 4 molekulának? Rajzolja le és indokolja! (2 pont) libikóka; indoklás: 1 nemkötő és 4 kötő elektronpár 1.) Írja le az atom definícióját! (2 pont) Kémiai úton tovább nem bontható, pozitív töltésű atommagból és azzal kölcsönhatásban álló egy vagy több negatív töltésű elektronból felépülő részecske, elektromosan

Részletesebben

A nyomás. IV. fejezet Összefoglalás

A nyomás. IV. fejezet Összefoglalás A nyomás IV. fejezet Összefoglalás Mit nevezünk nyomott felületnek? Amikor a testek egymásra erőhatást gyakorolnak, felületeik egy része egymáshoz nyomódik. Az egymásra erőhatást kifejtő testek érintkező

Részletesebben

Tiszta anyagok fázisátmenetei

Tiszta anyagok fázisátmenetei Tiszta anyagok fázisátenetei Fizikai kéia előadások 4. Turányi Taás ELTE Kéiai Intézet Fázisok DEF egy rendszer hoogén, ha () nincsenek benne akroszkoikus határfelülettel elválasztott részek és () az intenzív

Részletesebben

Méréstechnika. Hőmérséklet mérése

Méréstechnika. Hőmérséklet mérése Méréstechnika Hőmérséklet mérése Hőmérséklet: A hőmérséklet a termikus kölcsönhatáshoz tartozó állapotjelző. A hőmérséklet azt jelzi, hogy egy test hőtartalma milyen szintű. Amennyiben két eltérő hőmérsékletű

Részletesebben

ZERVES ALAPANYAGOK ISMERETE, DISZPERZ RENDSZEREK KÉSZÍTÉSE

ZERVES ALAPANYAGOK ISMERETE, DISZPERZ RENDSZEREK KÉSZÍTÉSE S ZERVES ALAPANYAGOK ISMERETE, DISZPERZ RENDSZEREK KÉSZÍTÉSE TANULÁSIRÁNYÍTÓ Ismételje át a szerves kozmetikai anyagokat: 1. Szerves alapanyagok ismerete szénhidrogének alkoholok (egyértékű és többértékű

Részletesebben

Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv

Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv Fizikai kémia és radiokémia B.Sc. László Krisztina 18-93 klaszlo@mail.bme.hu F ép. I. lépcsőház 1. emelet 135 http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem/kornymern Követelmények: 2+0+1 f - részvétel

Részletesebben

Szent István Egyetem FIZIKA. Folyadékok fizikája (Hidrodinamika) Dr. Seres István

Szent István Egyetem FIZIKA. Folyadékok fizikája (Hidrodinamika) Dr. Seres István Szent István Egyetem (Hidrodinamika) Dr. Seres István Hidrosztatika Ideális folyadékok áramlása Viszkózus folyadékok áramlása Felületi feszültség fft.szie.hu 2 Hidrosztatika Nyomás: p F A Mértékegysége:

Részletesebben

5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével

5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5.1. Átismétlendő anyag 1. Adszorpció (előadás) 2. Langmuir-izoterma (előadás) 3. Spektrofotometria és Lambert Beer-törvény

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o ) Az atom- olvasni 2.1. Az atom felépítése Az atom pozitív töltésű atommagból és negatív töltésű elektronokból áll. Az atom atommagból és elektronburokból álló semleges kémiai részecske. Az atommag pozitív

Részletesebben

Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia

Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában 1 Órarend 2 Kurzussal kapcsolatos emlékeztető Kurzus: Az előadás látogatása ajánlott Gyakorlat

Részletesebben

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI II. Ismerjük fel, hogy többkomponens fázisegyensúlyokban a folyadék fázisnak kitüntetett szerepe van!

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI II. Ismerjük fel, hogy többkomponens fázisegyensúlyokban a folyadék fázisnak kitüntetett szerepe van! TÖKOMPONENS RENDSZEREK FÁZISEGYENSÚLYI II Ismerjük fel hogy többkomonens fázisegyensúlyokban a folyadék fázisnak kitüntetett szeree van! Eddig: egymásban korátlanul oldódó folyadékok folyadék-gz egyensúlyai

Részletesebben

Művelettan 3 fejezete

Művelettan 3 fejezete Művelettan 3 fejezete Impulzusátadás Hőátszármaztatás mechanikai műveletek áramlástani műveletek termikus műveletek aprítás, osztályozás ülepítés, szűrés hűtés, sterilizálás, hőcsere Komponensátadás anyagátadási

Részletesebben

HIDROSZTATIKA, HIDRODINAMIKA

HIDROSZTATIKA, HIDRODINAMIKA HIDROSZTATIKA, HIDRODINAMIKA Hidrosztatika a nyugvó folyadékok fizikájával foglalkozik. Hidrodinamika az áramló folyadékok fizikájával foglalkozik. Folyadékmodell Önálló alakkal nem rendelkeznek. Térfogatuk

Részletesebben

Biofizika szeminárium. Diffúzió, ozmózis

Biofizika szeminárium. Diffúzió, ozmózis Biofizika szeminárium Diffúzió, ozmózis I. DIFFÚZIÓ ORVOSI BIOFIZIKA tankönyv: III./2 fejezet Részecskék mozgása Brown-mozgás Robert Brown o kísérlet: pollenszuszpenzió mikroszkópos vizsgálata o megfigyelés:

Részletesebben

Anyagtudomány. Ötvözetek egyensúlyi diagramjai (állapotábrák)

Anyagtudomány. Ötvözetek egyensúlyi diagramjai (állapotábrák) Anyagtudomány Ötvözetek egyensúlyi diagramjai (állapotábrák) Kétkomponensű fémtani rendszerek fázisai és szövetelemei Folyékony, olvadék fázis Színfém (A, B) Szilárd oldat (α, β) (szubsztitúciós, interstíciós)

Részletesebben

1. Feladatok a termodinamika tárgyköréből

1. Feladatok a termodinamika tárgyköréből . Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással.. Feladat: (HN 9A-5) Egy épület téglafalának mérete: 4 m 0 m és, a fal 5 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi

Részletesebben

Fázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium

Fázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium Fázisátalakulások, avagy az anyag ezer arca Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium Atomoktól a csillagokig, Budapest, 2016. december 8. Fázisátalakulások Csak kondenzált anyag? A kondenzált

Részletesebben

Légköri termodinamika

Légköri termodinamika Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a

Részletesebben

Folyadékok és gázok áramlása

Folyadékok és gázok áramlása Folyadékok és gázok áramlása Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért felmelegedik. A folyadékok

Részletesebben

Az élethez szükséges elemek

Az élethez szükséges elemek Az élethez szükséges elemek 92 elemből kb. 25 szükséges az élethez Szén (C), hidrogén (H), oxigén (O) és nitrogén (N) alkotja az élő szervezetekben előforduló anyag 96%-t A fennmaradó 4% legnagyobb része

Részletesebben

Víz. Az élő anyag szerkezeti egységei. A vízmolekula szerkezete. Olyan mindennapi, hogy fel sem tűnik, milyen különleges

Víz. Az élő anyag szerkezeti egységei. A vízmolekula szerkezete. Olyan mindennapi, hogy fel sem tűnik, milyen különleges Az élő anyag szerkezeti egységei víz nukleinsavak fehérjék membránok Olyan mindennapi, hogy fel sem tűnik, milyen különleges A Föld felszínének 2/3-át borítja Előfordulása az emberi szövetek felépítésében

Részletesebben

HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA

HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA I. Az elektrokémia áttekintése. II. Elektrolitok termodinamikája. A. Elektrolitok jellemzése B. Ionok termodinamikai képződési függvényei C.

Részletesebben

Kolloid rendszerek definíciója, osztályozása, jellemzése. Molekuláris kölcsönhatások. Határfelüleleti jelenségek (fluid határfelületek)

Kolloid rendszerek definíciója, osztályozása, jellemzése. Molekuláris kölcsönhatások. Határfelüleleti jelenségek (fluid határfelületek) Kollod rendszerek defnícója, osztályozása, jellemzése. olekulárs kölcsönhatások. Határfelülelet jelenségek (flud határfelületek) Kollodka helye Bológa Kollodkéma Fzka kéma bokéma Szerves kéma Fzka A kéma

Részletesebben

Folyadékok és gázok áramlása

Folyadékok és gázok áramlása Folyadékok és gázok áramlása Hőkerék készítése házilag Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért

Részletesebben

f = n - F ELTE II. Fizikus 2005/2006 I. félév

f = n - F ELTE II. Fizikus 2005/2006 I. félév ELTE II. Fizikus 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 2. (X. 25) Gibbs féle fázisszabály (0-dik fıtétel alkalmazása) Intenzív állapotothatározók száma közötti összefüggés: A szabad intenzív paraméterek

Részletesebben

5. gy. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL

5. gy. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL 5. gy. VIZES OLDAOK VISZKOZIÁSÁNAK MÉRÉSE OSWALD-FENSKE-FÉLE VISZKOZIMÉERREL A fluid közegek jellemző anyagi tulajdonsága a viszkozitás, mely erősen befolyásolhatja a bennük lejátszódó reakciók sebességét,

Részletesebben

Általános és szervetlen kémia Laborelıkészítı elıadás I.

Általános és szervetlen kémia Laborelıkészítı elıadás I. Általános és szervetlen kémia Laborelıkészítı elıadás I. Halmazállapotok, fázisok Fizikai állapotváltozások (fázisátmenetek), a Gibbs-féle fázisszabály Fizikai módszerek anyagok tisztítására - Szublimáció

Részletesebben

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont 1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat

Részletesebben

Kollár Veronika A biofizika fizikai alapjai

Kollár Veronika A biofizika fizikai alapjai Kollár Veronika A biofizika fizikai alajai 013. 10. 14. Folyadékok alatulajdonságai folyadék: anyag, amely folyni kées térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel

Részletesebben

Szilárd testek rugalmas alakváltozásai Nyú y j ú tás y j Hooke törvény, Hooke törvén E E o Y un un modulus a f eszültség ffeszültség

Szilárd testek rugalmas alakváltozásai Nyú y j ú tás y j Hooke törvény, Hooke törvén E E o Y un un modulus a f eszültség ffeszültség Kontinuumok mechanikája Szabó Gábor egyetemi tanár SZTE Optikai Tanszék Szilárd testek rugalmas alakváltozásai Nyújtás l l = l E F A Hooke törvény, E Young modulus σ = F A σ a feszültség l l l = σ E Szilárd

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2) 2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,

Részletesebben

100 o C víz forrása 212 o F 0 o C víz olvadása 32 o F T F = 9/5 T C Példák: 37 o C (láz) = 98,6 o F 40 o C = 40 o F 20 o C = 68 o F

100 o C víz forrása 212 o F 0 o C víz olvadása 32 o F T F = 9/5 T C Példák: 37 o C (láz) = 98,6 o F 40 o C = 40 o F 20 o C = 68 o F III. HőTAN 1. A HŐMÉSÉKLET ÉS A HŐ Látni fogjuk: a mechanika fogalmai jelennek meg mikroszkópikus szinten 1.1. A hőmérséklet Mindennapi általános tapasztalatunk van. Termikus egyensúly a résztvevők hőmérséklete

Részletesebben

Biológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László

Biológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László Biológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László -Az anyagcsere és a transzportfolyamatok. - Makrotranszport : jelentős anyagmennyiségek transzportja : csöveken, edényeken keresztül : nagyobb

Részletesebben

Reológia Mérési technikák

Reológia Mérési technikák Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test

Részletesebben

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál

Részletesebben

Dér András MTA SZBK Biofizikai Intézet

Dér András MTA SZBK Biofizikai Intézet Hogyan befolyásolja a határfelületi vízréteg szerkezete a fehérjeműködést? Dér András MTA SZBK Biofizikai Intézet Felületi feszültség Geometriai optimalizáció Biológiai érhálózat γ dw da Eötvös mérései

Részletesebben

Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly

Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly Környezeti kémia: A termodinamika főtételei, a kémiai egyensúly Bányai István DE TTK Kolloid- és Környezetkémiai Tanszék 2013.01.11. Környezeti fizikai kémia 1 A fizikai-kémia és környezeti kémia I. A

Részletesebben

Szilárd gáz határfelület. Berka Márta 2009/2010/II

Szilárd gáz határfelület. Berka Márta 2009/2010/II Szilárd gáz határfelület Berka Márta 2009/2010/II 1 Szilárd gáz határfelület Hasonlóság a fluid határfelületekhez, felületi feszültség Különbségek: állandó alak γa, γ F deformáció- feszültség, (aprítási

Részletesebben

Hidrosztatika, Hidrodinamika

Hidrosztatika, Hidrodinamika 0/4/0 Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást

Részletesebben

3. Gyakorlat Áramlástani feladatok és megoldásuk

3. Gyakorlat Áramlástani feladatok és megoldásuk 3 Gyakorlat Áramlástani feladatok és megoldásuk 681 Feladat Adja meg Kelvin és Fahrenheit fokban a T = + 73 = 318 K o K T C, T = 9 5 + 3 = 113Fo F T C 68 Feladat Adja meg Kelvin és Celsius fokban a ( T

Részletesebben

5.1. ábra. Ábra a 36A-2 feladathoz

5.1. ábra. Ábra a 36A-2 feladathoz 5. Gyakorlat 36A-2 Ahogyan a 5. ábrán látható, egy fénysugár 5 o beesési szöggel esik síktükörre és a 3 m távolságban levő skálára verődik vissza. Milyen messzire mozdul el a fényfolt, ha a tükröt 2 o

Részletesebben

Célkitűzés/témák Fehérje-ligandum kölcsönhatások és a kötődés termodinamikai jellemzése

Célkitűzés/témák Fehérje-ligandum kölcsönhatások és a kötődés termodinamikai jellemzése Célkitűzés/témák Fehérje-ligandum kölcsönhatások és a kötődés termodinamikai jellemzése Ferenczy György Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Biokémiai folyamatok - Ligandum-fehérje kötődés

Részletesebben

Katalízis. Tungler Antal Emeritus professzor 2017

Katalízis. Tungler Antal Emeritus professzor 2017 Katalízis Tungler Antal Emeritus professzor 2017 Fontosabb időpontok: sósav oxidáció, Deacon process 1860 kéndioxid oxidáció 1875 ammónia oxidáció 1902 ammónia szintézis 1905-1912 metanol szintézis 1923

Részletesebben

Általános iskola (7-8. évfolyam)

Általános iskola (7-8. évfolyam) Általános iskola (7-8. évfolyam) TÉMAKÖR / Vizsgálat megnevezése Vizsgálat sorszáma Jelleg (T=tanulói; D=demonstrációs; Tg=Tehetséggondozó) ANYAG, KÖLCSÖNHATÁS, ENERGIA, INFORMÁCIÓ Ismerkedés a laboratóriumi

Részletesebben

Modern Fizika Labor. 2. Elemi töltés meghatározása

Modern Fizika Labor. 2. Elemi töltés meghatározása Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely

Részletesebben

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok

Részletesebben

Diffúzió. Diffúzió sebessége: gáz > folyadék > szilárd (kötőerő)

Diffúzió. Diffúzió sebessége: gáz > folyadék > szilárd (kötőerő) Diffúzió Diffúzió - traszportfolyamat (fonon, elektron, atom, ion, hőmennyiség...) Elektromos vezetés (Ohm) töltés áram elektr. potenciál grad. Hővezetés (Fourier) energia áram hőmérséklet különbség Kémiai

Részletesebben

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő

Részletesebben

Mivel foglalkozik a hőtan?

Mivel foglalkozik a hőtan? Hőtan Gáztörvények Mivel foglalkozik a hőtan? A hőtan a rendszerek hőmérsékletével, munkavégzésével, és energiájával foglalkozik. A rendszerek stabilitása áll a fókuszpontjában. Képes megválaszolni a kérdést:

Részletesebben