SZENZOROK ÉS MIKROÁRAMKÖRÖK
|
|
- Erzsébet Orsós
- 9 évvel ezelőtt
- Látták:
Átírás
1 SZENZOROK ÉS MIKROÁRAMKÖRÖK 2. ELŐADÁS: ÉRZÉKELŐK TECHNOLÓGIÁI: SPECIÁLIS ANYAGTÍPUSOK ÉS TECHNOLÓGIÁK 2014/2015 tanév 2. félév 1 2. ELŐADÁS: TECHNOLÓGIÁK ÉS ANYAGOK: ÁTTEKINTÉS 1. Monolit félvezető technológiák 2. Kerámia technológiák 3. Rétegtechnológiák (vékony- és vastagréteg technológiák) 4. Polimer technológiák 5. Száloptikai technológiák 1
2 MIKROTECHNOLÓGIA, MEMS Micro ElectroMecanical Systems MEMS: a 2D IC technológia 3D szerkezetek membránok, felfüggesztett elemek, mozgó alkatrészek, mikrofluidikai alkalmazások: csatornák, üregek, reaktorok stb. Mikromechanika: eljárások és eszközök: döntő többségében eltérnek a hagyományos mechanikai megmunkálásoktól elsősorban száraz ill. nedves kémiai marások és elektrokémiai módszerek de klasszikus eljárások is lehetnek (lézer, v. gyémánttárcsás vágás) jellemző méretek: µm Si kristály vastagsága µm Más anyagok is: GaAs, kvarc, stb. Tömbi- és felületi mikromechanika Si MIKROMECHANIKA A Si alapú (mechanikai) érzékelők előnyös tulajdonságai Jól meghatározott elektromos tulajdonságok mellett rendkívül jó mechanikai tulajdonságok Jelentős méretcsökkenés megvalósítása Tömeggyárthatóság integrálhatóság Si Diamond Steel Al Hardness (Kg/mm 2 ) σ yield (GPa) Young s modulus (GPa) Thermal conductivity (W/cmK)
3 EGYKRISTÁLYOS SZILÍCIUM legtisztább anyag legtökéletesebb egykristály IC gyártás fő alapanyaga (még egy évtizedig biztosan) Si alapú szenzorika IGEN Si alapú fotonika??? Fontosabb adatok: kristályszerkezet: fcc rendszám: 14 atomtömeg: 28,09 tömegsűrűség: 2,328 g/cm 3 atomsűrűség: 5x10 22 cm -3 reatív diel. állandó: 11,9 hővezetés: 1,48 W/cmK adalékolás: p- vagy n-típusú erős adalékoltság (p +, n + ): N d,a >10 17 cm -3 (~0.1 Ωcm) fajlagos ellenállás: 10 kωcm 1 mωcm szeletátmérő: 300 mm (Intel), mm (MTA MFA) Si MIKROMECHANIKA, MEMS A szilícium alapú mikroszerkezetek és érzékelők kialakításának alapját a szilícium anizotropikus maratása jelenti: bizonyos kémiai maratószerek (pl. KOH) az (100) és (110) orientációjú síkokat lényegesen gyorsabban marják, mint az (111) síkokat. Ez teszi lehetővé, hogy az (100) felületi orientációjú szilícium szeletbe különféle, határozott geometriával rendelkező alakzatok marhatók. A szeletet először oxidálják, majd az oxidba ablakot nyitnak fotolitográfia és maratás útján. A szilicium kimarható azon részeken ahol az oxidréteg nem maszkolt. Anizotrópikus maratószer esetén a felületre merőlegesen (100) irányban- a maratás gyors, míg oldalirányban - az (111) irányban - pedig lassú. Így a maszk jellegétől függően V keresztmetszetű árok illetve fordított gúla alakú bemarások alakíthatók ki. A maratás felületre merőleges irányban lelassítható lassan maródó, un. etchstop réteg beépítésével, amely lehet pl. egy erősen adalékolt p réteg. 3
4 MARÁSI SEBESSÉG IRÁNYFÜGGÉSE Si gyémántrács (lapcentrált köbös, fcc) Legegyszerűbb kristálytani síkok Alkáli, lúgos maró (pl. KOH), marási sebesség irányfüggő v(111) << v(100), v(110) (az arány néhány százszoros) MARÁSI SEBESSÉG IRÁNYFÜGGÉSE Si (100) KRISTÁLY 4
5 TÖMBI MIKROMECHANIKA: KOH MARÁS EGYSZERŰBB ALAKZATOK α = arc cos (1/ 3) = 54,74 TÖMBI MIKROMECHANIKA: TIPIKUS ALAKZATOK 5
6 ANIZOTRÓP MARÁS: MARÁSI MÉLYSÉG BEÁLLÍTÁSA Marásmegállító réteg: erős p + adalékolás (B), néhányszor cm -3 Si TÖMBI MEGMUNKÁLÁS: ANIZOTRÓP MARÁS 12 6
7 Si TÖMBI MEGMUNKÁLÁS: ANIZOTRÓP MARÁS 13 Si TÖMBI MEGMUNKÁLÁS: ANIZOTRÓP MARÁS 14 7
8 Si TÖMBI MEGMUNKÁLÁS: ANIZOTRÓP MARÁS The principle commercial Si micromachining tools used today are the well-established wet bulk micromachining and the more recently introduced surface micromachining. A typical structure fashioned in a bulk micromachining process is shown in Figure. This type of piezoresistive membrane structure, a likely base for a pressure sensor or an accelerometer, demonstrated that batch fabrication of miniature components does not need to be limited to integrated circuits (ICs). Despite all the emerging new micromachining options, Si wet bulk micromachining, being the best characterized micromachining tool, remains most popular in industry 15 Si TÖMBI MEGMUNKÁLÁS: ANIZOTRÓP MARÁS A wet bulk micromachining process is used to craft a membrane with piezoresistive elements. Silicon micromachining selectively thins the silicon wafer from a tarting thickness of about 400 µm. A diaphragm having a typical thickness of 20µm or less with precise lateral dimensions and vertical thickness control results. 16 8
9 PRESSURE SENSORS: WAFER PROCESSING piezoresistive (pressure ranges from 0.4 bar up 600 bar) ion implanted piezoresistors double side alignment KOH backside etching for membrane formation ( µm) 17 PRESSURE SENSOR capacitive pressure sensor (10 mbar 1 bar) double side alignment alkaline etching for membrane formation membrane thickness µm counter electrode on anodically bonded Pyrex glass, optional: Si-Si direct wafer bonding 18 9
10 Si FELÜLETI MIKROMEGMUNKÁLÁS poli-si SiO 2 rezgőnyelv (vagy) membrán kialakítása rétegleválasztási és szelektív marási lépések megfelelő sorrendű alkalmazásával Si FELÜLETI MIKROMEGMUNKÁLÁS 10
11 FELÜLETI ÉS TÖMBI MIKROMEGMUNKÁLÁS MIKRO-MOTOR ÉS MIKRO-TÜKÖR Si elektrosztatikus mikromotor (Texas Instruments) Mikro-tükör (Lucent Technologies) 11
12 PIEZOREZISZTÍV NYOMÁSÉRZÉKELŐ Chip: 2,67 x2,67 mm Membrán vastagsága < 25 µm CMOS ÉS MEMS TECHNOLÓGIA Síkbeli (2D) top-down építkezés, szelettechnológia A 90 nm-es CMOS µp technológiában min. 380 egyedi, köztük ábrakialakítási lépés, 8-10 rétegű fémezés, >3 cm 2 chipméret Térbeli (3D) top-down építkezés, szelettechnológia A CMOS technológia lépéseivel kialakított szerkezetekben az ún. segédréteg kioldása után szabadon álló, felfüggesztett hidak, rezgőnyelvek, billenő tükrök, stb. kialakítása 12
13 Si TECHNOLÓGIA Alapanyag: félvezető egykristály (Si) Processzálás: Additív módszerek: vékonyréteg leválasztás PVD, CVD, Ábrakialakítás Módosító eljárások: fotoexpozíció, ionimplantációs adalékolás, termikus műveletek Szubtraktív módszerek: kémiai és fizikai marási lépések, lézeres és mechanikai rétegeltávolítás A fentiek és kombinációik szekvenciális alkalmazása az alapanyag-szeleten: szelettechnológia Si IC TECHNOLÓGIA FŐBB LÉPÉSEI 13
14 CMOS TECHNOLÓGIA VÁZLATA SZENZOROK: FÉLVEZETŐ TECHNOLÓGIÁK Azonos karakterisztikájú elemek olcsó tömeggyártása Kisméretű, kis disszipációjú eszközök Érzékelők integrációja Mikromechanikai és áramköri elemek és funkciók integrálása Elektromos paraméterek erősen hőmérsékletfüggőek A technológia nagy tisztaságot és bonyolult, költséges berendezéseket igényel Számos, az érzékelőkben használt anyag technológiailag nem kompatibilis a félvezetőkkel A szükséges tokozási eljárások drágíthatják az eszközöket 14
15 TECHNOLÓGIÁK ÉS ANYAGOK: 1. Monolit félvezető technológiák 2. Kerámia technológiák 3. Rétegtechnológiák (vékony- és vastagréteg technológiák) 4. Polimer technológiák 5. Száloptikai technológiák KERÁMIÁK Polikristályos kerámiák: összetett szerkezet Pórusok szemcsehatárok különböző fázisok Ezek okozzák a különféle tulajdonságokat 15
16 KERÁMIÁK SZERKEZETE Polikristályos anyagok Kristályos fázisok: különböző összetétel, méret, kristályszerkezet mechanikai és villamos tulajdonságok Üveges fázis: szilárdság, ridegség, átütési szilárdság Gáz fázis: rugalmasság, hőszigetelés A fázisok egymáshoz való viszonya szabályozható az összetétellel és a technológiával KERÁMIATECHNOLÓGIA LÉPÉSEI 1. Homogenizálás: nyersanyagok + víz + kötőanyagok 2. Formázás: pl. gépi formázás, sajtolás, stb. 3. Hőkezelés: szárítás 4. Égetés: az o.p. (K) 80 90%-án, nedvesség, kötőanyag eltávozása, polimorf átalakulás, átkristályosodás, szilárd fázisú reakciók, hőbomlás, tömörödés, zsugorodás 5. Mechanikai utómunkák 16
17 KERÁMIATECHNOLÓGIA FOLYAMATSORA Alapanyagok őrleménye Keverés Szerves vivőanyag Szárítás Formázás Szinterelés (égetés) Ellenőrzés KERÁMIATECHNOLÓGIÁK A SZENZORIKÁBAN Előnyök és hátrányok Diszkrét elemek nagy sorozatban olcsón Sokféle anyag (széles választék) feldolgozható Nem igényel nagytisztaságú munkahelyet Magas hőmérsékletek szükségessége drágító tényező Integrálás nem vagy nehezen realizálható Csak nagy sorozatban gazdaságos Nem kompatibilis, illetve nehezen tehető kompatibilissá más technológiákkal 17
18 TECHNOLÓGIÁK ÉS ANYAGOK: 1. Monolit félvezető technológiák 2. Kerámia technológiák 3. Rétegtechnológiák (vékony- és vastagréteg technológiák) 4. Polimer technológiák 5. Száloptikai technológiák RÉTEGTECHNOLÓGIÁK A rétegtechnológiák két csoportja: a vékonyréteg és a vastagréteg technológia. Ezek az alkalmazott rétegvastagságában, az anyag típusában és a rétegfelvitel technológiájában különböznek egymástól. A rétegleválasztási és litográfiai módszerek egy speciális kombinációja az un. LIGA (Litographie, Galvanoformung, Abformung) technológia, amely lehetővé teszi több száz mikrométer vastag, öntartó, 3 dimenziós elemek kialakítását. Az ideiglenes áldozati réteget is tartalmazó változat az SLIGA technológia. 18
19 RÉTEGTECHNOLÓGIÁK A klasszikus vastag- és vékonyréteg technológia összehasonlítása Vastagrétegek Vékonyrétegek Alapanyagok Tipikus technológiák Kolloid szuszpenziók Szitanyomás, hőkezelés Nagytisztaságú fémek, ötvözetek, vegyületek Vákuumbeli leválasztás, CVD Rétegvastagság µm nm Rétegszerkezet Szinterelt aktív szemcsék kötőanyag mátrixban Polikristáyos, nem teljesen összefüggő VÉKONYRÉTEGEK LEVÁLASZTÁSA Fizikai módszerek (PVD, Physical Vapour Deposition) szilárd forrásból: párologtatás (vákuum) porlasztás (rf, magnetron) MBE (Molecular Beam Epitaxy) Kémiai módszerek elektrolitból: galvanizálás oldatból,szuszpenzióból: lecsapatás, szol-gél technika gázfázisból: CVD (Chemical Vapour Deposition) VPE (Vapour Phase Epitaxy) MOCVD (Metal Organic.) LPCVD (Low pressure ) PECVD (Plasma enhanced ) MWCVD (MicroWave ) PACVD (Photon assisted, néha plasma assisted) ALCVD (Atomic Layer.. ALD(ep..), ALEpitaxy) 19
20 VASTAGRÉTEGEK LEVÁLASZTÁSA Alaptechnológia: szitanyomtatás + hőkezelés CERMET vastagréteg-technológia: szervetlen (üveg, üveg-kerámia, kerámia-fém-üveg) kompozit alapanyagok Relatíve magas beégetési hőmérséklet Polimer vastagréteg-technológia: Polimer bázisú anyagok Relatíve alacsony hőkezelési hőmérsékletek RÉTEGTECHNOLÓGIÁK: ELŐNYÖK ÉS HÁTRÁNYOK Viszonylag olcsó, kissorozatú gyártás is hibridizálhatóak Bizonyosfokú integráció lehetséges Többféle hordozó többféle réteg Igen sokféle anyagú réteg vihető fel Többrétegű szerkezetek Nagybonyolultságú és nagyfokú integráció nem realizálható 20
21 LIGA Rétegleválasztási és litográfiai módszerek speciális kombinációja: Litographie, Galvanoformung, Abformung LIGA Áldozati (sacrificial) réteget is beiktatva SLIGA, ezzel részben szabad, rugalmasan felfüggesztett, illetve teljesen szabad elemek készíthetők. Speciális követelmények: Röntgen sugárforrás (szinkrotron) E > 1 GeV, λ < 0,7 nm Vastag reziszt, tipikusan PMMA (poli-metil-metakrilát) Fő előny: 3D mikrostruktúrák, melyek vastagsága hasonló a tömbi mikromechanikai elemekéhez, de a felületi mikromechanika nagyobb flexibilitása megtartásával. SLIGA TECHNOLÓGIA 1. Az áldozati réteg leválasztása a hordozóra; 2. jól tapadó fém vékonyréteg leválasztása (pl. Ti/Ni); 3. a röntgensugaras litográfiában fotoreziszt funkcióját betöltő műanyag réteg (PMMA) felvitele, felöntés és hőkezeléses polimerizáció útján; 4. röntgenmaszk pozicionálása és megvilágítás nagyenergiájú szinkrotron sugárzással; 5. előhívás után nikkel leválasztása galvanizálással a PMMA rétegben kialakított ablakban; 6. a PMMA és a fém vékonyréteg eltávolítása a maszkolt területekről; 7. végül az áldozati réteg eltávolítása. 21
22 LIGA EXAMPLES 200µm deep structures Coat with thick resist Pattern with X-rays Electroplate exposed area with Ni Machine to +/- 5µm Use titanium and Cu as sacrificial layers TECHNOLÓGIÁK ÉS ANYAGOK: 1. Monolit félvezető technológiák 2. Kerámia technológiák 3. Rétegtechnológiák (vékony- és vastagréteg technológiák) 4. Polimer technológiák 5. Száloptikai technológiák 22
23 POLIMEREK: ALAPFOGALMAK Természetes polimerek: Poliszacharidok (keményítő, cellulóz) Polipeptidek, fehérjék Kaucsuk, gumi Mesterséges polimerek: műanyagok Monomer: építőegység Polimer: főképp szénlánc, különböző oldalágakkal Poli-etilén, PE Poli-propilén, PP Polimer: monomeregységből áll. Homopolimer: egyfajta monomeregységből felépülő makromolekulák Kopolimer: két- vagy többfajta monomeregységeket tartalmazó Poli-vinilklorid, PVC Poli-sztirol, PS A makromolekulák súlya nagy. Egzakt határ nincs, mólsúly felett szokás makromolekulákról beszélni, mert ezen mólsúly érték körül jelennek meg a polimerekre jellemző, minőségileg új tulajdonságok (rugalmasság) VEZETŐ POLIMEREK 23
24 POLIMER RÉTEGEK Mikrotechnológiával kompatibilis leválasztási technológiák Fényérzékeny (UV) polimerek (pl. fotoreziszt): fotolitográfiai felvitel és alakzat kialakítás. Rutin IC technológia, közvetlenül átvihető a szenzorikába is. Szitanyomás és hőkezelés: paszta formájában rendelkezésre álló polimer kompozit anyagok esetén: polimer vastagréteg technológia. Vezető és félvezető polimerek: szintézis vezető felületen monomer oldatokból elektrokémiai polimerizációval. Polimer vékonyrétegek: vákuumban végzett leválasztás a szokásos eljárások valamelyikének megfelelő adaptálásával. ELEKTROKÉMIAI POLIMERIZÁCIÓ Monomer: gyűrűs (aromás) vegyületek Elektrokémiai reakció (elektrokémiai oxidáció): H kiszakítása és a gyűrűk közötti kötés létrejötte. H 24
25 POLIMER VÉKONYRÉTEGEK LEVÁLASZTÁSA Pirolízissel inicializált polimerizáció: szublimáció +pirolízis + kondenzáció/polimerizáció UV-sugárzással segített vákuum polimerizáció Elektronbombázással segített vákuum polimerizáció Vákuumpárologtatás ellenállásfűtésű vagy elektronbombázott polimer forrásból POLIMER VÉKONYRÉTEGEK LEVÁLASZTÁSA RF porlasztás polimer targetből Plazma polimerizáció monomer gázokból vagy gőzökből 25
26 TECHNOLÓGIÁK ÉS ANYAGOK: 1. Monolit félvezető technológiák 2. Kerámia technológiák 3. Rétegtechnológiák (vékony- és vastagréteg technológiák) 4. Polimer technológiák 5. Száloptikai technológiák OPTIKAI SZÁLAK ÉRZÉKELŐKBEN Az optikai (fényvezető) szálas érzékelők működése azon alapul, hogy az érzékelendő paraméter változásait az átvezetett vagy visszavert fényhullám jellemzőinek (intenzitás, polarizáció, fázis, módusösszetétel, frekvencia) megváltozása kíséri. A szilárd, kör-keresztmetszetű fényvezető magot egy kisebb törésmutatójú héj veszi körül. A határfelületükön fellépő teljes visszaverődés biztosítja a fényvezetést a magon belül. 26
27 OPTIKAI SZÁLAK FAJTÁI A fényvezető szálak működésének fizikai alapja a teljes visszaverődés. A szálban a mag törésmutatója nagyobb mint a héj törésmutatója. Többmódusú lépcsős indexű, többmódusú gradiens indexű, és egymódusú lépcsős indexű száltípusok ANYAGOK Csillapítás: függ a szál anyagától, szennyezőktől, szerkezeti hibáktól, stb. Nagytisztaságú anyagokra van szükség. Anyagok: Kvarcüveg Poli-metil-metakrilát (PMMA) Integrált optikai szerkezetekben: Szilícium, vegyület-félvezetők, lítium-niobát (LiNbO 3 ) 27
28 CSILLAPÍTÁS HULLÁMHOSSZFÜGGÉSE a (db/km) 10 UV abszorpció IR abszorpció 1 OH gyök 0.1 I. II. III. Rayleigh szórás λ (nm) Fényvezető szál (olvasztott kvarc, SiO 2 ) csillapítási karakterisztikája. Átviteli ablakok : I. 850 nm, GaAs lézer, II nm, minimális diszperzió, InGaAsP/InP lézer, III nm, minimális csillapítás, InGaAsP/InP lézer. ÜVEGSZÁL ALAPANYAG Tiszta oxidporok SiO 2, GeO 2, B 2 O 2 előállítása (tisztításuk szűréssel, párlással) Olvasztás C között, és rúd formálása Törésmutató (n) módosítása anyagi összetétel változtatásával Tégely platinából, hogy ne szennyezze az üveget SiO 2 tégely inhomogenitást okozhat a szálban, ezért gázzal hűtik a tégelyt, ami egy vékony, szilárd üvegréteget hoz létre 28
29 OPTIKAI ÜVEGSZÁL Két tégely a mag és a héj számára GI szál gyártása C Olvadt üvegbe iondiffúzióval oldják meg a törésmutató változtatását Üvegszál húzása kéttégelyes módszerrel ELŐNYÖK ÉS HÁTRÁNYOK Kis jelcsillapítás és nagy adatkapacitás Kompatibilitás az optikai adatátviteli rendszerekkel Érzéketlen az elektromágneses zavarokra (nem kell árnyékolás, zavarszűrés) Korróziómentesség és biokompatibilitás Flexibilitás fizikai és átvitt értelemben is. A szál már a gyártáskor beépíthető a vizsgálandó szerkezetbe. A kvarc optikai szál ellenáll szélsőséges viszonyoknak is, kb o C-ig sem térfogatát sem súlyát nem változtatja meg. Az érzékelést végző optikai szál beönthető pl. betonba, a fémek egy részébe is Általában drágábbak mint az elektromos vagy elektromechanikus érzékelők. Költségnövelő, hogy a fényszál típusú érzékelőket még nem gyártják nagy sorozatban Nem vagy nehezen biztosítható a mikroelektronikai technológiákkal való kompatibilitás. 29
30 VÉGE (A MÁSODIK ELŐADÁSNAK)
SZENZOROK ÉS MIKROÁRAMKÖRÖK
SZENZOROK ÉS MIKROÁRAMKÖRÖK 2. ELŐADÁS: ÉRZÉKELŐK TECHNOLÓGIÁI: SPECIÁLIS ANYAGTÍPUSOK ÉS TECHNOLÓGIÁK 2015/2016 tanév 2. félév 1 TECHNOLÓGIÁK ÉS ANYAGOK: ÁTTEKINTÉS 1. Monolit félvezető technológiák 2.
MIKROELEKTRONIKAI ÉRZÉKELİK I
MIKROELEKTRONIKAI ÉRZÉKELİK I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet és MTA Mőszaki Fizikai és Anyagtudományi Kutató Intézet 8. ELİADÁS: MECHANIKAI ÉRZÉKELİK I 8. ELİADÁS 1.
MEMS, szenzorok. Tóth Tünde Anyagtudomány MSc
MEMS, szenzorok Tóth Tünde Anyagtudomány MSc 2016. 05. 04. 1 Előadás vázlat MEMS Története Előállítása Szenzorok Nyomásmérők Gyorsulásmérők Szögsebességmérők Áramlásmérők Hőmérsékletmérők 2 Mi is az a
MEMS TECHNOLÓGIÁK MEMS-EK ALKALMAZÁSI PÉLDÁI
MEMS TECHNOLÓGIÁK MEMS-EK ALKALMAZÁSI PÉLDÁI Dr. Bonyár Attila, adjunktus bonyar@ett.bme.hu Budapest, 2015.10.13. BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT OF ELECTRONICS TECHNOLOGY Tematika
Vékonyrétegek - általános követelmények
Vékonyrétegek - általános követelmények egyenletes vastagság a teljes szubsztráton azonos összetétel azonos szerkezet (amorf, polikristályos, epitaxiális) azonos fizikai és kémiai tulajdonságok tömörség
Mikromechanikai technológiák
1 Mikromechanikai technológiák Fürjes Péter E-mail:, www.mems.hu 2 Mond valamit? MEMS / mikromechanika litográfia pozitív / negatív reziszt lift-off CVD / ALD izotróp / anizotróp marás RIE / DRIE 3 Szilícium
Mikromechanikai technológiák
1 Mikromechanikai technológiák Fürjes Péter E-mail:, www.mems.hu 2 Ismétlés MEMS / mikromechanika litográfia pozitív / negatív reziszt lift-off CVD / ALD izotróp / anizotróp marás RIE / DRIE 3 TECHNOLÓGIA:
SZENZOROK ÉS MIKROÁRAMKÖRÖK
SZENZOROK ÉS MIKROÁRAMKÖRÖK 9. ELŐADÁS: MECHANIKAI ÉRZÉKELŐK I: NYOMÁS ÉS ERŐÉRZÉKELŐK 2014/2015 tanév 2. félév 1 1. Mechanikai érzékelők 2. Piezorezisztív effektus félvezetőkben 3. Si alapú nyomásérzékelők
Fényvezető szálak és optikai kábelek
Fényvezető szálak és optikai kábelek Fizikai alapok A fénytávközlés alapvető passzív elemei. Ötlet: 1880-as években Alexander Graham Bell. Optikai szálak felhasználásának kezdete: 1960- as évek. Áttörés
Kerámiák. Csoportosítás. Hagyományos szilikátkerámiák Építőanyagok: cement, tégla, fajansz, stb Üvegekek, Fémoxidok, nitridek, boridok stb.
Kerámiák Csoportosítás Hagyományos szilikátkerámiák Építőanyagok: cement, tégla, fajansz, stb Üvegekek, Fémoxidok, nitridek, boridok stb. Mesterségesen előállított szilárd, nemfémes, szervetlen (műszaki)
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke. http://www.eet.bme.hu
Budapesti Műszaki és Gazdaságtudományi Egyetem MIKROELEKTRONIKA, VIEEA306 Technológia: alaplépések, a tanszéki processz http://www.eet.bme.hu/~poppe/miel/hu/02-pmos-technologia.ppt http://www.eet.bme.hu
VASTAGRÉTEG TECHNOLÓGIÁK
4 VASTAGRÉTEG TECHNOLÓGIÁK 4-02 POLIMER ALAPÚ VASTAGRÉTEG ÉS TÖBBRÉTEGŰ KERÁMIA TECHNOLÓGIÁK ELEKTRONIKAI TECHNOLÓGIA ÉS ANYAGISMERET VIETAB00 BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT
MIKROELEKTRONIKA, VIEEA306
Budapesti Műszaki és Gazdaságtudományi Egyetem MIKROELEKTRONIKA, VIEEA306 Technológia: alaplépések, a tanszéki processz http://www.eet.bme.hu/~poppe/miel/hu/02-pmos-technologia.ppt http://www.eet.bme.hu
SZENZOROK ÉS MIKROÁRAMKÖRÖK 9. ELŐADÁS: MECHANIKAI ÉRZÉKELŐK I: NYOMÁS ÉS ERŐÉRZÉKELŐK
SZENZOROK ÉS MIKROÁRAMKÖRÖK 9. ELŐADÁS: MECHANIKAI ÉRZÉKELŐK I: NYOMÁS ÉS ERŐÉRZÉKELŐK 2015/2016 tanév 2. félév 1 1. Mechanikai érzékelők 2. Piezorezisztív effektus félvezetőkben 3. Si alapú nyomásérzékelők
Elektronikai technológia vizsgatematika 2015 Nappali, Táv, Levelező
Elektronikai technológia vizsgatematika 2015 Nappali, Táv, Levelező Témák Kötelező Ajánlott 1. Nyomtatott Huzalozású Lemezek technológiája A NYHL funkciói, előnyei, alaptípusok A NYHL anyagai; hordozók,
NYÁK technológia 2 Többrétegű HDI
NYÁK technológia 2 Többrétegű HDI 1 Többrétegű NYHL pre-preg Hatrétegű pakett rézfólia ónozatlan Cu huzalozás (fekete oxid) Pre-preg: preimpregnated material, félig kikeményített, üvegszövettel erősített
ÉRZÉKELŐK 18. ELŐADÁS: FÉNYVEZETŐ SZÁLAS OPTIKAI ÉRZÉKELŐK TÖRTÉNETI ÁTTEKINTÉS BEVEZETŐ ÁTTEKINTÉS FÉLVEZETŐ LÉZERANYAGOK OPTIKAI HÁLÓZAT FELÉPÍTÉSE
ÉRZÉKELŐK Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 18. ELŐADÁS: FÉNYVEZETŐ SZÁLAS ÉRZÉKELŐK I 18. ELŐADÁS: FÉNYVEZETŐ SZÁLAS OPTIKAI ÉRZÉKELŐK 1. Fotonika: fénytávközlés
OPTIKAI ANYAGOK: ÜVEGEK, POLIMEREK ÉS FOLYADÉKRISTÁLYOK
OPTIKAI ANYAGOK: ÜVEGEK, POLIMEREK ÉS FOLYADÉKRISTÁLYOK ÜVEGEK: BEVEZETÉS Tradicionális technológia, klasszikus optikai elemek: lencsék, prizmák, és szűrők. Látható tartomány: belső T nagyobb mint 99 %
SOIC Small outline IC. QFP Quad Flat Pack. PLCC Plastic Leaded Chip Carrier. QFN Quad Flat No-Lead
1. Csoportosítsa az elektronikus alkatrészeket az alábbi szempontok szerint! Funkció: Aktív, passzív Szerelhetőség: furatszerelt, felületszerelt, tokozatlan chip Funkciók száma szerint: - diszkrét alkatrészek
Adat, mérés, vezérléstechnika LAN Távközlés
18. A szerelık azt a munkát kapják, hogy építsenek ki fényvezetı kábeles hálózatot. Ismertesse számukra a munkához szükséges fényvezetı szálak típusait és azok optikai és átviteltehnikai jellemzıit! Értelmezze
FÉLVEZETŐ ALAPÚ ESZKÖZÖK GYÁRTÁSTECHNOLÓGIÁJA
2 FÉLVEZETŐ ALAPÚ ESZKÖZÖK GYÁRTÁSTECHNOLÓGIÁJA 2-04 RÉTEGLEVÁLASZTÁSI, ÉS ADALÉKOLÁSI TECHNOLÓGIÁK ELEKTRONIKAI TECHNOLÓGIA ÉS ANYAGISMERET VIETAB00 BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT
Felületmódosító technológiák
ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK Biokompatibilis anyagok 2011. Felületm letmódosító eljárások Dr. Mészáros István 1 Felületmódosító technológiák A leggyakrabban változtatott tulajdonságok a felület
MEMS eszköz: a tranzisztor elektromechanikus analógja
1 MTA TTK Műszaki Fizikai és Anyagtudományi Intézet MEMS Laboratórium 1121 Budapest, Konkoly - Thege Miklós út 29-33 MEMS Micro Electro Mechanical Systems Eljárások és eszközök Csikósné Dr Pap Andrea Edit
VÉKONYRÉTEGEK ÉS ELŐÁLLÍTÁSUK
3 VÉKONYRÉTEGEK ÉS ELŐÁLLÍTÁSUK 3-01 VÉKONYRÉTEG TECHNOLÓGIA ELEKTRONIKAI TECHNOLÓGIA ÉS ANYAGISMERET VIETAB00 BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT OF ELECTRONICS TECHNOLOGY TARTALOM
Bevezetés a lézeres anyagmegmunkálásba
Bevezetés a lézeres anyagmegmunkálásba FBN332E-1 Dr. Geretovszky Zsolt 2010. október 13. A lézeres l anyagmegmunkálás szempontjából l fontos anyagi tulajdonságok Optikai tulajdonságok Mechanikai tulajdonságok
Elektronikai technológia vizsgatematika 2016 Táv, Levelező
Elektronikai technológia vizsgatematika 2016 Táv, Levelező Témák Kötelező Ajánlott 1. Nyomtatott Huzalozású Lemezek technológiája A NYHL funkciói, előnyei, alaptípusok A kétoldalas NYHL gyártásának menete
$% % & #&' ( ,,-."&#& /0, 1!! Félvezetk &2/3 4#+ 5 &675!! "# " $%&"" Az 1. IC: Jack Kilby # + 8 % 9/99: "#+ % ;! %% % 8/</< 4: % !
Félvezetk $ & &' ( )*+,,-.&& /0, 1 &2/3 4+ 56 5 &675 $& Az 1. I: Jack Kilby 1958 4 + 8 9/99: + ; 8/
Félvezetők. Félvezető alapanyagok. Egykristály húzás 15/04/2015. Tiszta alapanyag előállítása. Nyersanyag: kvarchomok: SiO 2 Redukció szénnel SiO 2
Félvezetők Az 1. IC: Jack Kilby 1958 Tiszta alapanyag előállítása Kohászati minőségű Si Félvezető tisztaságú Si Egykristály húzás Szelet készítés Elemgyártás Fotolitográfia, maszkolás, maratás, adalékolás,
SZENZOROK ÉS MIKROÁRAMKÖRÖK 18. ELŐADÁS: FÉNYVEZETŐ SZÁLAS ÉRZÉKELŐK I
SZENZOROK ÉS MIKROÁRAMKÖRÖK 18. ELŐADÁS: FÉNYVEZETŐ SZÁLAS ÉRZÉKELŐK I 2015/2016 tanév 2. félév 1 FÉNYVEZETŐ SZÁLAS OPTIKAI ÉRZÉKELŐK 1. Fotonika: fénytávközlés és üvegszálas optikai hullámvezetők. 2.
Mikromechanikai technológiák
1 Mikromechanikai technológiák Fürjes Péter E-mail:, www.mems.hu 2 Ismétlés MEMS / mikromechanika litográfia pozitív / negatív reziszt lift-off CVD / ALD izotróp / anizotróp marás RIE / DRIE 3 TECHNOLÓGIA:
Kerámia, üveg és fém-kerámia implantátumok
Kerámia, üveg és fém-kerámia implantátumok Bagi István BME MTAT Bevezetés Kerámiák csoportosítása teljesen tömör bioinert porózus bioinert teljesen tömör bioaktív oldódó Definíciók Bioinert a szomszédos
NYOMTATOTT HUZALOZÁSÚ LAPOK GYÁRTÁSTECHNOLÓGIÁJA
NYOMTATOTT HUZALOZÁSÚ LAPOK GYÁRTÁSTECHNOLÓGIÁJA Az elektronikai tervező általában nem gyárt nyomtatott lapokat, mégis kell, hogy legyen némi rálátása a gyártástechnológiára, hogy terve kivitelezhető legyen.
MEMS. Micro Electro Mechanical Systems Eljárások és eszközök. MEMS technológia kialakulása
MTA Mőszaki Fizikai és Anyagtudományi Kutatóintézet MEMS Laboratórium 1121 Budapest, Konkoly - Thege Miklós út 29-33 MEMS Micro Electro Mechanical Systems Eljárások és eszközök Pap Andrea Edit pap@mfa.kfki.hu
VASTAGRÉTEG TECHNOLÓGIÁK
4 VASTAGRÉTEG TECHNOLÓGIÁK 4-01 KERÁMIA ALAPÚ VASTAGRÉTEG TECHNOLÓGIA ELEKTRONIKAI TECHNOLÓGIA ÉS ANYAGISMERET VIETAB00 BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT OF ELECTRONICS TECHNOLOGY
Mikrohullámú abszorbensek vizsgálata
Óbudai Egyetem Anyagtudományok és Technológiák Doktori Iskola Mikrohullámú abszorbensek vizsgálata Balla Andrea Témavezetők: Dr. Klébert Szilvia, Dr. Károly Zoltán MTA Természettudományi Kutatóközpont
Szeletkötés háromdimenziós mikroszerkezetekhez
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki Tudományok Doktori Iskola, Mikroelektronika és Technológia Szakmacsoport Magyar Tudományos Akadémia, Energiatudományi Kutatóközpont, Műszaki
G04 előadás Napelem technológiák és jellemzőik. Szent István Egyetem Gödöllő
G04 előadás Napelem technológiák és jellemzőik Kristályos szilícium napelem keresztmetszete negatív elektróda n-típusú szennyezés pozitív elektróda p-n határfelület p-típusú szennyezés Napelem karakterisztika
POF (Plastic (Polymer) Optical Fiber)
POF (Plastic (Polymer) Optical Fiber) A hozzáférési hálózatokban az FTTO, FTTH kiépítésekhez, és a LAN oknál, figyelembe kell venni a házonbelüli nyomvonylak célszerű kialakítását. Ennek egyik lehetséges
SiAlON. , TiC, TiN, B 4 O 3
ALKALMAZÁSOK 2. SiAlON A műszaki kerámiák (Al 2 O 3, Si 3 N 4, SiC, ZrO 2, TiC, TiN, B 4 C, stb.) fémekhez képest igen kemény, kopásálló, ugyanakkor rideg, azaz dinamikus igénybevételek elviselésére csak
MEMS. Micro Electro Mechanical Systems Eljárások és eszközök. MEMS alkalmazási területei - szemelvények. MEMS technológiák, eljárások - Oxidáció
MTA Műszaki Fizikai és Anyagtudományi Kutatóintézet MEMS Laboratórium 1121 Budapest, Konkoly - Thege Miklós út 29-33 MEMS technológia kialakulása MEMS Micro Electro Mechanical Systems Eljárások és eszközök
Anyagfelvitellel járó felületi technológiák 2. rész
SZÉCHENYI ISTVÁN EGYETEM GYŐR Felületi technológiák Anyagfelvitellel járó felületi technológiák 2. rész 4. Gőzfázisból történő bevonatolás PVD eljárás CVD eljárás 5. Ionimplantáció 6. Passziválás Áttekintés
MIKRO-TÜKÖR BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT OF ELECTRONICS TECHNOLOGY
MIKRO-TÜKÖR BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT OF ELECTRONICS TECHNOLOGY TV Kiforrott technológia Kiváló képminőség Környezeti fény nem befolyásolja 4:3, 16:9 Max méret 100 cm Mélységi
3D számítógépes geometria és alakzatrekonstrukció
3D számítógépes geometria és alakzatrekonstrukció 3D nyomtatás http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki
Hibrid Integrált k, HIC
Hordozók Hibrid Integrált Áramkörök, k, HIC Az alábbi bemutató egyes ábráit a Dr. Illyefalvi Vitéz Zsolt Dr. Ripka Gábor Dr. Harsányi Gábor: Elektronikai technológia, ill. Dr Ripka Gábor: Hordozók, alkatrészek
Szepes László ELTE Kémiai Intézet
Szepes László ELTE Kémiai Intézet Szárnyaló molekulák felületi rétegek ALKÍMIA MA c. előadássorozat 2013. február 14. Az előadás témája és vázlata Téma: felületi gőzfázisú rétegleválasztás (Chemical Vapour
Gyors prototípus gyártás (Rapid Prototyping, RPT) 2009.11.09.
Gyors prototípus gyártás (Rapid Prototyping, RPT) 2009.11.09. Konkurens (szimultán) tervezés: Alapötlet Részletterv Vázlat Prototípus Előzetes prototípus Bevizsgálás A prototípus készítés indoka: - formai
09/05/2016. Félvezetők. Az 1. IC: Jack Kilby 1958
Félvezetők Az 1. IC: Jack Kilby 1958 1 Tiszta alapanyag előállítása Kohászati minőségű Si Félvezető tisztaságú Si Egykristály húzás Szelet készítés Elemgyártás Fotolitográfia, maszkolás, maratás, adalékolás,
Integrált áramkörök/1. Informatika-elekronika előadás 10/20/2007
Integrált áramkörök/1 Informatika-elekronika előadás 10/20/2007 Mai témák Fejlődési tendenciák, roadmap-ek VLSI alapfogalmak A félvezető gyártás alapműveletei A MOS IC gyártás lépései 10/20/2007 2/48 Integrált
MIKROELEKTRONIKA, VIEEA306
Budapesti Műszaki és Gazdaságtudományi Egyetem MIKROELEKTRONIKA, VIEEA306 Bevezetés http://www.eet.bme.hu/~poppe/miel/hu/01-bevez.ppt http://www.eet.bme.hu Alapfogalmak IC-k egy felületszerelt panelon
A jövő anyaga: a szilícium. Az atomoktól a csillagokig 2011. február 24.
Az atomoktól a csillagokig 2011. február 24. Pavelka Tibor, Tallián Miklós 2/24/2011 Szilícium: mindennapjaink alapvető anyaga A szilícium-alapú technológiák mindenütt jelen vannak Mikroelektronika Számítástechnika,
FÉLVEZETŐ ALAPÚ ESZKÖZÖK GYÁRTÁSTECHNOLÓGIÁJA
2 FÉLVEZETŐ ALAPÚ ESZKÖZÖK GYÁRTÁSTECHNOLÓGIÁJA 2-05 MINTÁZAT- ÉS SZERKEZET-KIALAKÍTÁS FÉLVEZETŐ SZELETEN ELEKTRONIKAI TECHNOLÓGIA ÉS ANYAGISMERET VIETAB00 BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS
ZH November 27.-én 8:15-től
ZH-2 2017 November 27.-én 8:15-től Érzékelési elvek Érzékelési módszerek Mikrotechnológia http://www.mogi.bme.hu/tamop/mikromechanika/math-index.html 1 Mikrotechnológia alapjai Mikrotechnológia = szerszámkészlet
MIKRO- ÉS NANOTECHNIKA I
MIKRO- ÉS NANOTECHNIKA I Dr. Pődör Bálint Óbudai Egyetem, KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS 2009/2010 tanév 1. félév 1 ÁLTALÁNOS BEVEZETÉS A mikro- és nanotechnika c. tárgy megkísérli
FÉLVEZETŐ ALAPÚ ESZKÖZÖK GYÁRTÁSTECHNOLÓGIÁJA
2 FÉLVEZETŐ ALAPÚ ESZKÖZÖK GYÁRTÁSTECHNOLÓGIÁJA 2-03 FÉLVEZETŐ SZELET ELŐÁLLÍTÁSA (ALAPANYAGTÓL A SZELETIG) ELEKTRONIKAI TECHNOLÓGIA ÉS ANYAGISMERET VIETAB00 BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS
Fogorvosi anyagtan fizikai alapjai 8. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17
rugalmas B mn 1. A rá ható erő következtében megváltozott alakját a hatás megszűntével visszanyerő. Vmihez hozzáütődve róla visszapattanó. merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát,
Nem fémes szerkezeti anyagok. Kompozitok
Nem fémes szerkezeti anyagok Kompozitok Kompozitok A kompozitok vagy társított anyagok olyan szerkezeti anyagok, amelyeket két vagy több különböző anyag pl. fém- kerámia, kerámia - műanyag, kerámia - kerámia,
Nem gyémánt, nem grafit, fullerén
GYÉMÁNT Szén módosulatok Nem gyémánt, nem grafit, fullerén Felépítésük Típus 1 Típus 2. Szupravezető fullerén Gyémánt tulajdonságok Ékszer: optikai átlátszóság, nagy törésmutató, ritkasága miatt drága
Bevezetés a lézeres anyagmegmunkálásba
Bevezetés a lézeres anyagmegmunkálásba FBN332E-1 Dr. Geretovszky Zsolt 2010. október 6. Anyagcsaládok Fémek Kerámiák, üvegek Műanyagok Kompozitok A családok közti különbségek tárgyalhatóak: atomi szinten
13. Kétoldalas, furatfémezett nyomtatott huzalozású lemezek szubtraktív előállítási technológiája. Féladditív technológia.
13. Kétoldalas, furatfémezett nyomtatott huzalozású lemezek szubtraktív előállítási technológiája. Féladditív technológia. Szubtraktív technológia (eltávolító eljárás): A felületet teljesen beborító rétegből
Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17
rugalmas B mn 1. A rá ható erő következtében megváltozott alakját a hatás megszűntével visszanyerő. Vmihez hozzáütődve róla visszapattanó. merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát,
Fogorvosi anyagtan fizikai alapjai 7.
Fogorvosi anyagtan fizikai alapjai 7. Mechanikai tulajdonságok 2. Kiemelt témák: Szilárdság, rugalmasság, képlékenység és szívósság összefüggései A képlékeny alakváltozás mechanizmusa kristályokban és
Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17
rugalmas B mn 1. A rá ható erő következtében megváltozott alakját a hatás megszűntével visszanyerő. Vmihez hozzáütődve róla visszapattanó. merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát,
Karbonát és szilikát fázisok átalakulása a kerámia kiégetés során (Esettanulmány Cultrone et al alapján)
Karbonát és szilikát fázisok átalakulása a kerámia kiégetés során (Esettanulmány Cultrone et al. 2001 alapján) Kő-, kerámia- és fémek archeometriája Kürthy Dóra 2014. 12. 12. 1 Miért fontos? ősi kerámiák
Betekintés a napelemek világába
Betekintés a napelemek világába (mőködés, fajták, alkalmazások) Nemcsics Ákos Óbudai Egyetem Tartalom Bevezetés energetikai problémák napenergia hasznosítás módjai Napelemrıl nem középiskolás fokon napelem
Készítette: Bagosi Róbert Krisztián Szak: Informatika tanár Tagozat: Levelező Évfolyam: 3 EHA: BARMAAT.SZE H-s azonosító: h478916
Készítette: Bagosi Róbert Krisztián Szak: Informatika tanár Tagozat: Levelező Évfolyam: 3 EHA: BARMAAT.SZE H-s azonosító: h478916 OPTIKAI SZÁLAK Napjainkban a távközlés és a számítástechnika elképzelhetetlen
Anyagismeret tételek
Anyagismeret tételek 1. Iparban használatos anyagok csoportosítása - Anyagok: - fémek: - vas - nem vas: könnyű fémek, nehéz fémek - nemesfémek - nem fémek: - műanyagok: - hőre lágyuló - hőre keményedő
Optika Gröller BMF Kandó MTI
Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Optika Gröller BMF Kandó MTI Az elektromágneses spektrum Az anyag és a fény kölcsönhatása
Textíliák felületmódosítása és funkcionalizálása nem-egyensúlyi plazmákkal
Óbudai Egyetem Anyagtudományok és Technológiák Doktori Iskola Textíliák felületmódosítása és funkcionalizálása nem-egyensúlyi plazmákkal Balla Andrea Témavezetők: Dr. Klébert Szilvia, Dr. Károly Zoltán
dr. Sipos Sándor dr. Sipos Sándor
Korszerű szerszámanyagok A gépiparban használt korszerű szerszámanyagok három csoportja: acélalapú, kemény és szuperkemény szerszámanyagok 1 Acélalapú szerszámanyagok ötvözetlen szerszámacélok (S-sorozat)
American Society of Materials. Szilárdtestek. Fullerének (C atomok, sokszögek) zárt gömb, tojás cső (egy és többrétegű)
Szilárdtestek Fullerének (C atomok, sokszögek) zárt gömb, tojás cső (egy és többrétegű) csavart alakzatok (spirál, tórusz, stb.) egyatomos vastagságú sík, grafén (0001) Amorf (atomok geometriai rend nélkül)
Hosszú szénszállal ersített manyagkompozitok mechanikai tulajdonságainak vizsgálata
Hosszú szénszállal ersített manyagkompozitok mechanikai tulajdonságainak vizsgálata Varga Csilla*, Miskolczi Norbert*, Bartha László*, Falussy Lajos** *Pannon Egyetem Vegyészmérnöki és Folyamatmérnöki
MIKRO- ÉS NANOTECHNIKA II
NANO MIKRO- ÉS NANOTECHNIKA II Dr. Pődör Bálint Óbudai Egyetem, KVK Mikroelektronikai és Technológia Intézet 11. ELŐADÁS: MIKRO- ÉS NANOAKTUÁTOROK, MIKRO- ÉS NANOFLUIDIKAI ESZKÖZÖK 2012/2013 tanév 1. félév
Anyagválasztás Dr. Tábi Tamás
Anyagválasztás Dr. Tábi Tamás 2018. Február 7. Mi a mérnök feladata? 2 Mit kell tudni a mérnöknek ahhoz, hogy az általa tervezett termék sikeres legyen? Világunk anyagai 3 Polimerek Elasztomerek Fémek,
Analitikai szenzorok második rész
2010.09.28. Analitikai szenzorok második rész Galbács Gábor A szilícium fizikai tulajdonságai A szenzorok egy igen jelentős része ma a mikrofabrikáció eszközeivel, közvetlenül a mikroelektronikai félvezető
fajtái anyagmegmunkálás anyagmegmunk
A lézeres l anyagmegmunk megmunkálás 2009. november 25. A lézeres l anyagmegmunkálás fajtái Szerkezeti változás (structural change) Felületkeményítés (hardening) Deformáció és törés (deformation and fracture)
Optikai tulajdonságok (áttetszőség, szín) Fogorvosi anyagtan fizikai alapjai 10. Optikai tulajdonságok. Összefoglalás
Optikai tulajdonságok (áttetszőség, szín) szín 3 fluoreszcencia Beeső fény spektrális összetétele! Megfigyelő szemének érzékenysége! Fogorvosi anyagtan fizikai alapjai 10. Tankönyv fej.: 20, 21 Optikai
Al 2 O 3 kerámiák. (alumíniumtrioxid - alumina)
Al 2 O 3 kerámiák (alumíniumtrioxid - alumina) Alumíniumtrioxid - alumina Korund (polikristályos, hexagonális sűrűill.) Zafir egykristály (természetes és mesterséges is) Rubin (természetes és mesterséges
Műanyagok tulajdonságai. Horák György 2011-03-17
Műanyagok tulajdonságai Horák György 2011-03-17 Hőre lágyuló műanyagok: Lineáris vagy elágazott molekulákból álló anyagok. Üvegesedési (kristályosodási) hőmérséklet szobahőmérséklet felett Hőmérséklet
Moore & more than Moore
1 Moore & more than Moore Fürjes Péter E-mail:, www.mems.hu 2 A SZILÍCIUM (silex) 3 A SZILÍCIUM Felfedező: Jons Berzelius 1823, Svédország Természetes előfordulás: gránit, kvarc, agyag, homok 2. leggyakoribb
Társított és összetett rendszerek
Társított és összetett rendszerek Bevezetés Töltőanyagot tartalmazó polimerek tulajdonságok kölcsönhatások szerkezet Polimer keverékek elegyíthetőség összeférhetőség Többkomponensű rendszerek Mikromechanikai
Mikromechanikai technológiák. Rétegeltávolítás, marások. Fürjes Péter.
1 Mikromechanikai technológiák Rétegeltávolítás, marások Fürjes Péter E-mail: furjes@mfa.kfki.hu, www.mems.hu 2 Mit tudtok a témáról? Mit jelent? MEMS / NEMS mikromechanika IC / CMOS (technológia) litográfia
TÁVKÖZLÉSI ISMERETEK FÉNYVEZETŐS GYAKORLAT. Szakirodalomból szerkesztette: Varga József
TÁVKÖZLÉSI ISMERETEK FÉNYVEZETŐS GYAKORLAT Szakirodalomból szerkesztette: Varga József 1 2. A FÉNY A külvilágról elsősorban úgy veszünk tudomást, hogy látjuk a környező tárgyakat, azok mozgását, a természet
MIKROELEKTRONIKAI ÉRZÉKELİK I
MIKROELEKTRONIKAI ÉRZÉKELİK I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet és MTA Mőszaki Fizikai és Anyagtudományi Kutató Intézet 9. ELİADÁS: MECHANIKAI ÉRZÉKELİK II 9. ELİADÁS: NYOMÁS,
Szigetelőanyagok. Műanyagok; fajták és megmunkálás
Szigetelőanyagok Műanyagok; fajták és megmunkálás Mi a műanyag? Minden rövidebb láncolatú (kis)molekulából mesterségesen előállított óriásmolekulájú anyagot így nevezünk. természetben nem fordul elő eleve
Fókuszált ionsugaras megmunkálás
1 FEI Quanta 3D SEM/FIB Fókuszált ionsugaras megmunkálás Ratter Kitti 2011. január 19-21. 2 FIB = Focused Ion Beam (Fókuszált ionnyaláb) Miből áll egy SEM/FIB berendezés? elektron oszlop ion oszlop gáz
Mikromechanikai technológiák. Rétegeltávolítás, marások. Fürjes Péter. MEMS technológia - marások
1 Mikromechanikai technológiák Rétegeltávolítás, marások Fürjes Péter E-mail:, www.mems.hu 2 Mit tudtok a témáról? Mit jelent? MEMS / NEMS mikromechanika IC / CMOS (technológia) litográfia / lift-off izotróp
Aktuátorok korszerű anyagai. Készítette: Tomozi György
Aktuátorok korszerű anyagai Készítette: Tomozi György Technológiai fejlődés iránya Mikro nanotechnológia egyre kisebb aktuátorok egyre gyorsabb aktuátorok nem feltétlenül villamos, hanem egyéb csatolás
Szerkezet és tulajdonságok
Szerkezet és tulajdonságok Bevezetés Molekulaszerkezet és tulajdonságok Kristályos polimerek a kristályosodás feltétele, szabályos lánc kristályos szerkezet kristályosodás, gócképződés kristályosodás,
Optikai tulajdonságok (áttetszőség, szín) Fogorvosi anyagtan fizikai alapjai 10. Optikai tulajdonságok. Összefoglalás. Tankönyv fej.
Optikai tulajdonságok (áttetszőség, szín) szín 3 fluoreszcencia Fogorvosi anyagtan fizikai alapjai 10. Optikai tulajdonságok. Összefoglalás Tankönyv fej.: 20, 21 Beeső fény spektrális összetétele! Megfigyelő
Hibrid Integrált k, HIC
Hibrid Integrált Áramkörök, k, HIC Az alábbi bemutató egyes ábráit a Dr. Illyefalvi Vitéz Zsolt Dr. Ripka Gábor Dr. Harsányi Gábor: Elektronikai technológia, ill. Dr Ripka Gábor: Hordozók, alkatrészek
MW-PECVD GYÉMÁNTRÉTEG NUKLEÁCIÓJA ÉS NÖVEKEDÉSE KÜLÖNBÖZŐ HORDOZÓKON. Ph.D. értekezés tézisfüzet
MW-PECVD GYÉMÁNTRÉTEG NUKLEÁCIÓJA ÉS NÖVEKEDÉSE KÜLÖNBÖZŐ HORDOZÓKON Ph.D. értekezés tézisfüzet Kováchné Csorbai Hajnalka Témavezetők: Dr. Hárs György Dr. Kálmán Erika 2007 A kutatások előzménye A gyémánt,
Plazmasugaras felülettisztítási kísérletek a Plasmatreater AS 400 laboratóriumi kisberendezéssel
Plazmasugaras felülettisztítási kísérletek a Plasmatreater AS 400 laboratóriumi kisberendezéssel Urbán Péter Kun Éva Sós Dániel Ferenczi Tibor Szabó Máté Török Tamás Tartalom A Plasmatreater AS400 működési
Polimer kompozitok alapanyagai, tulajdonságai, kompozitmechanikai alapok
SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimer kompozitok alapanyagai, tulajdonságai, kompozitmechanikai alapok DR Hargitai Hajnalka 2011.10.19. Polimerek
Kiss László 2011. Blog: www.elka-kl.blogspot.com Email: kislacika@gmail.com
Kiss László 2011. Blog: www.elka-kl.blogspot.com Email: kislacika@gmail.com Ólommentes környezetvédelem RoHS (Restriction of Hazardous Substances), [2002/95/EC] EU irányelv az ólom leváltásáról, 2006.
Szénszálak és szén nanocsövek
Szénszálak és szén nanocsövek Hernádi Klára Szegedi Tudományegyetem Alkalmazott Kémiai Tanszék 1 Rendszám: 6 IV. főcsoport Nemfémek Négy vegyértékű Legjelentősebb allotróp módosulatok: SZÉN Kötéserősség:
Mikrohullámú abszorbensek vizsgálata
Óbudai Egyetem Anyagtudományok és Technológiák Doktori Iskola Mikrohullámú abszorbensek vizsgálata 6. félév Balla Andrea Témavezetők: Dr. Klébert Szilvia, Dr. Károly Zoltán MTA Természettudományi Kutatóközpont
A tételekhez segédeszköz nem használható.
A vizsgafeladat ismertetése: Egy kiválasztott műanyag jellemző fizikai és kémiai tulajdonságainak ismertetése Adott műanyag termék gyártásához anyag, gép és szerszám választása, majd a gyártástechnológia
Fotoindukált változások vizsgálata amorf félvezető kalkogenid arany nanorészecskéket tartalmazó rendszerekben
Az Eötvös Loránd Fizikai Társulat Anyagtudományi és Diffrakciós Szakcsoportjának Őszi Iskolája 2011.10.05 Visegrád Fotoindukált változások vizsgálata amorf félvezető kalkogenid arany nanorészecskéket tartalmazó
LÉZERES JELÖLÉS AZ IPARBAN
LÉZERES JELÖLÉS AZ IPARBAN Tartalom Lézeres jelölés előnyei Lézeres jelölés alapelve Fémek lézeres jelölése Műanyagok lézeres jelölése Egyéb anyagok jelölése TRUMPF jelölő rendszerek TRUMPF jelölő munkaállomások