Elektron-gyorsítás Alfvén-hullám impluzusok által aktív galaxismagokban
|
|
- Ervin Boros
- 8 évvel ezelőtt
- Látták:
Átírás
1 Elektron-gyorsítás Alfvén-hullám impluzusok által aktív galaxismagokban Előadó: Kun Emma, PhD hallgató, SZTE Témavezető: Gergely Árpád László, SZTE Munkatársak: Horváth Zsolt, SZTE Keresztes Zoltán, SZTE Gabányi Krisztina Éva, SZTE, CSFK KTM FIKUT VII, 2014, Budapest
2 Tartalom Ultranagy Energiájú Kozmikus Részecskék Elektrongyorsításos mechanizmusok Alfvén-hullám impulzus Asztrofizikai alkalmazás és első eredmények
3 UHECRs Első detektálás 1962-ben (J. Linsley, 1963, Phys. Rev. Lett ) Nagyenergiájú, nyugalmi tömeggel rendelkező töltött részecskék Kinetikus energia ev ev Elsődleges UHECRs Extragalaktikus eredetű α, p +, e -, kevés antianyag Másodlagos UHECRs Az elsődleges részecske belép a Föld légkörébe, ütközik annak részecskéivel, és a kölcsönhatás másodlagos részecskék kaszkádját indítja el γ, p +, e -, n 0, π +, π -, π 0, μ - (
4 AGN-ek (VCV katalógus, z < 0.018, D < 75 Mpc, vörös x-ek) 27 UHECR esemény, E > 5.7x10 19 ev (GZK limit), fekete körök (3.2 o ) A Pierre Auger Observatory látómezeje (egyenes vonalak között) Egyenlő expozíciók (a kéken satírozott részek) A szaggatott vonal a Szupergalaktikus síkot, a fehér pont a Centaurus A-t jelzi (A. V. Olinto et al, 2009, The Astronomy and Astrophysics Decadal Survey, White Paper on Ultra-High Energy Cosmic Rays)
5 Aktív galaxismagok A központi égitest egy naptömegű fekete lyuk Az akkréció szolgáltatja az energiaforrást Az észlelt AGN típus a jetre való rálátási szögtől függ ( Brooks/Cole Thomson Learning)
6 Asztrofizikai gyorsítás Fermi gyorsítás Töltött részecskék energiát nyernek ütközésekből, mágneses közegben Hillas kritérium W max ~ z (B/1μG) (R/1 kpc) EeV z töltés B mágneses térerősség R a gyorsító közeg mérete W max ~10 20 ev Neutroncsillag, AGN, GRB, sokkok az intergalaktikus közegben Problémák a Fermi folyamattal túl sok ütközés kell ilyen nagyenergiákra való gyorsításhoz többszörös ütközések, inkoherens és sztochasztikus gyorsítások a szinkrotron emisszió energiát visz el Alternatív mechanizmus szükséges, ami képes nagy energiákra gyorsítani p +,e -,n 0 -at, kozmikus feltételek mellett
7 EM hullám és részecske kölcsönhatás "wakefield" gyorsítás nem a részecskék egymás közötti kölcsönhatása okozza, hanem egy "külső" elektromágneses hullám A hullám terjedési sebessége közel a fénysebesség Relativisztikus amplitúdó A részecske relativisztikus sebességre gyorsul egy oszcillációs periódus alatt E: elektromos tér (hullám) ω: frekvencia (hullám) e j : töltés (részecske) m j : nyugalmi tömeg (részecske) A gyorsító tér és a részecskék egy irányba mozognak közel hasonló sebességgel Az egyenes vonalú terjedés miatt nincs szinkrotron emisszió
8 Alfvén hullámok Neutroncsillagok ütközésénél ev -ra gyorsít speciális körülmények között Alfvén hullám analógia: hullám terjed egy kifeszített kötél mentén mágneses feszültség szolgáltatja a visszatérítő erőt "magnetic tension" [N/m 3 ] töltött részecskék együtt oszcillálnak a mágneses térrel transzverzális és diszperziómentes ( L. H. Lyu and M. Q. Chen, Institute of Space Science)
9 Alfvén-hullám impulzus generálása Erősen és gyengén mágnesezett állapotú anyaggyűrűk váltakoznak az akkréciós korongban Erős Alfvén-hullám impulzusok generálódnak a korongban az átmeneteknél
10 Vektorpotenciál a = (0, a exp r2 r 0 2 cos kz ωt e x, 0, 0) a z, axiális koordináta r, radiális koordináta (y=0)
11 Vektorpotenciál r: radiális koordináta (m) z: axiális koordináta (m) r 0 : a nyalábnyak átmérője (m) k=2π/λ A : hullámszám (1/m) ω=ck: frekvencia (1/s) z: terjedési irány, axiális koordináta (m) A bemenő paraméterek 2π/ω A =2.0x10 2 x(m/0.1)(m/10 8 ) s λ A =5.8x10 10 x (m/0.1)(m/10 8 ) m a 0 =2.3x10 10 x(m/0.1) 3/2 (m/10 8 ) 1/2 (D/3R g ) -1/2 V A =2.4x10 7 (m/0.1) m: m 0 akkréciós ráta normálva m c kritikus akkréciós rátával (m c =L Edd /0.06c 2 )) m: központi fekete lyuk tömege napegységben D: a fekete lyukhorizontjától való távolság a jet mentén n e (r, γ e )=n 1 (r/1pc) -n γ e -(2α+1), elektronsűrűség γ e : elektron Lorentz faktor n1: forrás-függő normáló faktor (1/cm 3 ) n: a jet geometriájától függő konstans (n=2 folytonos jet) r: távolság a magtól (pc) α: spektrálindex a = a 0 exp r2 r 0 2 cos kz ωt e x R s =2Gm/c 2 L Edd =1.26x10 31 (m/m Nap ) W
12 Első eredmények Minkowski téridőben érvényesek a számolások Hengerszimmetrikus koordinátarendszer 2D (ct, r, z függés, φ=0) Paramétertér próbálgatása, karakterisztikus viselkedés leírása r 0 =1000m, z 0 =0, az elektron kezdeti koordinátái v r =0, v z =0.0001c, az elektron kezdősebessége m [m Nap ] [10 6,10 7,10 8,10 9 ] szupermasszív fekete lyuk m 0 [m Nap /év] [0.01, 0.1, 0.5, 1] D[R s ] [10,100]
13 m=10 6 M Nap D=10 R s m0=0.01 m0=0.10 m0=0.50 m0=1.00 m=10 m=10 6 M 6 Nap M Nap D=100 D=100 R s R s m0=0.01 m0=0.10 m0=0.50 m0=1.00 m 0 =0.01 M Nap /év, m=0.002x m Edd (ADAF) Adott z, m 0 D növekszik, a felgyorsult elektron z tengelytől való kitérésének mértéke növekszik Adott z, D m 0 növekszik, a felgyorsult elektron z tengelytől való kitérésének mértéke növekszik m 0 =0.10 M Nap /év m=0.027x m Edd m 0 =0.50 M Nap /év m=0.135x m Edd m 0 =1.00 M Nap /év m=0.263x m Edd
14 m=10 6 M Nap,D=10 R s m0=0.01 m0=0.10 m0=0.50 m0=1.00 Erős r irányú lökés éri az elektront, az gyorsul, sebessége elér egy maximális értéket, majd lassul és sebessége beáll egy konstans értékre
15 m=10 6 M Nap,D=100 R s m0=0.01 m0=0.10 m0=0.50 m0=1.00 Távolabb a horizonttól később éri el a sebesség a maximum értékét, viszont adott akkréciós rátához nagyobb végsebesség tartozik
16 m=10 6 M Nap,D=10 R s m0=0.01 m0=0.10 m0=0.50 m0=1.00 Az elektron z irányú sebessége közel a fénysebesség lesz ~0.001s alatt
17 m=10 6 M Nap,D=100 R s m0=0.01 m0=0.10 m0=0.50 m0=1.00 Távolabb a horizonttól a z irányú végsebesség kisebb
18 m0=0.01 m0=0.10 m0=0.50 m0=1.00 m=10 8 M Nap D=10 R s Hasonló karakterisztikus viselkedés mint a kisebb tömegű fekete lyuk esetén m0=0.01 m0=0.10 m0=0.50 m0=1.00 m=10 8 M Nap D=100 R s
19 m=10 8 M Nap,D=10 R s m0=0.01 m0=0.10 m0=0.50 m0=1.00 m 0 =0.01 M Nap /év, m=10-5 x m Edd m 0 =0.10 M Nap /év m=2.7x10-4 x m Edd m 0 =0.50 M Nap /év m=0.001x m Edd m 0 =1.00 M Nap /év m=0.0027x m Edd Nagyobb akkréciós ráta, kisebb radiális irányú végsebesség, a sebességderivált nem vált előjelet
20 m=10 8 M Nap,D=100 R s m0=0.01 m0=0.10 m0=0.50 m0=1.00
21 m=10 8 M Nap,D=10 R s m0=0.01 m0=0.10 m0=0.50 m0=1.00 Nagyobb akkréciós ráta, kisebb axiális irányú végsebesség
22 m=10 8 M Nap,D=100 R s m0=0.01 m0=0.10 m0=0.50 m0=1.00
23 Az első tesztek megmutatták Schwarzschild sugártól való függés Horizonttól mért távolságtól való függés Akkréciós rátától való függés
24 Köszönöm a figyelmet! Referenciák Shakura, N. I.; Sunyaev, R. A.,1973, A&A, 24, 337 I.D. Novikov and K.S. Thorne, "Astrophysics of Black Holes", 1973, 343 Minfeng Gu, Xinwu Ca, D. R. Jiang, 2009, MNRAS, 396, 984 E. Esarey, C. B. Schroeder, and W. P. Leemans, 2009, PRD, 81, 1229 Toshikazu Ebisuzaki &Toshiki Tajima, 2014, Astroparticle Physics, 56, 9
Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)
Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken
FIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1
Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Az anyag felépítése Részecskefizika kvark, lepton Erős, gyenge,
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
Theory hungarian (Hungary)
Q3-1 A Nagy Hadronütköztető (10 pont) Mielőtt elkezded a feladat megoldását, olvasd el a külön borítékban lévő általános utasításokat! Ez a feladat a CERN-ben működő részecskegyorsító, a Nagy Hadronütköztető
Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése
Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu
A nagyenergiás neutrínók. fizikája és asztrofizikája
Ortvay Kollokvium Marx György Emlékelőadás A nagyenergiás neutrínók és kozmikus sugarak fizikája és asztrofizikája Mészáros Péter Pennsylvania State University A neutrinónak tömege van: labor mérésekből,
Erős terek leírása a Wigner-formalizmussal
Erős terek leírása a Wigner-formalizmussal Berényi Dániel 1, Varró Sándor 1, Vladimir Skokov 2, Lévai Péter 1 1, MTA Wigner FK, Budapest 2, RIKEN/BNL, Upton, USA Wigner 115 2017. November 15. Budapest
Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői
Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési
Az elektromágneses hullámok
203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert
http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja
Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)
2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,
Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /
2, = 5221 K (7.2)
7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon
Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)
3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)
Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.
Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití
Munkagázok hatása a hegesztési technológiára és a hegesztési kötésre a CO 2 és a szilárdtest lézersugaras hegesztéseknél
Munkagázok hatása a hegesztési technológiára és a hegesztési kötésre a CO 2 és a szilárdtest lézersugaras hegesztéseknél Fémgőz és plazma Buza Gábor, Bauer Attila Messer Innovation Forum 2016. december
Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás
Csillapított rezgés Csillapított rezgés: A valóságban a rezgések lassan vagy gyorsan, de csillapodnak. A rugalmas erőn kívül, még egy sebességgel arányos fékező erőt figyelembe véve: a fékező erő miatt
azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra
4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen
Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16.
Úton az elemi részecskék felé Atommag és részecskefizika 2. előadás 2010. február 16. A neutron létének következményei I. 1. Az atommag alkotórészei Z db proton + N db neutron, A=N+Z az atommag tömege
Bevezetés a részecske fizikába
Bevezetés a részecske fizikába Kölcsönhatások és azok jellemzése Kölcsönhatás Erősség Erős 1 Elektromágnes 1 / 137 10-2 Gyenge 10-12 Gravitációs 10-44 Erős kölcsönhatás Közvetítő részecske: gluonok Hatótávolság:
1. Feladatok merev testek fizikájának tárgyköréből
1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló
Sugárzások kölcsönhatása az anyaggal
Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy
Geometriai és hullámoptika. Utolsó módosítás: május 10..
Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)
Részecskefizikai gyorsítók
Részecskefizikai gyorsítók 2010.12.09. Kísérleti mag- és részecskefizikai szeminárium Márton Krisztina Hogyan látunk különböző méreteket? 2 A működés alapelve az elektromos tér gyorsítja a részecskét különböző
Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele
Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,
Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by OTKA MB augusztus 16. Hungarian Teacher Program, CERN 1
Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by OTKA MB08-80137 2010. augusztus 16. Hungarian Teacher Program, CERN 1 Hogyan látunk különböző méreteket? A világban megtalálható tárgyak mérete
Kvantumos jelenségek lézertérben
Kvantumos jelenségek lézertérben Atomfizika Benedict Mihály SZTE Elméleti Fizikai Tanszék Az előadást támogatta a TÁMOP-4.2.1/B-09/1/KONV-2010-0005 sz. Kutatóegyetemi Kiválósági Központ létrehozása a Szegedi
Fekete lyukak, gravitációs hullámok és az Einstein-teleszkóp
Fekete lyukak, gravitációs hullámok és az Einstein-teleszkóp GERGELY Árpád László Fizikai Intézet, Szegedi Tudományegyetem 10. Bolyai-Gauss-Lobachevsky Konferencia, 2017, Eszterházy Károly Egyetem, Gyöngyös
Pósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G.
Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. A Naphoz hasonló tömegű csillagok A Napnál 4-8-szor nagyobb tömegű csillagok 8 naptömegnél nagyobb csillagok Vörös óriás Szupernóva
Röntgensugárzás. Röntgensugárzás
Röntgensugárzás 2012.11.21. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ
3.1. ábra ábra
3. Gyakorlat 28C-41 A 28-15 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető 3.1. ábra. 28-15 ábra réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség
1. fejezet. Gyakorlat C-41
1. fejezet Gyakorlat 3 1.1. 28C-41 A 1.1 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség bármely,
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html
László István, Fizika A2 (Budapest, 2013) Előadás
László István, Fizika A (Budapest, 13) 1 14.A Maxwell-egenletek. Az elektromágneses hullámok Tartalmi kiemelés 1.Maxwell általánosította Ampère törvénét bevezetve az eltolási áramot. szerint ha a térben
Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
Hadronok, atommagok, kvarkok
Zétényi Miklós Hadronok, atommagok, kvarkok Teleki Blanka Gimnázium Székesfehérvár, 2012. február 21. www.meetthescientist.hu 1 26 Atomok Démokritosz: atom = legkisebb, oszthatatlan részecske Rutherford
Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu
Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag
A gamma-sugárzás kölcsönhatásai
Ref. [3] A gamma-sugárzás kölcsönhatásai Az anyaggal való kölcsönhatás kis valószínűségű hatótávolság nagy A sugárzás gyengülését 3 féle kölcsönhatás okozza. fotoeffektus Compton-szórás párkeltés A gamma-fotonok
Országos Szilárd Leó Fizikaverseny
Országos Szilárd Leó Fizikaverseny Döntő Paks, 2001. április 27. Számítógépes feladat Bevezetés 1931-ben Szilárd Leó szabadalmi kérelmet nyújtott be egy olyan részecskegyorsítóra vonatkozóan, amelyen a
Az elektron hullámtermészete. Készítette Kiss László
Az elektron hullámtermészete Készítette Kiss László Az elektron részecske jellemzői Az elektront Joseph John Thomson fedezte fel 1897-ben. 1906-ban Nobel díj! Az elektronoknak, az elektromos és mágneses
2. tétel - Gyorsítók és nyalábok (x target, ütköz nyalábok, e, p, nyalábok).
2. tétel - Gyorsítók és nyalábok (x target, ütköz nyalábok, e, p, nyalábok). Gyorsítók Cockcroft-Walton generátor (1928) Kondenzátorokból és diódákból épített gyorsító, amit sokáig használtak el gyorsítóként.
Műszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses
Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez
A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
Sugárzások és anyag kölcsönhatása
Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció
Rádl Attila december 11. Rádl Attila Spalláció december / 21
Spalláció Rádl Attila 2018. december 11. Rádl Attila Spalláció 2018. december 11. 1 / 21 Definíció Atommagok nagyenergiás részecskével történő ütközése során másodlagos részecskéket létrehozó rugalmatlan
Fizika minta feladatsor
Fizika minta feladatsor 10. évf. vizsgára 1. A test egyenes vonalúan egyenletesen mozog, ha A) a testre ható összes erő eredője nullával egyenlő B) a testre állandó értékű erő hat C) a testre erő hat,
Színképelemzés. Romsics Imre 2014. április 11.
Színképelemzés Romsics Imre 2014. április 11. 1 Más néven: Spektrofotometria A színképből kinyert információkból megállapítható: az atomok elektronszerkezete az elektronállapotokat jellemző kvantumszámok
Rezgések és hullámok
Rezgések és hullámok A rezgőmozgás és jellemzői Tapasztalatok: Felfüggesztett rugóra nehezéket akasztunk és kitérítjük egyensúlyi helyzetéből. Satuba fogott vaslemezt megpendítjük. Ingaóra ingáján lévő
A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra
. Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától
Biofizika. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? A biológiában és orvostudományban alkalmazott fizikai módszerek tárgyalása
Biofizika Csik Gabriella Eötvös Loránd kora diákjait tréfásan jellemzi : határozott céllal jön az egyetemre, ügyvéd, politikus vagy orvos akar lenni. Amint az egyetembe lép, kritizálja tanárait, s az egész
Biofizika. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? A biológiában és orvostudományban alkalmazott fizikai módszerek tárgyalása
Biofizika Csik Gabriella Eötvös Loránd kora diákjait tréfásan jellemzi : határozott céllal jön az egyetemre, ügyvéd, politikus vagy orvos akar lenni. Amint az egyetembe lép, kritizálja tanárait, s az egész
Fizika 2 - Gyakorló feladatok
2015. június 19. ε o =8.85 10-12 AsV -1 m -1 μ o =4π10-7 VsA -1 m -1 e=1,6 10-19 C m e =9,11 10-31 kg m p =1,67 10-27 kg h=6,63 10-34 Js 1. Egy R sugarú gömbben -ρ állandó töltéssűrűség van. a. Határozza
Elektron mozgása kristályrácsban Drude - féle elektrongáz
Elektron mozgása kristályrácsban Drude - féle elektrongáz Dr. Berta Miklós bertam@sze.hu 2017. október 13. 1 / 24 Drude - féle elektrongáz Tapasztalat alapján a fémekben vannak szabad töltéshordozók. Szintén
Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)
Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok
A teljes elektromágneses spektrum
A teljes elektromágneses spektrum Fizika 11. Rezgések és hullámok 2019. március 9. Fizika 11. (Rezgések és hullámok) A teljes elektromágneses spektrum 2019. március 9. 1 / 18 Tartalomjegyzék 1 A Maxwell-egyenletek
1. ábra. 24B-19 feladat
. gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,
= Φ B(t = t) Φ B (t = 0) t
4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy
Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.
Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Magsugárzások (α, β, γ) kölcsönhatása atomi rendszerekkel (170-174, 540-545 o.) Direkt és
A legkisebb részecskék a világ legnagyobb gyorsítójában
A legkisebb részecskék a világ legnagyobb gyorsítójában Varga Dezső, ELTE Fiz. Int. Komplex Rendszerek Fizikája Tanszék AtomCsill 2010 november 18. Az ismert világ építőkövei: az elemi részecskék Elemi
A femtoszekundumos lézerektől az attoszekundumos fizikáig
A femtoszekundumos lézerektől az attoszekundumos fizikáig Varjú Katalin, Dombi Péter Kapcsolódási pont: ultrarövid impulzusok: karakterizálás, alkalmazások egy attoszekundumos impulzus előállításához kell
11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz
Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merőleges a hullámterjedés irányára. b) Csak a transzverzális hullám
A lézer alapjairól (az iskolában)
A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o
Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében?
Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merıleges a hullámterjedés irányára. b) Csak a transzverzális hullám
Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó
Szupermasszív fekete lyukak. Kocsis Bence ELTE Atomfizikai Tsz. ERC Starting Grant csoportvezető
Szupermasszív fekete lyukak Kocsis Bence ELTE Atomfizikai Tsz. ERC Starting Grant csoportvezető 100 évvel ezelőtt Egy elmélet jóslatainak kidolgozásához jobban megéri pacifistának lenni. r = 2GM c 2 Broderick,
Elektronok mozgása nanostruktúrákban 2-D elektrongáz, kvantumdrót és kvantumpötty
Elektronok mozgása nanostruktúrákban 2-D elektrongáz, kvantumdrót és kvantumpötty Dr. Berta Miklós bertam@sze.hu 2017. október 26. 1 / 11 Tekintsünk egy olyan kristályrácsot, amelynek minden mérete sokkal
Röntgendiagnosztikai alapok
Röntgendiagnosztikai alapok Dr. Voszka István A röntgensugárzás keltésének alternatív lehetőségei (röntgensugárzás keletkezik nagy sebességű, töltéssel rendelkező részecskék lefékeződésekor) Röntgencső:
1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2
1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2
Aktív magvú galaxisok és kvazárok
Aktív magvú galaxisok és kvazárok Dobos László Komplex Rendszerek Fizikája Tanszék dobos@complex.elte.hu É 5.60 2015. március 3. Tipikus vörös galaxis spektruma F λ 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 4000
Osztályozó vizsga anyagok. Fizika
Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes
A gravitációs hullámok miért mutathatók ki lézer-interferométerrel?
A gravitációs hullámok miért mutathatók ki lézer-interferométerrel? Gravitációs hullám (GH) Newton: ha egy nagy tömegű égitest helyet változtat, annak azonnal érződik a hatása tetszőlegesen nagy távolságban
Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás
Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés
9. évfolyam. Osztályozóvizsga tananyaga FIZIKA
9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni
Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje
Kvantummechanika gyakorlat 015 1. Beadandó feladatsor Határid : 4. heti gyakorlatok eleje 1. Mutassuk meg, hogy A és B tetsz leges operátorokra igaz, hogy e B A e B = A + [B, A] + 1![ B, [B, A] ] +....
A Standard modellen túli Higgs-bozonok keresése
A Standard modellen túli Higgs-bozonok keresése Elméleti fizikai iskola, Gyöngyöstarján, 2007. okt. 29. Horváth Dezső MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth
Atomok és molekulák elektronszerkezete
Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre
Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3
Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy
[ ]dx 2 # [ 1 # h( z,t)
A gravitációs hullámok miért mutathatók ki lézer-interferométerrel? Gravitációs hullám (GH) Newton: ha egy nagy tömegű égitest helyet változtat, annak azonnal érződik a hatása tetszőlegesen nagy távolságban
Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem
1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok
Programozható vezérlő rendszerek. Elektromágneses kompatibilitás II.
Elektromágneses kompatibilitás II. EMC érintkező védelem - az érintkezők nyitása és zárása során ún. átívelések jönnek létre - ezek csökkentik az érintkezők élettartamát - és nagyfrekvenciás EM sugárzások
Z bozonok az LHC nehézion programjában
Z bozonok az LHC nehézion programjában Zsigmond Anna Julia MTA Wigner FK Max Planck Institut für Physik Fizikus Vándorgyűlés Szeged, 2016 augusztus 24-27. Nehézion-ütközések az LHC-nál A-A és p-a ütközések
Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós
Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;
2016. április 5. Balogh Gáspár Sámuel Kvazárok április 5. 1 / 28
Kvazárok Balogh Gáspár Sámuel 2016. április 5. Balogh Gáspár Sámuel Kvazárok 2016. április 5. 1 / 28 Jellemző sűrűségadatok ρ universe 10 27 kg Balogh Gáspár Sámuel Kvazárok 2016. április 5. 2 / 28 Jellemző
Gyakorlat anyag. Veszely. February 13, Figure 1: Koaxiális kábel
Gyakorlat anyag Veszely February 13, 2012 1 Koaxiális kábel d b a Figure 1: Koaxiális kábel A 1 ábrán látható koaxiális kábel adatai: a = 7,2 mm, b = 4a = 8,28 mm, d = 0,6 mm, ε r = 3,5; 10 4 tanδ = 80,
A fény mint elektromágneses hullám és mint fényrészecske
A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá
11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?
Fényemisszió 2.45. Az elektromágneses spektrum látható tartománya a 400 és 800 nm- es hullámhosszak között található. Mely energiatartomány (ev- ban) felel meg ennek a hullámhossztartománynak? 2.56. A
Neutrinódetektorok és részecske-asztrofizikai alkalmazásaik
Neutrinódetektorok és részecske-asztrofizikai alkalmazásaik ELTE Budapest 2013 december 11 Péter Pósfay 2/31 1. A neutrínó Tartalom 2. A neutrínó detektorok működése Detektálási segítő kölcsönhatások Detektorok-fajtái
Hang és ultrahang. Sugárzások. A hang/ultrahang mint hullám. A hang mechanikai hullám. Terjedéséhez közegre van szükség vákuumban nem terjed
Sugárzások mechanikai Nem ionizáló sugárzások Ionizálo sugárzások elektromágneses elektromágneses részecske Hang és ultrahang IH hallható hang UH alfa sugárzás béta sugárzás rádió hullámok infravörös fény
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson
Értékelési útmutató az emelt szint írásbeli feladatsorhoz I.
Értékelési útmutató az emelt szint írásbeli feladatsorhoz I. 1. C. B 3. B 4. C 5. B 6. A 7. D 8. D 9. A 10. C 11. C 1. A 13. C 14. B 15. B 16. B 17. D 18. B 19. C 0. B I. RÉSZ Összesen 0 pont 1 1. téma
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya
Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS
ELEKTRONIKAI ALKATRÉSZEK
ELEKTRONIKAI ALKATRÉSZEK VEZETÉS VÁKUUMBAN (EMISSZIÓ) 2. ELŐADÁS Fémek kilépési munkája Termikus emisszió vákuumban Hideg (autoelektromos) emisszió vákuumban Fotoelektromos emisszió vákuumban KILÉPÉSI
Beugró kérdések. Elektrodinamika 2. vizsgához. Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!
Beugró kérdések Elektrodinamika 2. vizsgához. Görbült koordináták Henger koordináták: r=(ρ cos φ, ρ sin φ, z) Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!