A KOPERNIKUSZI FORDULAT A tudomány mûködésének szemléltetése a csillagászat történetén keresztül

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A KOPERNIKUSZI FORDULAT A tudomány mûködésének szemléltetése a csillagászat történetén keresztül"

Átírás

1 A FIZIKA TANÍTÁSA A KOPERNIKUSZI FORDULAT A tudomány mûködésének szemléltetése a csillagászat történetén keresztül Radnóti Katalin ELTE TTK Fizikai Intézet Az alábbi írás a holland De Driestar Keresztény Fôiskola (Gouda), a Károli Református Egyetem Tanítóképzô Fôiskolai Kara (Nagykôrös) és az ELTE Tanárképzô Fôiskolai Kara 1 (Budapest) együttmûködésével ben folyó Innováció apedagógusképzésben címû közös fejlesztési program egyik terméke. 1 Az ELTE szerkezeti átalakulása után a Tanárképzô Fôiskolai Kartól az ELTE Pedagógiai és Pszichológiai Kar vette át a program szakmai irányítását. A holland oktatási minisztérium finanszírozásával zajló projekt három fô témakörül koncentrálódott: Reflektív tanulás és tanári kompetencia. A tantervi koherencia javítása, témák köré csoportosítás (A tanítás mûvészete). Az elmélet és a gyakorlat közti kapcsolat fejlesztése egy Oktatásfejlesztési Központ létrehozásának segítségével. A jelen cikkben bemutatott példánk a tanításmûvészetnek nevezett didaktikai módszerhez kapcsolódik, melynek fô elemei röviden a következôképp foglalhatók össze: Valamilyen nagy horderejû, az emberiséget érintô témalegyen afeldolgozás középpontjában: esetünkben a heliocentrikus világkép kialakulása. Genetikus megközelítés. Történeti: ahogyan az emberek, majd késôbb a tudósok megismerték az adott dolgot, esetünkben aheliocentrikus rendszert. A mindennapi dolgokra csodálkozzanak rá a gyerekek. Nyitott kérdések feltétele, melyet szókratészi kérdezôs módszernek is neveznek. A gyerekek egymással is beszélgetnek atémáról. Ehhez jó, haúgy ülnek, hogy lássák egymást, például félkörben. Elôször a saját szavaikkal írják le az éppen tárgyalni kívánt jelenséget, csak utánakövetkezik aszaknyelv. Érzelmi oldalról is megközelítik atémát. Természetesen abeszélgetés közben hibázni is lehet! Dramaturgiai elemeket is tartalmaz, a feldolgozás jelenetekre oszlik. Ajánlott témánk feldolgozása6 8 tanítási órát vehet igénybe a8 9. évfolyamon. De erdei iskolakeretében is feldolgozható néhány eleme a 6 7. évfolyamon úgy, hogy agyerekek megfigyeléseket végeznek, illetve eljátsszák az egyes tevékenységekben ajánlottakat. A témafeldolgozásaszéleskörû lehetôséget nyújthat a dramaturgiai megközelítésekhez is, így a drámapedagógiát tanító kollegákkal való együttmûködésre is lehetôséget ad. További kapcsolatteremtés lehetséges még a következô tantárgyakkal: földrajz, történelem, rajz és mûvészettörténet, technika, irodalom. A jelen cikk szerzôje által kifejlesztett tanításmûvészeti példatémájaamai világképünk kialakulásához vezetô hosszú és rögös út néhány jellemzô, érdekes részletének feldolgozása. Írásunkban a csillagászati vonatkozásokra koncentrálunk, mégpedig azért, mert az e tárgykörben felhalmozódott ismeretanyag tette végül is lehetôvé a természet törvényeinek kvantitatív, kauzális kapcsolatokon alapuló megragadását. A tudományos elméleteknek minden korban, így napjainkban is, be kell ágyazódniuk az adott korszak fô gondolkodási áramlataiba, amely sajátos ideológiai környezetet jelent. Az elmúlt évszázadokra visszatekintve mi már inkább csak azokat az elméleti rendszereket ismerjük meg, amelyek sikeresek voltak az adott korszakban, és továbbfejleszthetônek bizonyultak a késôbbiekben is. Az iskolai oktatásban szinte kizárólagosan csak ezekrôl esik szó. Kopernikusz elméletével is ez ahelyzet. A jelen írásunkban ajánlott feldolgozás során a gyerekek megismerhetnek olyan elméleti rendszereket is, amelyek ugyan uralkodónak számítottak egy adott korban, ma viszont már nem fogadjuk el azokat. Ez egyben rávilágít a tudomány, atudományos rendszerek változásárais, s napjaink történéseinek elemzéséhez is segítséget jelenthet. A javasolt feldolgozás fô lépései Figyeljék meg agyerekek az eget egy szép, derûs éjszakán! Keressék meg a különbözô ismert csillagcsoportokat, figyeljék meg a Holdat! Írják is le megfigyeléseiket! Ha lehetséges, akkor több napon keresztül végezzék a megfigyeléseket körülbelül azonos idôben! (Például erdei iskola.) Alternatív lehetôségek Rajzolják le, hogy miként képzelik el a Világegyetemet, benne Földünket! Rajzolják le a Napot, a Holdat, a csillagokat különbözô napszakokban! Egymás rajzait megnézik, majd beszélgetés következik azokról. (Szókratészi beszélgetés) A megfigyelések eredményei körülbelül akövetkezôk lehetnek: Hosszabb megfigyelés alapján az látszik, hogy az egyes csillagcsoportok és a magányos csillagok is változtatják helyüket az égbolton az éjszaka folyamán, mint- 236 FIZIKAI SZEMLE 2006 / 7

2 1. táblázat A Hold Föld Nap rendszerbeli t távolságok és D átmérôk arányainak ma elfogadott és az ókorban becsült értéke D H /D F D N /D F t HF /D F t NF /D F Mai 0,27 108,9 30, Arisztarkhosz ( 270) 0,36 6,75 9,5 180 Hipparkhosz ( 150) 0,33 12,33 33, Poszeidóniosz ( 90) 0,157 39,25 26, Ptolemaiosz (150) 0,29 5,5 29, ha elfordulna az éggömb. Van azonban néhány csillagszerû, halvány objektum és a Hold, amelyek mozgása más, mint a csillagoké. Naponta változik helyzetük az égbolton. Megfigyelésünk eredményei alapján azt a következtetést vonhatjuk le, hogy a csillagok, a Nap, a Hold és a bolygók minthaaföld körül körben mozognának. Ez volt a megállapítása az évszázadokkal ezelôtt élt megfigyelôknek is. (Genetikus elem) Máris megfogalmazhatjuk a természettudományos megismerési módszer fô elemeit: megfigyeléseket végzünk, következtetéseket vonunk le, illetve elméleteket állítunk fel. Amennyiben nem áll módunkban megfigyeléseket végezni, akkor az alternatív kérdésre adott válaszokat, rajzokat lehet elemezni. Idôsebb gyerekek esetében nagy valószínûséggel a heliocentrikus elképzelés jelenik meg. Ekkor úgy folytatjuk a feldolgozást, hogy a késôbbiek során ennek az elképzelésnek a kialakulását tekintjük át. Az ókori csillagászat fejlôdésének tetôpontját Görögországban érte el. Probléma Észrevették, hogy a Mars pályának iránya idônként megváltozik és keletrôl nyugati irányba mozog a csillagokhoz képest. Ezt amozgást retrográd mozgásnak nevezték el. Az egyik ókori görög filozófus, aszámoszi Arisztarkhosz a Kr. elôtti 3. században érdekes elképzeléssel állt elô. Nem a Föld, hanem a Nap van nyugalomban, a Világmindenség középpontjában. A Föld és az akkor ismert öt többi bolygó kering kör alakú pályán a Nap körül, miközben aföld forog asaját tengelye körül. Akkor ez az elképzelés abszurdnak tûnt, így elvetették. Arisztarkhosz meghatározta a Hold Föld Nap viszonylagos nagyságait és távolságait. Kimutatta, hogy a Hold nem sokkal kisebb a Földnél, a Nap ellenben jóval nagyobb. Továbbá, hogy a Nap jóval távolabb van a Földtôl, mint ahold. Így arraakövetkeztetésre jutott, hogy a Földnek kell anap körül keringenie. Az 1. táblázatban összefoglaljuk amaelfogadott, továbbá Arisztarkhosz és késôbbi csillagászok által kapott értékeket, melyek rendkívül tanulságosak. Látható, hogy a mérések egyre finomodtak. Azt gondolhatnánk, hogy egyenes út vezetett a mai értelemben is elfogadható világkép kialakulásához, de nem ez történt. A mai értelemben is tudományosnak mondható megközelítésmóddal párhuzamosan az ógörög filozófiában született egy olyan elképzelés, amely élesen szembeállította egymással az égi és a földi világot. Platón tanítása szerint az összes égitest a kristályszférákhoz van rögzítve, melyek mozgásaegyenletes és tökéletes. Ezen az egyenletes körmozgást értette, melynek még nagy szerepe volt a késôbbi évszázadok során. Tanítása szerint minden égi dolog örök és változatlan. Ezt az elképzelést tette magáévá Arisztotelész, avilághódító Nagy Sándor nevelôje is. Ptolemaiosz geocentrikus világképét akr. elôtti 2. században alkotta meg. Ebben magyarázatot próbált adni a Naprendszer akkor ismert bolygóinak, a Vénusznak, a Marsnak, a Jupiternek és a Szaturnusznak az égboltozaton megfigyelt mozgására. Elképzelése Platón és Arisztotelész nyomdokain halad. Szerinte a Világegyetem középpontjában a mozdulatlan Föld áll, amely körül az összes többi égitest mozog. Minden bolygóhoz, anaphoz és aholdhoz egy földközéppontú átlátszó kristálygömb (szféra) tartozik. A csillagok a legkülsô szférán helyezkednek el. Elképzelése szerint az összes bolygó kisebb-nagyobb sugarú körpályákon mozog a Föld körül. A kisebb, külsô kört a bolygó epiciklusának nevezik, míg a belsô, nagyobb sugarú és földközéppontú körnek deferens a neve. Ez az elképzelés jó egyezésben volt az abban az idôben rendelkezésre álló mérési adatokkal, és még a retrográd mozgások magyarázatára is alkalmas volt az epiciklusok segítségével. A Hold és a Nap pályájához nem tartozott epiciklus. A modell elég jól elôre tudtajelezni abolygók helyét az égbolton. Ez valójában a Földrôl mérhetô látószögeket jelentett csupán, hiszen ebben amodellben a távolságoknak nem volt szerepe. Kopernikusz ismerte Arisztarkhosz elképzeléseit, mivel abban a korban kezdték ismét felfedezni az ókori görög gondolatokat, a ptolemaioszi körkörös modell is túl bonyolultnak tûnt már sokak szemében, ezért Kopernikusz elméletében ismét anap lett avilágmindenség központja, míg a Föld csupán a bolygók egyike, amely a Nap körül kering és forog a tengelye körül. Híres könyve 1543-ban jelent meg, amely dátumot gyakran a modern természettudomány születési évének is nevezik. Elméletében ô is körök, epiciklusok és deferensek segítségével írjale abolygók mozgását. Céljasaját bevallásaszerint is csupán annyi volt, hogy alkalmasan újrarendezze a köröket. Kopernikusz idejében is csak a körmozgás volt az elfogadott lehetôség az égi mozgások leírásához, egyedül akörmozgást tekintették természetes mozgásnak. Napközéppontú modellje végül is egyáltalán nem volt egyszerûbb, mint a ptolemaioszi, de azt csak kevesen ismerték. Amit ismertek, és napjainkban is erre hivatkoznak, az az egyszerûsített modell, melynek középpontjában a Nap található, és igazából ez az, amelyik hatott a késôbbi korok tudósaira. Az elmélet több jelenséget megmagyarázott, például a retrográd mozgást is. Többen is tudták, Kopernikusz is, hogy az új elmélet nem ad pontosabb elôrejelzéseket, mint Ptolemaioszé. Kopernikusz idejében még nem ismerték a távcsövet, ezért abban a korban, a 16. században, mindkét elmélet megfelelô volt a megfigyelések magyarázatára. A FIZIKA TANÍTÁSA 237

3 Nap Vénusz 1. ábra. A Vénusz fázisai Föld Ellenben az új elmélettel kapcsolatban több kérdés is felmerült: Hogyan mozog a Föld? Mi tartja mozgásban a Földet? Hogy lehet az, hogy nem esnek le a tárgyak a forgó Föld felszínérôl? Ezekre a kérdésekre a választ, csak évszázadokkal késôbb, anewtoni fizikaadtameg. De akopernikuszi rendszer kidolgozásafontos állomás volt ahhoz, hogy kibontakozhasson a modern természettudomány, ezért szokták kopernikuszi forradalomként is emlegetni. Dramaturgiai jelenet Gondolatban visszautazva az idôben, a reneszánsz idejébe képzeljük magunkat. A tanár beöltözik Kopernikusznak. Behoz két papirost az osztályba. Az egyikre a ptolemaioszi modell, míg a másikra az arisztharkoszi modell van felrajzolva, melyet nemrég találtak meg. Megmutatjaezeket agyerekeknek, és kéri, hogy ôk is gondolkozzanak el a következô kérdésen: Melyik modell írhatja le jobban Világunkat? Sorakoztassanak fel mindkét elképzeléssel kapcsolatban érveket, és ellenérveket! Mit magyaráz meg az egyik és mit a másik modell? Milyen kérdések jelennek meg stb. (Szókratészi beszélgetés) Magyarázzák meg a gyerekek, hogy mit jelent az a kifejezés, hogy felkel anap a) a kopernikuszi modell szerint, b) aptolemaioszi modell szerint. Hetven évvel Kopernikusz halála után Galilei kezdte el használni a távcsövet az égi jelenségek tanulmányozásához. A maga szerkesztette távcsövön keresztül tisztán látta a Hold hegyei t, észrevette a Nap foltjai t, felfedezett négy, a Jupiter körül keringô hold at, észrevette, hogy a Tejútrendszer csillagokból áll. Ezek a megfigyelések akkor óriási szenzációt keltettek, és nem csak a mûvelt világ, de az utca embere is errôl beszélt. Mindezek azt bizonyították, hogy az égi és a földi jelenségek nem különböznek egymástól, mint azt Arisztotelész hitte, és ahogy az ebben a korban a hivatalos ideológia alapját képezte. A fizikának, a tudományoknak tehát társadalmi hatása volt már abban az idôben is. Ugyanakkor érdekes tény, hogy Galilei még mindig az egyenletes körmozgást tekintette alapmozgásnak. Galilei gondolkodásmódját jellemzi, ahogy a sok-sok jelenségben kereste, és nem egy esetben sikeresen megtalálta és kiválasztotta azt a tényezôt, amelyet fel tudott használni az általa megfogalmazott elmélet igazolására. A Vénusz fázisai Galilei többek között a Vénuszt is megfigyelte és észrevette, hogy hasonlóan a Holdhoz, különbözô fázisai figyelhetôk meg (1. ábra). Ez egyben azt is jelentette, hogy nincs saját fénye, hanem a Nap világítja meg, és amit mi látunk, az a bolygóról visszaverôdött napfény. A Vénusz fázisai azonban a ptolemaioszi elmélettel is magyarázhatóak voltak, kivéve egyet közülük, a teljes fázist. Ezt csak akopernikuszi elmélet tudtaelôre jelezni Galilei szerint, és ô megfigyelte ezt! (Ezt is el lehet játszani, egy lámpával és egy gömbölyû testtel modellezni.) A tele-vénusz azonban valójában csak annak bizonyítéka, hogy avénusz anap körül kering. Arról semmit sem mond, hogy mi van az egész rendszer középpontjában. A megfigyelt jelenségek nemcsak a kopernikuszi modellel magyarázhatóak, hanem a Tycho Brahe által használttal is, mely ageocentrikus és anapközéppontú modellek keverékének tekinthetô. A középpontban aföld áll és anap kering körülötte, az összes többi bolygó pedig a Nap körül kering. Galilei korában inkább ezt a modellt fogadták el. Egyiptomi rendszernek is nevezik, melyet agörög Herakleitosz konstruált meg az ókorban (2. ábra). Tehát avénusz fázisváltozásai nem jelentenek döntô érvet akopernikuszi rendszer mellett. A Jupiter holdjai periódusának meghatározásában elkövetett hibák okának feltárásaviszont már igen. Galilei amegfigyeléseket aföldrôl végezte, azt tekintette megszokásból a Jupiter-pálya középpontjának. HaaNaprahelyezte apályaközéppontját, akkor megfigyelésével azonos eredményeket kapott! Ez az, ami meggyôzô bizonyíték lehetett volna már akkor is. 2. ábra. Az egyiptomi rendszer Szaturnusz Jupiter Mars Vénusz Merkur Nap Föld Hold 238 FIZIKAI SZEMLE 2006 / 7

4 Az arisztotelészi tanok buzgó hívei közül nem egy azonban egyszerûen nem is akart olyan tapasztalatokat szerezni, amelyek ellentmondhattak azoknak. Akadt, aki még belepillantani sem tartotta érdemesnek Galilei távcsövébe, hiszen amit az égen látni lehet, az úgyis olvasható Arisztotelésznél. Amirôl viszont ô nem írt, az nem is létezik. De így voltak ezzel mások is. Ha beleillett az új felfedezés a világmindenségrôl alkotott elképzeléseikbe, akkor elfogadták, ha nem, akkor többnyire nem is látták azt. Mind aptolemaioszi, mind akopernikuszi rendszer valójában matematikai konstrukció. Az egyház problémája Galileivel kapcsolatban éppen az volt, hogy Kopernikusz elméletét teljes igazságként állította be, és nem csak mint egy lehetséges hipotézist tárgyalta. Abban az idôben acsillagászok már nem hittek ténylegesen akristályszférákban, mégis nyugodtan dolgoztak velük, mivel kielégítôen írtale az égitestek megfigyelhetô helyzetét. A Galilei által teljes igazságnak beállított kopernikuszi modell igazolásához abban az idôben hiányoztak a döntô jelentôségûnek tartott tapasztalatok. Amennyiben a Föld kering a Nap körül, akkor a csillagok helyzetének periodikusan változni kell. Ez, persze, így van, de abban a korban még nem voltak olyan érzékenyek a szögmérések, hogy ezt meg lehetett volnafigyelni. A Föld tengelyforgását igazoló, úgynevezett Foucault-féle inga csak a 19. század közepén készült el. (Mint az közismert, az ingamegtartjaalengési síkját. Ellenben, haaz ingát egy forgó testre helyezzük, aforgó koordinátarendszerben ez nem így látszik. Ezt ajelenséget 1851-ben apárizsi Pantheonban egy 67 m hosszú és 28 kg tömegû ingával mutatták be.) Vagyis Galilei nem tudott ellenfelei számára meggyôzô, minden kritikus szemlélô számáramegfelelô kísérleti bizonyítékot szolgáltatni elmélete alátámasztásához. Ezért utasította arra az inkvizíció, hogy elméletét csak mint egy lehetséges hipotézist emlegetheti. Beszélgetés a Galilei perrôl, annak lehetséges okairól. Esetleg Németh László Galilei címû drámájának megtekintése, egyes részeinek eljátszása. Menjünk egy kicsit visszafelé az idôben! 3 évvel Kopernikusz halála után született Tycho Brahe dán csillagász, aki húsz éven keresztül szisztematikusan megfigyelte abolygók, ahold és anap elhelyezkedését az égbolton. Ugyan távcsô nélkül, de korának legpontosabb megfigyelési adatait rögzítette. Azt gondolta, hogy ezen amódon el lehet majd dönteni, hogy melyik elmélet írja le pontosabban a megfigyelhetô égi világot. Az eredmény megdöbbentô volt. Egyik akkor használatos elmélet sem bizonyult helyesnek! Brahe adatai szolgáltatták a kulcsot Kepler számáraa Világegyetem titkainak megfejtéséhez. A két tudós másfél évet dolgozott együtt, amikor is Brahe meghalt. Kepler ez után jutott hozzá a mérési adatokhoz. Különösen a Marsról felvett adatok okoztak komoly nehézségeket. Kepler, miután anapközéppontú világegyetemben, a kopernikuszi modellben hitt, átszámoltaaföldi megfigyelés adatait úgy, mintha a Napról figyelnénk meg azokat. Hogyan is látnánk a bolygót a Napról? Négy évet töltött el ezzel a számolással. Majd következett a megfelelô pályagörbe megtalálása. E témamegbeszélése közben sor kerülhet Madách Imre Az ember tragédiája, Prágai szín megjelenítésére. Jellemzô volt Kepler egész gondolkodásmódjára, hogy a pálya meghatározását nem egyszerû geometriai problémaként kezelte, ahogy addig mindenki, hanem fizikai erôkkel kapcsolatos magyarázatot keresett. A Nap központi helyre való állításában is kifejezôdött ez, mert Kepler már atömegvonzásrais gondolt. Új fogalmi rendszerbe illesztette a problémát, másképp látta, mint azt elôdei tették. Brahe példájából látható, hogy hiába végez valaki rendkívül pontos megfigyeléseket, csupán a mérési adatokból nem tud törvényszerûségeket kiolvasni. Koestler igen szellemesen a következôt írja: Tudni kell használni az észleleteket; a nehézséget az okozza, hogy mikor vegyük figyelembe az egyiket, s mikor a másikat. Nem arról van tehát szó, hogy a tapasztalásnak, a megfigyelésnek, az észlelésnek, a mérésnek ne lenne nagyon fontos szerepe a megismerésben. Mindössze azt mondjuk: ahhoz, hogy valamire rátaláljunk, kell, hogy legyen róla valamilyen elôzetes elképzelésünk. Olyan adatokat kell keresni, figyelembe venni, amelyek a vizsgált hipotézist alátámaszthatják vagy cáfolhatják, amelyek így lehetôvé teszik az elôzetes elképzelések ellenôrzését. Kepler a Mars pályájával kapcsolatos kérdését már eleve egy modell keretei között fogalmazta meg, nevezetesen a kopernikuszi modellt választotta. A Föld és a többi bolygó keringési idejének is csak ebben a modellben van értelme. A pályák alakjára vonatkozóan különbözô hipotézisei voltak. Ilyen volt az addigi modellekben kizárólagosan szereplô kör. Megpróbálkozott tehát a kiválasztott észlelési adatok alapján kapott pontoknak körre való illesztésével. És ez a hipotézis nem vált be. Újat kellett keresni. Végül rátalált az ellipszisre. Térjünk ismét visszaagalilei perhez, és nézzünk meg néhány évszámot! Galilei elsô megintése, aper, majd házi ôrizete élete végéig, Kepler I. és II. törvénye megjelenik (Astronomia nova), Kepler III. törvénye megjelenik (Harmonices mundi). Kepler és Galilei ismerték egymást, bár személyesen sosem találkoztak. Néhány levelet váltottak, kölcsönösen tisztelték egymást. Általában a prágai toszkán nagyköveten keresztül üzentek egymásnak, küldték el egymásnak munkáikat. Elvileg tehát Galilei ismerhette volna Kepler elsô és második törvényét már azokban az években is, amikor oly vehemensen kiállt és abszolút igaznak tekintette a kopernikuszi elméletet. De a Kepler-törvényekkel Galilei nem is foglalkozott. Szerinte a kopernikuszi modell volt az egyetlen igaz valóság, melyben körök szerepeltek. A Kepler által kínált ellip- A FIZIKA TANÍTÁSA 239

5 szis valószínûleg elképzelhetetlen volt az ô számára, így nem is vette tudomásul ezt a lehetôséget. Ez a tény nagyon érdekes az oktatás számára is. Világosan mutatja, hogy ha valaki egy adott világképet, elképzelésrendszert birtokol, akkor abból rendkívül nehezen tud kilépni. Hiába találkozik esetleg annak ellentmondó tényekkel, azokat egyszerûen figyelmen kívül hagyja, nem foglalkozik vele. Ezért is annyira fontos, hogy világosan lássuk, hogyan is gondolkodnak a gyerekek egy adott témáról a feldolgozás kezdetén. Ahhoz, hogy a tanár meg tudja tervezni az ismeretszerzés menetét, látnia kell, hogy mit kell lebontani, majd újra, másképp felépíteni, illetve mi az, ami valószínûleg problémamentesen tud integrálódni az elôzetes elképzelések közé. Továbbá a gyerekeknek is világosan kell látniuk saját elképzeléseik és az új, megtanulandó gondolatrendszer közti különbségeket, illetve esetleges hasonlóságokat. Melyek azok a pontok, ahol másképp gondolkodnak, mely esetekben mond mást a tudomány, mint ahogyan ôk eddig gondolkodtak az adott dologról. Ezért nagyon fontosak a beszélgetések, a szókratészi módszer, ahol éppen az elôzetes elképzelések felszínre hozása történik meg. Ezt nem szabad elvesztegetett idônek tekinteni, a tanulási folyamat fontos részét képezi! Visszatérve a Kepler-törvényekre, azok valójában sokkal többet jelentenek, mint az ismert adatok egyszerû leírása. Az elméletet felhasználva újszerû megfigyelésekre is lehetôség nyílt, melyek nem voltak ismertek Kepler számára. Például újbolygók felfedezésére adott lehetôséget, amikor eltérések mutatkoztak a Kepler-törvényektôl (Uránusz, Neptunusz, Plútó). Kepler törvényei további fejlôdési lehetôséget jelentettek a tudomány számára. Newton nem tudta volna megalkotni dinamikáját Kepler törvényei nélkül. Newton egyesítette a földi és az égi fizikát, melyekrôl addig azt gondolták, hogy különbözô törvényszerûségeknek engedelmeskednek. Newton eredményei nélkül pedig lehetetlen lett volna a fizika további fejlôdése. Az elektromosságtan, a hôtan, a sokrészecske rendszerek leírásához elengedhetetlen a dinamika ismerete. A modern fizika pedig végképp nem alakulhatott volna ki, mely pedig mindennapi életünk alapjait jelenti. Irodalom J.D. BARROW: A fizika világképe Akadémiai Kiadó, Budapest, J.D. BERNAL: A fizika fejlôdése Einsteinig Gondolat Kiadó, Budapest, H.C. BERG, T.SCHULZE: 2 Lehrkunst,Lehrbuch Didaktik Berlin, Die Himmelsuhr A. HOBSON: Physics. Concepts and Connections Prentice Hall, Upper Saddle River, A. KOESTLER: Alvajárók Európa Könyvkiadó, Budapest, 1956/1996. MIKONYA GY.: A tanítás mûvészete Oktatás-módszertani kiskönyvtár, Gondolat Kiadó, Budapest, Nemzeti alaptanterv RADNÓTI K.: Az induktív módszer zavarai az oktatásban Iskolakultúra 10 (2000. október) SIMONYI K.: A fizika kultúrtörténete Gondolat Kiadó, Budapest, VEKERDI L.: Így él Galilei Typotex Kiadó, Budapest, NÉMETH L.: Galilei MADÁCH I.: Az ember tragédiája GLOBE AT NIGHT Mi is részt vettünk a felmérésben Nyerges Gyula Zsigmondy Vilmos Gimnázium és Informatikai Szakközépiskola, Dorog Napjainkban számos újságcikk, rádió- és tévémûsor foglalkozik a környezetvédelemmel. Fôleg ezeknek köszönhetô, hogy egyre több figyelmet szentelünk a szabadba kerülô vegyi anyagoknak, veszélyes hulladékoknak, és egyre több olyan élelmiszert fogyasztunk, amelyek elôállításakor kerülték a szintetikus növényvédô- és tartósítószerek használatát. Még a környezetünkre tudatosan odafigyelô emberek némelyike számára is ismeretlen fogalom a fényszennyezés. Mi is ez tulajdonképpen, és miért kell küzdenünk ellene? A fényszennyezés (1. ábra) nem más, mint az esti égbolt mesterséges fényforrásokkal történô felesleges megvilágítása. Idetartoznak az egymást túlharsogó, az eget pásztázó reklámfények, a helytelenül megtervezett vagy kivitelezett közvilágítás, vagy az idegenforgalmi nevezetességek átgondolatlanul megvalósított díszkivilágítása. A fölfelé irányított fény szóródik a felhôkön, a légköri párán és a lebegô porszemcséken. Ezzel nô az égbolt háttérfényessége, csökken a látható égitestek száma, illetve romlik a látvány minôsége. Azt hihetnénk, hogy ez csupán a csillagászattal foglalkozók problémája, valójában azonban sokkal többrôl van szó. A túlzott kivilágítás megzavarja az éjszakai állatok tájékozódását, életritmusát, megváltozik a vándormadarak vonulási útvonala, madarak ezrei, rovarok milliói esnek áldozatul az égre irányított reflektoroknak. 1. ábra. Esti kivilágítás, tipikus fényszennyezés. 240 FIZIKAI SZEMLE 2006 / 7

Földünk a világegyetemben

Földünk a világegyetemben Földünk a világegyetemben A Tejútrendszer a Lokális Galaxiscsoport egyik küllős spirálgalaxisa, melyben a Naprendszer és ezen belül Földünk található. 200-400 milliárd csillag található benne, átmérője

Részletesebben

Kora modern kori csillagászat. Johannes Kepler ( ) A Világ Harmóniája

Kora modern kori csillagászat. Johannes Kepler ( ) A Világ Harmóniája Kora modern kori csillagászat Johannes Kepler (1571-1630) A Világ Harmóniája Rövid életrajz: Született: Weil der Stadt (Német -Római Császárság) Protestáns környezet, vallásos nevelés (Művein érezni a

Részletesebben

CSILLAGÁSZATI TESZT. 1. Csillagászati totó

CSILLAGÁSZATI TESZT. 1. Csillagászati totó CSILLAGÁSZATI TESZT Név: Iskola: Osztály: 1. Csillagászati totó 1. Melyik bolygót nevezzük a vörös bolygónak? 1 Jupiter 2 Mars x Merkúr 2. Melyik bolygónak nincs holdja? 1 Vénusz 2 Merkúr x Szaturnusz

Részletesebben

Földünk a világegyetemben

Földünk a világegyetemben Földünk a világegyetemben A Tejútrendszer a Lokális Galaxiscsoport egyik küllős spirálgalaxisa, melyben a Naprendszer és ezen belül Földünk található. 200-400 milliárd csillag található benne, átmérője

Részletesebben

Foucault ingakísérlete a Szegedi Dómban

Foucault ingakísérlete a Szegedi Dómban Foucault ingakísérlete a Szegedi Dómban 2005. április 13. És mégis mozog a Föld A világról alkotott kép alakulása Ókorban 6 bolygót ismertek (Merkur,..., Szaturnusz) Ptolemaiosz (120-160) A geocentrikus

Részletesebben

A világtörvény keresése

A világtörvény keresése A világtörvény keresése Kopernikusz, Kepler, Galilei után is sokan kételkedtek a heliocent. elméletben Ennek okai: vallási politikai Új elméletek: mozgásformák (egyenletes, gyorsuló, egyenes, görbe vonalú,...)

Részletesebben

A csillagképek története és látnivalói február 14. Bevezetés: Az alapvető égi mozgások

A csillagképek története és látnivalói február 14. Bevezetés: Az alapvető égi mozgások A csillagképek története és látnivalói 2018. február 14. Bevezetés: Az alapvető égi mozgások A csillagok látszólagos mozgása A Föld kb. 24 óra alatt megfordul a tengelye körül a földi megfigyelő számára

Részletesebben

A Föld helye a Világegyetemben. A Naprendszer

A Föld helye a Világegyetemben. A Naprendszer A Föld helye a Világegyetemben A Naprendszer Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. (A fény terjedési sebessége: 300.000 km.s -1.) Egy év alatt: 60.60.24.365.300 000

Részletesebben

Bevezetés A Föld alakja A Föld mozgása Az égitestek mozgása Összefoglalás. Az ókori kozmoszkép. SZE, Fizika és Kémia Tsz. v 1.0

Bevezetés A Föld alakja A Föld mozgása Az égitestek mozgása Összefoglalás. Az ókori kozmoszkép. SZE, Fizika és Kémia Tsz. v 1.0 Fizikatörténet Az ókori kozmoszkép Horváth András SZE, Fizika és Kémia Tsz. v 1.0 Bevezetés AFKT 1.3.3., AFKT 1.4.2., AFKT 1.4.3. Szó értelme: kozmosz = rend. Ősi megfigyelés: az égitestek mozgása rendezettebb,

Részletesebben

BESZÁMOLÓ TÁMOP 4.1.2 08/1/C-2009-0009 KÉPZİK KÉPZÉSE PROGRAM MEGVALÓSÍTÁSÁRÓL Készítette: Dr. habil. Péntek Kálmán

BESZÁMOLÓ TÁMOP 4.1.2 08/1/C-2009-0009 KÉPZİK KÉPZÉSE PROGRAM MEGVALÓSÍTÁSÁRÓL Készítette: Dr. habil. Péntek Kálmán BESZÁMOLÓ TÁMOP 4.1.2 08/1/C-2009-0009 KÉPZİK KÉPZÉSE PROGRAM MEGVALÓSÍTÁSÁRÓL Készítette: Dr. habil. Péntek Kálmán 1. Bevezetés Az általam oktatott tantárgyak közül a Földrajz BSc Matematikai földrajz

Részletesebben

A csillagok fénye 1. Az atomoktól a csillagokig. Dávid Gyula 2016. 01. 21. Az atomoktól a csillagokig dgy 2015. 01. 21.

A csillagok fénye 1. Az atomoktól a csillagokig. Dávid Gyula 2016. 01. 21. Az atomoktól a csillagokig dgy 2015. 01. 21. A csillagok fénye 1. Az atomoktól a csillagokig Dávid Gyula 2016. 01. 21. Az atomoktól a csillagokig dgy 2015. 01. 21. A csillagok fénye 1 Az atomoktól a csillagokig sorozat 150. előadása 2016. 01. 21.

Részletesebben

Hogyan lehet meghatározni az égitestek távolságát?

Hogyan lehet meghatározni az égitestek távolságát? Hogyan lehet meghatározni az égitestek távolságát? Először egy régóta használt, praktikus módszerről lesz szó, amelyet a térképészetben is alkalmaznak. Ez a geometriai háromszögelésen alapul, trigonometriai

Részletesebben

mélységben elsajátíttatni. Így a tanárnak dönteni kell, hogy mi az, amit csak megismertet a fiatalokkal, és mi az, amit mélyebben feldolgoz.

mélységben elsajátíttatni. Így a tanárnak dönteni kell, hogy mi az, amit csak megismertet a fiatalokkal, és mi az, amit mélyebben feldolgoz. FIZIKA B változat A természettudományos kompetencia középpontjában a természetet és a természet működését megismerni igyekvő ember áll. A fizika tantárgy a természet működésének a tudomány által feltárt

Részletesebben

Bevezetés A középkori mechanika Csillagászati eredmények Összefoglalás. SZE, Fizika és Kémia Tsz. v 1.0

Bevezetés A középkori mechanika Csillagászati eredmények Összefoglalás. SZE, Fizika és Kémia Tsz. v 1.0 Fizikatörténet Középkori fizika Horváth András SZE, Fizika és Kémia Tsz. v 1.0 Bevezetés AFKT 2.4.1 AFKT 2.4.7 Aktív kutatás tárgya. Sok mindent elfelejtettünk. Az előzőekből kiderült: fontos dolgok történtek

Részletesebben

Fizika óra. Érdekes-e a fizika? Vagy mégsem? A fizikusok számára ez nem kérdés, ők biztosan nem unatkoznak.

Fizika óra. Érdekes-e a fizika? Vagy mégsem? A fizikusok számára ez nem kérdés, ők biztosan nem unatkoznak. Fizika óra Érdekes-e a fizika? A fizikusok számára ez nem kérdés, ők biztosan nem unatkoznak. A fizika, mint tantárgy lehet ugyan sokak számára unalmas, de a fizikusok világa a nagyközönség számára is

Részletesebben

Természetismereti- és környezetvédelmi vetélkedő

Természetismereti- és környezetvédelmi vetélkedő Miskolc - Szirmai Református Általános Iskola, Alapfokú Művészeti Iskola és Óvoda OM 201802 e-mail: refiskola.szirma@gmail.com 3521 Miskolc, Miskolci u. 38/a. Telefon: 46/405-124; Fax: 46/525-232 Versenyző

Részletesebben

Ptolemaiosz és Kopernikusz összehasonlítása. a szövegek tükrében

Ptolemaiosz és Kopernikusz összehasonlítása. a szövegek tükrében Ptolemaiosz és Kopernikusz összehasonlítása a szövegek tükrében Ptolemaiosz: Almagest 1. sz. közepe Könyvei: Kopernikusz: De Revolutionibus 1543 Könyvei: I. Ált. bevezetés, a világ szerkezete + matematikai

Részletesebben

SZAKMAI BESZÁMOLÓ A TISZAZUGI FÖLDRAJZI MÚZEUM ÉVI MÚZEUMOK ÉJSZAKÁJA PROGRAM MEGVALÓSÍTÁSÁRÓL

SZAKMAI BESZÁMOLÓ A TISZAZUGI FÖLDRAJZI MÚZEUM ÉVI MÚZEUMOK ÉJSZAKÁJA PROGRAM MEGVALÓSÍTÁSÁRÓL SZAKMAI BESZÁMOLÓ A TISZAZUGI FÖLDRAJZI MÚZEUM 2016. ÉVI MÚZEUMOK ÉJSZAKÁJA PROGRAM MEGVALÓSÍTÁSÁRÓL A program címe: Iránya a csillagos ég! - Éjszaka a Tiszazugban Dr. Róka András, főiskolai docens (Kémiai

Részletesebben

A FÖLD KÖRNYEZETE ÉS A NAPRENDSZER

A FÖLD KÖRNYEZETE ÉS A NAPRENDSZER A FÖLD KÖRNYEZETE ÉS A NAPRENDSZER 1. Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. A fény terjedési sebessége: 300.000 km/s, így egy év alatt 60*60*24*365*300 000 km-t,

Részletesebben

A Földtől a Világegyetemig From Earth to the Universe

A Földtől a Világegyetemig From Earth to the Universe A Földtől a Világegyetemig From Earth to the Universe Hungarian narration: Hungarian translation: Consultant: Recording: Editing and post production: Klári Varga András Szepesi, Borbála Kulin György Zajácz,

Részletesebben

Helyi tanterv a Földünk és környezetünk műveltségi területhez. (Földrajz a gimnáziumok 9 10. évfolyama számára / heti 2 + 3 óra)

Helyi tanterv a Földünk és környezetünk műveltségi területhez. (Földrajz a gimnáziumok 9 10. évfolyama számára / heti 2 + 3 óra) Helyi tanterv a Földünk és környezetünk műveltségi területhez (Földrajz a gimnáziumok 9 10. évfolyama számára / heti 2 + 3 óra) FÖLDÜNK KÖRNYEZETÜNK * ALAPELVEK, CÉLOK A Földünk környezetünk műveltségi

Részletesebben

HD ,06 M 5911 K

HD ,06 M 5911 K Bolygó Távolság(AU) Excentricitás Tömeg(Jup.) Tömeg(Nep.) Tömeg(Föld) Sugár(Jup.) Sugár(Nep.) Sugár(Föld) Inklináció( ) Merkúr 0,387 0,206 0,00017 0,0032 0,055 0,0341 0,099 0,382 3,38 Vénusz 0,723 0,007

Részletesebben

Kozmológia. Ajánlott irodalom. Soós Anna

Kozmológia. Ajánlott irodalom. Soós Anna Ajánlott irodalom 1] Leon Sterling: The Art of Prolog, MIT, 1981. 2] Márkusz Zsuzsanna: Prologban programozni könnyû, Novotrade.1988. 3] Makány György: Programozási nyelvek: Prologika. Mikrológia, 1989.

Részletesebben

FÖLDRAJZ (szakközépiskola 3 óra)

FÖLDRAJZ (szakközépiskola 3 óra) FÖLDRAJZ (szakközépiskola 3 óra) A földrajzoktatás megismerteti a tanulókat a szűkebb és tágabb környezet természeti és társadalmi-gazdasági, valamint környezeti jellemzőivel, folyamataival, a környezetben

Részletesebben

XY_TANULÓ FELADATSOR 6. ÉVFOLYAM MATEMATIKA

XY_TANULÓ FELADATSOR 6. ÉVFOLYAM MATEMATIKA XY_TANULÓ FELADATSOR 6. ÉVFOLYAM MATEMATIKA 1. 2. feladat: havi benzinköltség mc01901 Gábor szeretné megbecsülni, hogy autójának mennyi a havi benzinköltsége. Gábor autóval jár dolgozni, és így átlagosan

Részletesebben

A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2019/2020. tanév, 1. félév

A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2019/2020. tanév, 1. félév A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2019/2020. tanév, 1. félév Dr. Paripás Béla 2. Előadás (2019.09.19.) A tárgy lezárásának módja: aláírás + kollokvium A félév során teljesítendő

Részletesebben

2000 év csillagászati könyveiből Kalocsán

2000 év csillagászati könyveiből Kalocsán Csillagászati kiállítás Kiállítás a Csillagászat Nemzetközi Évének tiszteletére 2000 év csillagászati könyveiből Kalocsán Ptolemaiosztól Fényi Gyuláig Válogatás a Kalocsai Érseki Könyvtár csillagászat-történeti

Részletesebben

2017. november Jánossy Zsolt Budapesti POK Digitális Pedagógiai Módszertani Központ

2017. november Jánossy Zsolt Budapesti POK Digitális Pedagógiai Módszertani Központ 2017. november 13-17. Jánossy Zsolt Budapesti POK Digitális Pedagógiai Módszertani Központ A jelen és a jövő KIHÍVÁSOK Kezelhető Autentikus tanulás A tanári szerep újragondolása Rövid távú Kódolás Alkotó

Részletesebben

HELYI TANTERV FIZIKA Tantárgy

HELYI TANTERV FIZIKA Tantárgy Energetikai Szakközépiskola és Kollégium 7030 Paks, Dózsa Gy. út 95. OM 036396 75/519-300 75/414-282 HELYI TANTERV FIZIKA Tantárgy 3 2 2 0 óraszámokra Készítette: Krizsán Árpád munkaközösség-vezető Ellenőrizte:

Részletesebben

Budainé Kántor Éva Reimerné Csábi Zsuzsa Lückl Varga Szidónia

Budainé Kántor Éva Reimerné Csábi Zsuzsa Lückl Varga Szidónia Budainé Kántor Éva Reimerné Csábi Zsuzsa Lückl Varga Szidónia Egyszerű optikai eszközök Lencsék: Domború lencsék: melyeknek közepe vastagabb Homorú lencsék: melyeknek a közepe vékonyabb, mint a széle Tükrök:

Részletesebben

1. Néhány híres magyar tudós nevének betűit összekevertük;

1. Néhány híres magyar tudós nevének betűit összekevertük; 1. Néhány híres magyar tudós nevének betűit összekevertük; Tudod-e, kik ők, es melyik találmány fűződik a nevükhöz az alább felsoroltak közül? MÁJUS NE ONNAN... találmánya:... SOK DELI NYÁJ... találmánya:...

Részletesebben

Speciális mozgásfajták

Speciális mozgásfajták DINAMIKA Klasszikus mechanika: a mozgások leírása I. Kinematika: hogyan mozog egy test út-idő függvény sebesség-idő függvény s f (t) v f (t) s Példa: a 2 2 t v a t gyorsulások a f (t) a állandó Speciális

Részletesebben

Az Univerzum kezdeti állapotáról biztosat nem tudunk, elméletekben azonban nincs hiány. A ma leginkább elfogadott modell, amelyet G.

Az Univerzum kezdeti állapotáról biztosat nem tudunk, elméletekben azonban nincs hiány. A ma leginkább elfogadott modell, amelyet G. A világ keletkezése Az Univerzum kezdeti állapotáról biztosat nem tudunk, elméletekben azonban nincs hiány. A ma leginkább elfogadott modell, amelyet G.Gamov elméleti fizikus dolgozott ki az, ún. "Big-bang",

Részletesebben

Naprendszer mozgásai

Naprendszer mozgásai Bevezetés a csillagászatba 2. Muraközy Judit Debreceni Egyetem, TTK 2017. 09. 28. Bevezetés a csillagászatba- Naprendszer mozgásai 2017. szeptember 28. 1 / 33 Kitekintés Miről lesz szó a mai órán? Naprendszer

Részletesebben

A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2016/2017. tanév, 1. félév

A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2016/2017. tanév, 1. félév A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2016/2017. tanév, 1. félév Dr. Paripás Béla 2. Előadás (2016.09.15.) A tárgy lezárásának módja: aláírás + kollokvium A félév során teljesítendő

Részletesebben

Csillagászati földrajz I-II.

Csillagászati földrajz I-II. Tantárgy neve Csillagászati földrajz I-II. Tantárgy kódja FDB1305; FDB1306 Meghirdetés féléve 2 Kreditpont 2+1 Összóraszám (elm.+gyak.) 1+0, 0+1 Számonkérés módja kollokvium + gyakorlati jegy Előfeltétel

Részletesebben

FÖLDRAJZ (gimnázium 2+2)

FÖLDRAJZ (gimnázium 2+2) FÖLDRAJZ (gimnázium 2+2) A földrajzoktatás megismerteti a tanulókat a szűkebb és tágabb környezet természeti és társadalmigazdasági, valamint környezeti jellemzőivel, folyamataival, a környezetben való

Részletesebben

A galaxisok csoportjai.

A galaxisok csoportjai. A galaxisok csoportjai. Hubble ismerte fel és bizonyította, hogy a megfigyelhető ködök jelentős része a Tejútrendszeren kívül található. Mivel több galaxis távolságát határozta meg, ezért úgy gondolta,

Részletesebben

A világegyetem szerkezete és fejlődése. Összeállította: Kiss László

A világegyetem szerkezete és fejlődése. Összeállította: Kiss László A világegyetem szerkezete és fejlődése Összeállította: Kiss László Szerkezeti felépítés A világegyetem galaxisokból és galaxis halmazokból áll. A galaxis halmaz, gravitációsan kötött objektumok halmaza.

Részletesebben

Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt

Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt Lendület, lendületmegmaradás Ugyanakkora sebességgel mozgó test, tárgy nagyobb erőhatást fejt ki ütközéskor, és csak nagyobb erővel fékezhető, ha nagyobb a tömege. A tömeg és a sebesség együtt jellemezheti

Részletesebben

Csillagászati földrajz/csillagászati földrajz I. (Elmélet)

Csillagászati földrajz/csillagászati földrajz I. (Elmélet) Kurzus kódja és kreditszáma: Csillagászati földrajz/csillagászati földrajz I. (Elmélet) FDB1305 FDB1305L FDO1103 (2 kredit) (2 kredit) (4 kredit) A tantárgy teljesítésének feltétele: szóbeli kollokvium

Részletesebben

Világos?! (Nem csak) egy természettudományos projekt története. Jánossy Zsolt Gödöllői Török Ignác Gimnázium IPET

Világos?! (Nem csak) egy természettudományos projekt története. Jánossy Zsolt Gödöllői Török Ignác Gimnázium IPET Világos?! (Nem csak) egy természettudományos projekt története Jánossy Zsolt Gödöllői Török Ignác Gimnázium IPET 60. Országos Fizikatanári Ankét és Eszközbemutató 2017. március 15-18. A projekt születése

Részletesebben

Fizika példák a döntőben

Fizika példák a döntőben Fizika példák a döntőben F. 1. Legyen két villamosmegálló közötti távolság 500 m, a villamos gyorsulása pedig 0,5 m/s! A villamos 0 s időtartamig gyorsuljon, majd állandó sebességgel megy, végül szintén

Részletesebben

Csillagászati eszközök. Űrkutatás

Csillagászati eszközök. Űrkutatás Csillagászati eszközök Űrkutatás Űrkutatás eszközei, módszerei Optikai eszközök Űrszondák, űrtávcsövek Ember a világűrben Műholdak Lencsés távcsövek Első távcső: Galilei (1609) Sok optikai hibája van.

Részletesebben

Tömegvonzás, bolygómozgás

Tömegvonzás, bolygómozgás Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test

Részletesebben

BevCsil1 (Petrovay) A Föld alakja. Égbolt elfordul világtengely.

BevCsil1 (Petrovay) A Föld alakja. Égbolt elfordul világtengely. A FÖLD GÖMB ALAKJA, MÉRETE, FORGÁSA A Föld alakja Égbolt elfordul világtengely. Vízszintessel bezárt szöge helyfüggő földfelszín görbült. Dupla távolság - dupla szögváltozás A Föld gömb alakú További bizonyítékok:

Részletesebben

Apor Vilmos Katolikus Iskolaközpont. Helyi tanterv. Fizika. készült. a 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 9-11./3.2.08.2.

Apor Vilmos Katolikus Iskolaközpont. Helyi tanterv. Fizika. készült. a 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 9-11./3.2.08.2. 1 Apor Vilmos Katolikus Iskolaközpont Helyi tanterv Fizika készült a 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 9-11./3.2.08.2. alapján 9-11. évfolyam 2 Célunk a korszerű természettudományos világkép

Részletesebben

Fizika helyi tanterv

Fizika helyi tanterv Fizika helyi tanterv A természettudományos kompetencia középpontjában a természetet és a természet működését megismerni igyekvő ember áll. A fizika tantárgy a természet működésének a tudomány által feltárt

Részletesebben

SZE, Fizika és Kémia Tsz. v 1.0

SZE, Fizika és Kémia Tsz. v 1.0 Fizikatörténet A fénysebesség mérésének története Horváth András SZE, Fizika és Kémia Tsz. v 1.0 Kezdeti próbálkozások Galilei, Descartes: Egyszerű kísérletek lámpákkal adott fényjelzésekkel. Eredmény:

Részletesebben

Csillagászati földrajz

Csillagászati földrajz Csillagászati földrajz Földrajzi diszciplína: a Földre (is) vonatkozó csillagászati ismereteket gyűjti össze és rendszerezi a földrajztudomány kívánalmai és szempontjai szerint Csillagászati földrajz csillagászat

Részletesebben

FILOZÓFIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FILOZÓFIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Filozófia középszint 1511 ÉRETTSÉGI VIZSGA 2015. október 15. FILOZÓFIA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A rész (30 pont) 1. feladat Írja

Részletesebben

NT-17105 Fizika 9. (Fedezd fel a világot!) Tanmenetjavaslat

NT-17105 Fizika 9. (Fedezd fel a világot!) Tanmenetjavaslat NT-17105 Fizika 9. (Fedezd fel a világot!) Tanmenetjavaslat A fizika tankönyvcsalád és a tankönyv célja A Fedezd fel a világot! című természettudományos tankönyvcsalád fizika sorozatának első köteteként

Részletesebben

T E M A T I K A. Óvó- és Tanítóképző Intézet

T E M A T I K A. Óvó- és Tanítóképző Intézet Óvó- és Tanítóképző Intézet T E M A T I K A a tanító szakos hallgatók számára TERMÉSZETTUDOMÁNY A HÉTKÖZNAPOKBAN (CB3313) oktatáshoz 2018/2019. tanév I. félév Heti óraszám: 0 óra előadás 1 óra szeminárium

Részletesebben

A BIOLÓGIAÉRETTSÉGI VIZSGA MÓDOSÍTÁSAI

A BIOLÓGIAÉRETTSÉGI VIZSGA MÓDOSÍTÁSAI XXI. Századi Közoktatás (fejlesztés, koordináció) II. szakasz TÁMOP-3.1.1-11/1-2012-0001 A BIOLÓGIAÉRETTSÉGI VIZSGA MÓDOSÍTÁSAI Biológiaérettségi vizsga 2015 A biológia érettségi vizsga a nemzeti alaptantervben

Részletesebben

Készítette: Jankay Éva Brenyóné Malustyik Zsuzsa

Készítette: Jankay Éva Brenyóné Malustyik Zsuzsa SZÖVEGÉRTÉS-SZÖVEGALKOTÁS Fizika 9. évfolyam TANULÓI MUNKAFÜZET Készítette: Jankay Éva Brenyóné Malustyik Zsuzsa 3 A fizikai megismerés módszerei 11 Periodikus mozgások A lendületmegmaradás törvénye 22

Részletesebben

Tartalomjegyzék. Tanmenetek és szakmódszertani felvetések. 1. Szakmódszertani felvetések, javaslatok! 2. Fizika tanmenet 9. osztály (heti 2 óra)

Tartalomjegyzék. Tanmenetek és szakmódszertani felvetések. 1. Szakmódszertani felvetések, javaslatok! 2. Fizika tanmenet 9. osztály (heti 2 óra) Tartalomjegyzék ek és szakmódszertani felvetések 1. Szakmódszertani felvetések, javaslatok! 2 2. Fizika tanmenet 9. osztály (heti 2 óra) 5 3. Fizika tanmenet 9. osztály (heti 1,5 óra) 18 1 Bevezetô szakmódszertani

Részletesebben

JOHANNES KEPLER (Weil der Stadt, december 27. Regensburg, Bajorország, november 15.)

JOHANNES KEPLER (Weil der Stadt, december 27. Regensburg, Bajorország, november 15.) SZABÁLYOS TESTEK JOHANNES KEPLER (Weil der Stadt, 1571. december 27. Regensburg, Bajorország, 1630. november 15.) Német matematikus és csillagász, aki felfedezte a bolygómozgás törvényeit, amiket róla

Részletesebben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma

Részletesebben

Ókori görög csillagászat

Ókori görög csillagászat Ókori görög csillagászat * Kroton * Milétosz Ión filozófusok (i.e. 6.sz.) központ: Milétosz Milétoszi Thálész (i.e. 624-547) Anaximandrosz (i.e. 611-546) Anaximenész (~ i.e. 528) Milétoszi Thálész (i.e.

Részletesebben

Összeállította: Juhász Tibor 1

Összeállította: Juhász Tibor 1 A távcsövek típusai Refraktorok és reflektorok Lencsés távcső (refraktor) Galilei, 1609 A TÁVCSŐ objektív Kepler, 1611 Tükrös távcső (reflektor) objektív Newton, 1668 refraktor reflektor (i) Legnagyobb

Részletesebben

FIZIKA helyi tanterv Általános tantervű, 9-12 évfolyamos gimnáziumok számára. (készült a B kerettantervi változat alapján)

FIZIKA helyi tanterv Általános tantervű, 9-12 évfolyamos gimnáziumok számára. (készült a B kerettantervi változat alapján) FIZIKA helyi tanterv Általános tantervű, 9-12 évfolyamos gimnáziumok számára. (készült a B kerettantervi változat alapján) Célunk a korszerű természettudományos világkép alapjainak és a mindennapi élet

Részletesebben

A FÖLD-HOLD RENDSZER MODELLJE

A FÖLD-HOLD RENDSZER MODELLJE ELTE TTK KOZMIKUS ANYAGOKAT VIZSGÁLÓ ŰRKUTATÓ CSOPORT PLANETOLÓGIAI KÖRE OKTATÓI SEGÉDANYAG KÖZÉPISKOLA 8-12. OSZTÁLY A FÖLD-HOLD RENDSZER MODELLJE BOLYGÓTUDOMÁNY A jelen kiadvány elérhető elektronikus

Részletesebben

Bolygómozgás. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József

Bolygómozgás. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József Bolygómozgás Számítógépes szimulációk fn1n4i11/1 Csabai István, Stéger József ELTE Komplex Rendszerek Fizikája Tanszék Email: csabai@complex.elte.hu, steger@complex.elte.hu Bevezetés Egy Nap körül kering

Részletesebben

TÁNC ÉS DRÁMA 612 TÁNC ÉS DRÁMA 5. ÉVFOLYAM

TÁNC ÉS DRÁMA 612 TÁNC ÉS DRÁMA 5. ÉVFOLYAM TÁNC ÉS DRÁMA 612 TÁNC ÉS DRÁMA 5. ÉVFOLYAM TÁNC ÉS DRÁMA 613 CÉLOK ÉS FELADATOK A Tánc és dráma tantárgy tanterve nem elméleti ismeretek tanítását helyezi a középpontba, hanem a drámajáték eszköztárának

Részletesebben

A Tanév itt kezdődik! EMBER ÉS TERMÉSZET MŰVELTSÉGTERÜLET A NAT-BAN ÉS A KERETTANTERVEKBEN

A Tanév itt kezdődik! EMBER ÉS TERMÉSZET MŰVELTSÉGTERÜLET A NAT-BAN ÉS A KERETTANTERVEKBEN A Tanév itt kezdődik! EMBER ÉS TERMÉSZET MŰVELTSÉGTERÜLET A NAT-BAN ÉS A KERETTANTERVEKBEN Egy kis ismétlés Nemzeti alaptanterv EMBER ÉS TERMÉSZET MŰVELTSÉGTERÜLET (II.3.5) A, Alapelvek, célok Természettudományos

Részletesebben

Newton törvények és a gravitációs kölcsönhatás (Vázlat)

Newton törvények és a gravitációs kölcsönhatás (Vázlat) Newton törvények és a gravitációs kölcsönhatás (Vázlat) 1. Az inerciarendszer fogalma. Newton I. törvénye 3. Newton II. törvénye 4. Newton III. törvénye 5. Erők szuperpozíciójának elve 6. Különböző mozgások

Részletesebben

Legyen képes egyszerű megfigyelési, mérési folyamatok megtervezésére, tudományos ismeretek megszerzéséhez célzott kísérletek elvégzésére.

Legyen képes egyszerű megfigyelési, mérési folyamatok megtervezésére, tudományos ismeretek megszerzéséhez célzott kísérletek elvégzésére. Fizika 7. osztály A tanuló használja a számítógépet adatrögzítésre, információgyűjtésre. Eredményeiről tartson pontosabb, a szakszerű fogalmak tudatos alkalmazására törekvő, ábrákkal, irodalmi hivatkozásokkal

Részletesebben

Kozmológia. III. rész

Kozmológia. III. rész Ennek elõnye, hogy az STN (Super Twisted Nematic, azaz passzív mátrix) kijelzõknél jobb kontrasztot, gyorsabb frissítési sebességet tesz lehetõvé, miközben ára lényegesen alacsonyabb a TFT-nél. A folyadékkristályos

Részletesebben

4. osztályos feladatsor II. forduló 2016/2017. tanév

4. osztályos feladatsor II. forduló 2016/2017. tanév Miskolc - Szirmai Református Általános Iskola, AMI és Óvoda OM 201802 e-mail: refiskola.szirma@gmail.com 3521 Miskolc, Miskolci u. 38/a. Telefon: 46/405-124; Fax: 46/525-232 4. osztályos feladatsor II.

Részletesebben

A fizikaoktatás jövője a felsőfokú alapképzésben

A fizikaoktatás jövője a felsőfokú alapképzésben A fizikaoktatás jövője a felsőfokú alapképzésben Radnóti Katalin ELTE TTK Fizikai Intézet Főiskolai tanár rad8012@helka.iif.hu http://members.iif.hu/rad8012/ Békéscsaba 2010. augusztus 26. Az előadásban

Részletesebben

FOGALOMTÁR 9. évfolyam I. témakör A Föld és kozmikus környezete

FOGALOMTÁR 9. évfolyam I. témakör A Föld és kozmikus környezete FOGALOMTÁR 9. évfolyam I. témakör A Föld és kozmikus környezete csillag: csillagrendszer: Nap: Naprendszer: a Naprendszer égitestei: plazmaállapot: forgás: keringés: ellipszis alakú pálya: termonukleáris

Részletesebben

Mi a fata morgana? C10:: légköri tükröződési jelenség leképezési hiba arab terrorszervezet a sarki fény népies elnevezése

Mi a fata morgana? C10:: légköri tükröződési jelenség leképezési hiba arab terrorszervezet a sarki fény népies elnevezése A fény melyik tulajdonságával magyarázható, hogy a vizes aszfalton elterülő olajfolt széleit olyan színesnek látjuk, mint a szivárványt? C1:: differencia interferencia refrakció desztilláció Milyen fényjelenségen

Részletesebben

A TERMÉSZETTUDOMÁNYI TUDÁS ONLINE DIAGNOSZTIKUS ÉRTÉKELÉSÉNEK TARTALMI KERETEI

A TERMÉSZETTUDOMÁNYI TUDÁS ONLINE DIAGNOSZTIKUS ÉRTÉKELÉSÉNEK TARTALMI KERETEI A TERMÉSZETTUDOMÁNYI TUDÁS ONLINE DIAGNOSZTIKUS ÉRTÉKELÉSÉNEK TARTALMI KERETEI Szerkesztette: Csapó Benő Korom Erzsébet Molnár Gyöngyvér OKTATÁSKUTATÓ ÉS FEJLESZTŐ INTÉZET A természettudományi tudás online

Részletesebben

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?

Részletesebben

KOZMIKUS KÖRNYEZETÜNK

KOZMIKUS KÖRNYEZETÜNK KOZMIKUS KÖRNYEZETÜNK 1. Hogyan épül fel a ma ismert világegyetem? Helyezze el a fogalmakat a megfelelő csoportokba! Nevezze meg a hiányzó csoportokat! 2.Egészítse ki, és lássa el magyarázattal (számok

Részletesebben

Milyen a modern matematika?

Milyen a modern matematika? Milyen a modern matematika? Simonovits Miklós Milyen a modern matematika? p.1 Miért rossz ez a cím? Nem világos, mit értek modern alatt? A francia forradalom utánit? Általában olyat tanulunk, amit már

Részletesebben

mélységben elsajátítatni. Így a tanárnak dönteni kell, hogy mi az, amit csak megismertet a fiatalokkal, és mi az, amit mélyebben feldolgoz.

mélységben elsajátítatni. Így a tanárnak dönteni kell, hogy mi az, amit csak megismertet a fiatalokkal, és mi az, amit mélyebben feldolgoz. FIZIKA B változat A természettudományos kompetencia középpontjában a természetet és a természet működését megismerni igyekvő ember áll. A fizika tantárgy a természet működésének a tudomány által feltárt

Részletesebben

Herceg Esterházy Miklós Szakképző Iskola Speciális Szakiskola és Kollégium TANMENET. Természetismeret. tantárgyból

Herceg Esterházy Miklós Szakképző Iskola Speciális Szakiskola és Kollégium TANMENET. Természetismeret. tantárgyból Herceg Esterházy Miklós Szakképző Iskola Speciális Szakiskola és Kollégium TANMENET a Természetismeret tantárgyból a TÁMOP-2.2.5.A-12/1-2012-0038 Leleményesen, élményekkel, Társakkal rendhagyót alkotni

Részletesebben

Mit nézel a Facebookon? Kutatás: Mit nézel a Facebookon? Báder Szabolcs

Mit nézel a Facebookon? Kutatás: Mit nézel a Facebookon? Báder Szabolcs Mit nézel a Facebookon? Kutatás: Mit nézel a Facebookon? Báder Szabolcs Kutatás: Mit nézel a Facebookon? Miért végeztük el ezt a kutatást és kik vagyunk? Eye-tracking alapjai a kutatás értelmezéséhez Az

Részletesebben

Iskolakód 2008/2009. S ZÖVEGÉRTÉS 8. év f olyam. Az iskola Név:... Osztály: bélyegzője:

Iskolakód 2008/2009. S ZÖVEGÉRTÉS 8. év f olyam. Az iskola Név:... Osztály: bélyegzője: Mérei Ferenc Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 1088 Budapest, Vas utca 8-10. Iskolakód 5 Évfolyam Osztálykód Naplósorszám Nem 2008/2009. S ZÖVEGÉRTÉS 8. év f olyam Az iskola Név:...

Részletesebben

A modern fizika születése

A modern fizika születése MODERN FIZIKA A modern fizika születése Eddig: Olyan törvényekkel ismerkedtünk meg melyekhez tapasztalatokat a mindennapi életből is szerezhettünk. Klasszikus fizika: mechanika, hőtan, elektromosságtan,

Részletesebben

S.sz. Név Hol végzett Szakképesítés Osztályfőnök Beosztás Tanított tárgy

S.sz. Név Hol végzett Szakképesítés Osztályfőnök Beosztás Tanított tárgy Benka Gyula Evangélikus Általános Iskola és Óvoda, 5540, Kossuth u. 17 (alsó tagozat) S.sz. Név Hol végzett Szakképesítés Osztályfőnök Beosztás Tanított tárgy 1 Pedagógus 1 i Brunszvik Teréz Óvóképző Intézet,

Részletesebben

PARADIGMAVÁLTÁS A KÖZOKTATÁSBAN MOST VAGY SOHA?!

PARADIGMAVÁLTÁS A KÖZOKTATÁSBAN MOST VAGY SOHA?! PARADIGMAVÁLTÁS A KÖZOKTATÁSBAN MOST VAGY SOHA?! ÁDÁM PÉTER NEMZETI PEDAGÓGUS KAR TANÉVNYITÓ SZAKMAI NAP 2016. AUGUSZTUS 29. Előzmények 1868 Eötvös József kötelező népoktatás (66 %) 1928 Klebelsberg K.

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú

Részletesebben

Kettőscsillagok vizuális észlelése. Hannák Judit

Kettőscsillagok vizuális észlelése. Hannák Judit Kettőscsillagok vizuális észlelése Hannák Judit Miért észleljünk kettősöket? A kettőscsillagok szépek: Rengeteg féle szín, fényesség, szinte nincs is két egyforma. Többes rendszerek különösen érdekesek.

Részletesebben

Az éggömb. Csillagászat

Az éggömb. Csillagászat Az éggömb A csillagászati koordináta-rendszerek típusai topocentrikus geocentrikus heliocentrikus baricentrikus galaktocentrikus alapsík, kiindulási pont, körüljárási irány (ábra forrása: Marik Miklós:

Részletesebben

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,

Részletesebben

FIZIKA. helyi programja. tantárgy. Készült a Katolikus Pedagógia Szervezési és Továbbképzési Intézet által készített kerettanterv alapján.

FIZIKA. helyi programja. tantárgy. Készült a Katolikus Pedagógia Szervezési és Továbbképzési Intézet által készített kerettanterv alapján. FIZIKA tantárgy helyi programja Készült a Katolikus Pedagógia Szervezési és Továbbképzési Intézet által készített kerettanterv alapján. 2013 Alapóraszámú FIZIKA helyi tanterv a szakközépiskolák számára

Részletesebben

Fizika. Fejlesztési feladatok

Fizika. Fejlesztési feladatok Fizika Célok és feladatok A természettudományos kompetencia középpontjában a természetet és a természet működését megismerni, megvédeni igyekvő ember áll. A fizika tantárgy a természet működésének a tudomány

Részletesebben

CSILLAGÁSZATI HÉT BEREKFÜRDŐN AZ EGRI VARÁZSTORONY SZERVEZÉSÉBEN JÚLIUS 7-13.

CSILLAGÁSZATI HÉT BEREKFÜRDŐN AZ EGRI VARÁZSTORONY SZERVEZÉSÉBEN JÚLIUS 7-13. 2014. 07. 7. Hétfő Kísérletek héliummal, Időpont:, Hely: Bod László Művelődési Ház, (ea: Dr. Vida József, Zoller Gábor). Történelmi nap-és holdfogyatkozások, A diaképes előadás során, megismerkedhetünk

Részletesebben

Fejlesztendő területek, kompetenciák:

Fejlesztendő területek, kompetenciák: FIZIKA Az általános iskolai fizikatanítás az 1 4. évfolyamon tanított környezetismeret, valamint az 5 6. évfolyamon tanított természetismeret tantárgyak szerves folytatása. A 7 8. évfolyamon a fizika tantárgy

Részletesebben

Atommodellek. Ha nem tudod egy pincérnőnek elmagyarázni a fizikádat, az valószínűleg nem nagyon jó fizika. Rausch Péter kémia-környezettan tanár

Atommodellek. Ha nem tudod egy pincérnőnek elmagyarázni a fizikádat, az valószínűleg nem nagyon jó fizika. Rausch Péter kémia-környezettan tanár Atommodellek Ha nem tudod egy pincérnőnek elmagyarázni a fizikádat, az valószínűleg nem nagyon jó fizika. Ernest Rutherford Rausch Péter kémia-környezettan tanár Modellalkotás A modell a valóság nagyított

Részletesebben

A törzsszámok sorozatáról

A törzsszámok sorozatáról A törzsszámok sorozatáról 6 = 2 3. A 7 nem bontható fel hasonló módon két tényez őre, ezért a 7-et törzsszámnak nevezik. Törzsszámnak [1] nevezzük az olyan pozitív egész számot, amely nem bontható fel

Részletesebben

A fizika kétszintű érettségire felkészítés legújabb lépései Összeállította: Bánkuti Zsuzsa, OFI

A fizika kétszintű érettségire felkészítés legújabb lépései Összeállította: Bánkuti Zsuzsa, OFI A fizika kétszintű érettségire felkészítés legújabb lépései Összeállította: Bánkuti Zsuzsa, OFI (fizika munkaközösségi foglalkozás fóliaanyaga, 2009. április 21.) A KÉTSZINTŰ FIZIKAÉRETTSÉGI VIZSGAMODELLJE

Részletesebben

A természe*smeret és a természe,udományok (iskolai tantárgy) Makádi Mariann

A természe*smeret és a természe,udományok (iskolai tantárgy) Makádi Mariann A természe*smeret és a természe,udományok (iskolai tantárgy) Makádi Mariann Hogyan lesz a természe*smeret- környeze,an tanár? 6. félév: a természetismerettanítás módszertana 1 óra előadás + 3 óra gyak.

Részletesebben

Fizikatörténeti áttekintő érettségire készülőknek

Fizikatörténeti áttekintő érettségire készülőknek Előszó A fizika érettségi tematikájában szereplő személyek életének, munkásságának rövid szöveges áttekintője. Szerkeszti: Török Péter 2006.03.20-i változat www.peter.hu Előszó Arkhimédész: (Kr. e. 287-212)

Részletesebben

CSILLAGÁSZATI HÉT BEREKFÜRDŐN AZ EGRI VARÁZSTORONY SZERVEZÉSÉBEN JÚLIUS

CSILLAGÁSZATI HÉT BEREKFÜRDŐN AZ EGRI VARÁZSTORONY SZERVEZÉSÉBEN JÚLIUS CSILLAGÁSZATI HÉT BEREKFÜRDŐN AZ EGRI VARÁZSTORONY SZERVEZÉSÉBEN 2012. JÚLIUS 02-08. 2012. 07. 02. Hétfő Előadó: Bölcskey Miklós, Vasné Tana Judit Földünk kísérője a Hold Vetítettképes csillagászati előadás.

Részletesebben

mélységben elsajátítatni. Így a tanárnak dönteni kell, hogy mi az, amit csak megismertet a fiatalokkal, és mi az, amit mélyebben feldolgoz.

mélységben elsajátítatni. Így a tanárnak dönteni kell, hogy mi az, amit csak megismertet a fiatalokkal, és mi az, amit mélyebben feldolgoz. FIZIKA B változat A természettudományos kompetencia középpontjában a természetet és a természet működését megismerni igyekvő ember áll. A fizika tantárgy a természet működésének a tudomány által feltárt

Részletesebben

Otthoni mérési versenyfeladat éves korcsoport számára

Otthoni mérési versenyfeladat éves korcsoport számára Otthoni mérési versenyfeladat 15-16 éves korcsoport számára A napelemcella hatásfokának kísérleti vizsgálata A XXI. század modern technikája az elektromos energiára épül. Az egyre növekvő elektromos energiaigény

Részletesebben

Természetismeret. 1. A természettudományos nevelés folyamatában történő kompetenciafejlesztés lehetőségei az alsó tagozaton.

Természetismeret. 1. A természettudományos nevelés folyamatában történő kompetenciafejlesztés lehetőségei az alsó tagozaton. Természetismeret 1. A természettudományos nevelés folyamatában történő kompetenciafejlesztés lehetőségei az alsó tagozaton. 1. Tervezzen egymásra épülő tevékenységeket az élő környezet megismerésére vonatkozóan!

Részletesebben