DEMONSTRÁCIÓS- ÉS TANULÓKÍSÉRLETI ESZKÖZÖK KÉSZÍTÉSE THE MAKING OF DEMONSTRATIVE AND STUDENT EXPERIMENT DEVICES

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "DEMONSTRÁCIÓS- ÉS TANULÓKÍSÉRLETI ESZKÖZÖK KÉSZÍTÉSE THE MAKING OF DEMONSTRATIVE AND STUDENT EXPERIMENT DEVICES"

Átírás

1 DEMONSTRÁCIÓS- ÉS TANULÓKÍSÉRLETI ESZKÖZÖK KÉSZÍTÉSE THE MAKING OF DEMONSTRATIVE AND STUDENT EXPERIMENT DEVICES Szendreiné Boncz Ildikó Nyugat-magyarországi Egyetem Savaria Egyetemi Központ Természettudományi és Műszaki Kar, Fizika Tanszék ÖSSZEFOGLALÁS Tanszékünkön évek óta hagyomány az egyszerű tanulókísérleti- és demonstrációs eszközök készítése, fejlesztése. Sok iskolában nincs anyagi lehetőség kísérleti eszközök vásárlására. Eszközgyártáshoz ezért olyan anyagokat használunk, amelyek ingyen rendelkezésünkre állnak. Sok kísérletünkhöz elhasznált fénycsöveket alakítunk át oly módon, hogy üvegcsőnek használhassuk őket. Ilyen kísérleti eszközöket szeretnék bemutatni mechanika és elektromosságtan témakörben. ABSTRACT The making of the plain student experiment and demonstrative devices, his development are traditions since years on our department. There is not a material opportunity in many schools to the shopping of experimental devices. We use substances that are at our free disposal for the making of devices because of this. Many of our experiments we transform light tubes used up in such a way that we can use them as a glass pipe. I would like to present experimental devices like this, in topic of mechanics and electricity. KULCSSZAVAK/KEYWORDS kísérletek, eszközkészítés, fénycső experiments, device making, light tube BEVEZETÉS Az általános- és középiskolai oktatás jelenlegi helyzete olyan anyagi lehetőségeket jelent, hogy a legtöbb iskolában nincs anyagi keret kész kísérleti eszközök megvásárlására. Eszközgyártáshoz ezért olyan anyagokat használunk, amelyek szinte ingyen rendelkezésünkre állnak. Sok kísérletünkhöz elhasznált fénycsöveket alakítunk át oly módon, hogy üvegcsőnek használhassuk őket. Természetesen a csövek végére esztergályozott műanyag profilokat kell megfelelő módon csatlakoztatni. Az esztergálható műanyag, az esztergályos munkája, valamint a csövek csatlakoztatásához használt műanyag cső az, ami pénzbe kerül. Hagyományaink szerint sok hallgatót sikerült aktivizálni olyan tanulókísérleti, illetve demonstrációs eszközök készítésére, amelyeket tanári munkája során majd alkalmazni tud. Ezek nagy része a tanszéken maradt, s a mi munkánkat segíti, de készültek olyan eszközök is,

2 amelyet a hallgató már annak az iskolának készített, ahol a későbbiek során tanárként helyezkedett el. A FÉNYCSÖVEK ELŐKÉSZÍTÉSE A fénycső egyik végén megbontjuk az elektromos csatlakozást, majd az izzószálat tartó üveget összetörve a fényport egy meghosszabbított üvegmosó kefével kisöpörjük. A maradék fényport vízkőoldó segítségével lehet eltávolítani. Ezután a cső másik végét is megbontjuk. A csöveknek ezt követően le kell vágni a végét. Ezt úgy tehetjük meg, hogy a csövet egy helyen megkarcoljuk, és ezen a helyen egy forrasztópákára megfelelően hajlított rézhuzallal melegítjük. A fénycső itt elpattan és leválik. A csövek végét ezután a célnak megfelelő esztergályozott műanyag idommal látjuk el, amit FBS szilikonkaucsukkal, vagy 2 komponenses ragasztóval rögzítünk. Az esztergályozás helyettesíthető úgy is, hogy egy 40 mm átmérőjű vízvezetékcsőből megfelelő hosszúságút darabot vágunk, és felmelegítés után a cső végére húzzuk. A melegítés kemencével, grillsütővel megoldható. A továbbiakban nézzünk néhány példát, hogy mechanika és elektromosságtan témakörben milyen kísérletekhez használható az így elkészített üvegcső! CARTESIUS-FÉLE BÚVÁR Egy kis kémcsőbe annyi vizet öntünk, hogy ha befogott nyílásával lefele fordítva vízzel telt üvegcsőbe tesszük, akkor éppen lebegjen a vízben. A vizet tartalmazó üvegcső felső végén található gumihártyát megnyomva a vízben tovaterjedő nyomás összenyomja a kis kémcsőben levő levegőt, a felhajtóerő csökken, ezért az előbb még lebegő búvár lesüllyed. Az eszköz előnye, hogy a fénycső hossza miatt a jól elkészített búvár a gumihártya levétele után lent marad a cső alján. A gumihártyát visszahelyezve a nyomást csökkenthetjük, de lehet infralámpával is melegíteni a búvárban lévő levegőt, ekkor is ugyanúgy nő a felhajtóerő, s a búvár felemelkedik. A leglátványosabb egy rövid ideig nemlineáris hatásnak, kitenni az eszközt, amit pl. az asztalra csapással érhetünk el. Az így létrehozott nyomásváltozás következtében a búvár ugyancsak a felszínre kerül. A gumihártya helyett egy injekciós fecskendőt is csatlakoztathatunk a fénycső felső végéhez, amelynek segítségével bizonyos határok között a nyomás könnyen változtatható. HULLÁMHOSSZ MÉRÉSE 1. ábra Hullámhossz méréshez használt csövek illesztése Hullámhossz mérésénél a bemutatás előnye ismét a csövek hosszúságában rejlik. A demonstrációhoz két, különböző átmérőjű fénycső szükséges. A vastag fénycsőnek csak az egyik végét alakítjuk ki műanyagidommal, a másik, alsó végére célszerű valamilyen talpat ragasztani. A vékony fénycső mindkét végét megbontjuk, majd műanyagprofillal megerősítjük. A felső végére olyan idom kerül, ami megakadályozza, hogy a vastag csőbe

3 belecsússzon. A vastag csövet vízzel megtöltve (kb. 10 cm híján) beleengedjük a vékony csövet. Ismert frekvenciájú hangvillát rezgésbe hozva, a vékony cső nyílásához tartjuk. A csövet lassan felfelé húzzuk, megvárjuk, amíg a vízszint a két csőben a viszkozitás miatt kiegyenlítődik. Az eszköz a megfelelő hossz megléte miatt alkalmas arra, hogy három különböző helyen tapasztaljunk rezonanciát. Rezonancia esetén a vékony csőben a levegőoszlop hossza λ/4, 3λ/4, 5λ/4; ezért az első és az utolsó hosszúság különbsége a hang hullámhosszával egyenlő. A kísérletet elvégezhetjük különböző frekvenciájú hangvillákkal is. A hullámhossz és a frekvencia ismeretében meghatározhatjuk az adott feltételekhez kötött hangsebességet. Célszerű mérést végezni télen, ill. nyári időben is. KÖZEGELLENÁLLÁS DEMONSTRÁLÁSA, METRÓSZÉL 2. ábra Közegellenállás vizsgálata K ét vastagabb üvegcsövet megfelelő bilincsekkel összefogunk azért, hogy a különböző alakú testekre ható közegellenállást egymáshoz viszonyítva tudjuk vizsgálni. Bemutatáskor ejtsünk Kinder-tojásban található félgömbbel zárt hengereket! A lefelé nyitott kis ejtőernyő előbb eléri az állandó sebesség határát, mint a másik. Jelen körülmények között az eső testek körül a levegő áramlása turbulens, ezért a közegellenállási erőt a következő kifejezés adja: 1 F = c q v 2 2 ρ (1) ahol q a haladási irányra merőleges legnagyobb keresztmetszet, ρ a levegő sűrűsége, v a test sebessége, c az alaki együttható. A közegben eső testekre a nehézségi erő, a felhajtóerő és a közegellenállásból származó erő hat. Egyenletes haladáskor ezek eredője nulla. A felhajtóerő a levegő sűrűsége miatt kicsi, ezért ez az erő a másik kettő mellett elhanyagolható, tehát egyenletesen akkor fog haladni a test, ha a közegellenállási erő a nehézségi erő nagyságával egyenlő. A közegellenállás vizsgálatához kúpokat, gúlákat, hengereket, ikozaédert ejtünk, amelyeket papírból készíthetnek el a tanulók. Ugyanolyan alakú, különböző tömegű testeket pl. dupla papírréteg alkalmazásával érhetünk el. Érdekes tapasztalatot szerezhetünk akkor, ha a csövek alsó nyílását különböző területű idomokkal zárjuk le, tehát megakadályozzuk a metrószél kiáramlását a cső alján. Az ejtett test alatti térrészben megnövekedett nyomás látványosan megnöveli a közegellenállást. Műanyag testeket ejtve vizsgálhatjuk a jelenséget különböző sűrűségű folyadékokban is (pl. édes víz, sós víz). A cső hossza miatt, ill. a megfelelő test kialakításával elérhető, hogy mérni tudjuk az állandó sebességet is.

4 FORGÓMOZGÁS VIZSGÁLATA FÜGGŐLEGES TENGELY KÖRÜL FORGÓ RENDSZERBEN NYUGALOMBAN LÉVŐ VÍZBEN 3. ábra Forgó mozgás vizsgálata Egy vastag csövet egyik végén lezártunk, a másik végét zárhatóra alakítottuk ki. A csőbe két összetapadt, téglalap alakú applikációs mágnest és egy parafa dugót helyeztünk. A dugóba előzőleg egy akkora kis mágnesrudat ragasztottunk, hogy még ússzon a víz felszínén. A csövet ezután megtöltöttük vízzel, majd zártuk a másik végét is. Az üvegcső közepét lombikfogóval úgy fogtuk meg, hogy a lombikfogót centrifugagépbe befogva az üvegcsövet vízszintes síkban, függőleges tengely körül forgatni tudjuk. Mágnesrúddal úgy állítjuk be a kis mágnest és a parafa dugót, hogy kb. a tengely és a cső vége között a felezőpontban, a tengely két különböző oldalán helyezkedjenek el. A csövet megforgatva azt tapasztaljuk, hogy a parafa dugó a forgástengely felé (befelé) mozdul el, míg a kis mágnes a forgástengelytől távolodik (kifelé). A mágnes sűrűsége nagyobb, a parafa dugó sűrűsége kisebb, mint a víz sűrűsége, azért a parafa henger felfelé, a mágnes lefelé gyorsul. A feladat már középiskolában is szerepelhet, de a látvány megéri, hogy foglalkozzunk a bemutatásával is. A gyorsuló folyadék belsejében a nyomás a forgástengelytől távolodva növekszik. Ez azt jelenti, hogy a folyadék belsejében levő testnek a cső külső vége van lent, és a tengelynél van fent. Levezethető, hogy ha a test sűrűsége nagyobb, mint a vízé, akkor a víz nem tudja biztosítani a körpályán történő mozgást, a test kifelé gyorsul, a cső végéig. Ha a test sűrűsége kisebb, mint a vízé, akkor a víz nagyobb erőt fejt ki a középpont felé, mint a körmozgáshoz szükséges centripetális erő, tehát a test a tengely felé gyorsul. TOVÁBBI LEHETŐSÉGEK MECHANIKA TÉMAKÖRBEN A FÉNYCSŐ FELHASZNÁLÁSÁRA Az üvegcsövet felhasználhatjuk sok más kísérlethez is, pl. a gáz nyomásának mérése, folyadék kiáramlásának vizsgálatára kis nyíláson Torricelli tétele alapján, lejtőn leguruló golyó mozgásának vizsgálatára, de készíthetünk belőle Kundt-féle csövet is. FÉNYCSŐ AZ ELEKTROSZTATIKÁBAN Az elektrosztatikai kísérletekhez, töltésszétválasztáshoz szükséges Wimhurst-féle influenciagép, ill. a Van de Graaff-féle szalaggenerátor beállítása nehézkes, néhány iskolában sajnos nem is található. Ezért kifejlesztettünk egy érintkezési potenciálon alapuló, dörzselektromos lineáris gyorsítót. Az eszköz szintén fénycsőből, konzervdobozból, ill. villanyszerelésnél használt PVC csőből elkészíthető. Összeállítása, kezelése egyszerű, olcsó, ezért bármely iskolában könnyen megépíthető.

5 DÖRZSELEKTROMOS INFLUENCIAGÉP A cső két végét az előzőekben ismertetett módszerrel levágtuk és egy kb. 20 cm hosszúságú darabot készítettünk. Vízvezetési PVC csőből vasfűrésszel 2 db 4 cm-es darabot vágtunk. A fénycső 2 végére ráhúztuk az előre melegített PVC csöveket, majd hagytuk kihűlni. Konzervdobozból pedig annak felhasítása után egy kb. 10 cm magas hengert készítettünk, melynek átmérőjét az üvegcső belső átmérőjéhez méreteztük, hogy vékony szilikon ragasztó réteggel abba rögzíthessük. Ezután a fémhenger palástját forrasztópákával összeforrasztottuk. Ahhoz, hogy a töltéseket az influenciagépről elvezethessük, célszerű a fémhenger végéhez villanyszerelési drót közbeforrasztásával egy banánhüvelyt rögzíteni. Érintésvédelem céljából a fémhenger és a PVC találkozásánál a fémet szigetelőszalaggal több rétegben betekertük. Az ily módon elkészített csőbe 4-6 rétegben A/4-es lapot hengerítettünk, és átvezettük rajta a PVC csövet. 4. ábra Dörzselektromos lineáris gyorsító Működtetésekor egyik kezünkkel rögzítjük az elkészített burkolatot a papír kiálló részével együtt, másik kezünkkel pedig oda-vissza mozgatjuk benne a PVC csövet. Ekkor a dörzsölés következtében töltésmegosztás jön létre, és a keletkezett töltéseket a fémhengerre forrasztott banándugóhoz csatlakoztatott vezetéken lehet elvezetni, ill. különböző berendezéseket lehet vele működésbe hozni. Influenciagépünk ezen változata csak egy kondenzátort tartalmaz, a PVC cső egyik irányú mozgatásakor töltődik csak fel. Továbbfejlesztett változatába már 2 kondenzátort építettünk, így egyik kondenzátor a cső előre mozgatásakor, a másik hátrafele mozgatáskor töltődik fel, így folyamatosan biztosítja a szükséges töltésmennyiséget. ELEKTROSZTATIKUS SEGNER-KERÉK 5. ábra Elektrosztatikus Segner-kerék influenciagéppel A csúcshatás látványos következménye az elektromos Segner-kerék forgása. A forgórészt trombitalemezből vágtuk ki, ügyelve a lemez végeinek megfelelő kiképzésére. Közepénél fogva szigetelt talpú fém tűcsapágyra helyezzük, és a tűcsapágyhoz kötött koaxkábelt a dörzselektromos influenciagéphez csatlakoztatjuk. Ha az egy kondenzátoros változatot használjuk, akkor a kerék forgása szakaszosan gyorsul. A forgás egyenletesebb lesz, ha a 2 kondenzátorral működtetett megosztógépet kapcsoljuk a Segner-kerékhez. A lineáris gyorsító előnye abban rejlik, hogy a megdörzsölt PVC rudat nem kell hozzáérinteni a forgó részhez, így elkerülhető annak véletlen meglökése.

6 Kisülés normál nyomású gázban 6. ábra Réz elektródok a csövek felső végén elhelyezett konzervdobozokon Nagy feszültségű, kis görbületi sugarú fém elektródok között az erős elektromos tér ionizáló hatása miatt gázkisülés jön létre, látható szikra üt át. A fénycsöveket ennél a kísérletnél is szigetelőállványként hasznosítjuk. 2 állvány felső részére egy-egy konzervdobozt tettünk, melyek felső széleire kis dróthuzalból kengyeleket forrasztottunk. Ezekbe tetszőleges alakú és nagyságú, előre esztergált elektródok helyezhetők. Egyikre egy csúcsban végződő, másikra egy gömbben végződő rézelektródot rögzítettünk. Egyik elektródot a szigetelőállványba vezetett koaxkábelen keresztül influenciagépünkkel töltjük, a másikat leföldeljük. Kellő nagyságú töltés-felhalmozódás után elérjük az átütési feszültséget, és kis szikrát figyelhetünk meg a rézcsúcs és a rézgömb között. Fénycsőből készült leideni-palack 7. ábra Fénycsövekből készült kondenzátor részei A fénycsövekből készített leideni-palackokkal a feszültség, ill. a töltésmennyiség sokszorozható. Mint tudjuk, a leideni-palack mindkét oldalán kb. kétharmad magasságig sztaniollal, vagy alufóliával bevont hengeres üvegpohár. Kívülről fémbilinccsel földelő csatlakozást szokás ráerősíteni, belső fegyverzetéhez pedig a feltöltés megkönnyítésére fémgömbbel ellátott fémrúd kapcsolódik. A palackban nagy kapacitása miatt nagy töltésmennyiség tárolható. Az általunk fénycsőből készített kondenzátor a végén nem zárt, tehát hengerkondenzátort állítottunk elő. Az üvegcsövet belülről megfelelő vastagságú papírrétegre tekert alufóliával, kívül alufóliával borítottuk. A külsejére a fólia védelme miatt papírborítást készítettünk. A belső fegyverzet csatlakozását két hozzáféréssel oldottuk meg. Egyik egy banánhüvely kivezetés a talapzatra, ide csatlakozik a külső fegyverzet banándugós kivezetése is. A másik egy rézfóliából készített rugók segítségével csatlakozó fémgömbben végződő rúd. Ezzel a rúddal tudunk szikraközt állítani. Banándugóval a kondenzátorok különböző kapcsolásait tudjuk megoldani. Az általunk használt kondenzátor kapacitása 3nF. Kísérletünk igazolja, hogy a leideni-hengerekkel az előző kísérletet megismételve nagyobb szikrát tudunk előállítani, mint kondenzátorok nélkül.

7 TOVÁBBI LEHETŐSÉGEK ELEKTROMOSSÁGTAN TÉMAKÖRBEN A FÉNYCSŐ FELHASZNÁLÁSÁRA Ebben a témakörben is számos lehetőség kínálkozik a fénycső felhasználására, pl. készíthetünk belőle lemezes elektroszkópot, bemutathatjuk vele a gyertyaláng elfújását elektromos széllel, de vizsgálhatjuk a gerjesztett kisülést is ritkított gázban. BEFEJEZÉS A tanárképzés folyamatában a szakmai ismeretek elsajátítása mellett nagyon fontosnak tartjuk, hogy a hallgatók megismerkedjenek a kísérleti eszközök készítésével is. Különböző cégek által forgalmazott, de a jelenségek bemutatására megfelelő házi készítésű eszközökkel is találkoznak. Szeretnénk elérni, hogy kreativitásukat fokozva olyan eszközöket találjanak fel, illetve készítsenek el, amelyek kereskedelmi forgalomban nem kaphatók, de a tanítás, tanulás folyamatában sokat segítenek a minket körülvevő világ egyre jobb megismerésében. SZERZŐ Szendreiné Boncz Ildikó, tanársegéd, Nyugat-magyarországi Egyetem Savaria Egyetemi Központ, Természettudományi és Műszaki Kar, Fizika Tanszék, bonczildiko@gmail.com

DEMONSTRÁCIÓS- ÉS TANULÓKÍSÉRLETI ESZKÖZÖK KÉSZÍTÉSE

DEMONSTRÁCIÓS- ÉS TANULÓKÍSÉRLETI ESZKÖZÖK KÉSZÍTÉSE Tartalmasan és érdekesen Ami a korszerű tananyag mögött áll (szakmódszertan) DEMONSTRÁCIÓS- ÉS TANULÓKÍSÉRLETI ESZKÖZÖK KÉSZÍTÉSE Szendreiné Boncz Ildikó Nyugat-magyarországi Egyetem, Savaria Egyetemi

Részletesebben

Folyadékok és gázok áramlása

Folyadékok és gázok áramlása Folyadékok és gázok áramlása Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért felmelegedik. A folyadékok

Részletesebben

Folyadékok és gázok áramlása

Folyadékok és gázok áramlása Folyadékok és gázok áramlása Hőkerék készítése házilag Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért

Részletesebben

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés

Részletesebben

2.9.1. TABLETTÁK ÉS KAPSZULÁK SZÉTESÉSE

2.9.1. TABLETTÁK ÉS KAPSZULÁK SZÉTESÉSE 2.9.1 Tabletták és kapszulák szétesése Ph.Hg.VIII. Ph.Eur.6.3-1 01/2009:20901 2.9.1. TABLETTÁK ÉS KAPSZULÁK SZÉTESÉSE A szétesésvizsgálattal azt határozzuk meg, hogy az alábbiakban leírt kísérleti körülmények

Részletesebben

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3 Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a

Részletesebben

Hidrosztatika, Hidrodinamika

Hidrosztatika, Hidrodinamika Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást fejtenek

Részletesebben

Mérje meg a lejtőn legördülő kiskocsi gyorsulását a rendelkezésre álló eszközök segítségével! Eszközök: Kiskocsi-sín, Stopperóra, Mérőszalag

Mérje meg a lejtőn legördülő kiskocsi gyorsulását a rendelkezésre álló eszközök segítségével! Eszközök: Kiskocsi-sín, Stopperóra, Mérőszalag Fizika érettségi 2017. Szóbeli tételek kísérletei és a kísérleti eszközök képei 1. Egyenes vonalú, egyenletesen változó mozgás Mérje meg a lejtőn legördülő kiskocsi gyorsulását a rendelkezésre álló eszközök

Részletesebben

A középszintű fizika érettségi kísérleteinek képei 2017.

A középszintű fizika érettségi kísérleteinek képei 2017. A középszintű fizika érettségi kísérleteinek képei 2017. 1. Kísérlet: Feladat: A Mikola-csőben lévő buborék mozgását tanulmányozva igazolja az egyenes vonalú egyenletes mozgásra vonatkozó összefüggést!

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája A folyadékok nyomása A folyadék súlyából származó nyomást hidrosztatikai nyomásnak nevezzük. Függ: egyenesen arányos a folyadék sűrűségével (ρ) egyenesen arányos a folyadékoszlop

Részletesebben

Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne:

Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne: 3. gyakorlat 3.. Feladat: (HN 27A-2) Becsüljük meg azt a legnagyo potenciált, amelyre egy 0 cm átmérőjű fémgömöt fel lehet tölteni, anélkül, hogy a térerősség értéke meghaladná a környező száraz levegő

Részletesebben

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus. 2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3

Részletesebben

Hang terjedési sebességének meghatározása állóhullámok vizsgálata Kundt csőben

Hang terjedési sebességének meghatározása állóhullámok vizsgálata Kundt csőben Hang terjedési sebességének meghatározása állóhullámok vizsgálata Kundt csőben Akusztikai állóhullámok levegőben vagy egyéb gázban történő vizsgálatához és azok hullámhosszának meghatározására alkalmas

Részletesebben

Szilárd testek rugalmassága

Szilárd testek rugalmassága Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)

Részletesebben

Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika

Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika Kérdések Fizika112 Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika 1. Adjuk meg egy tömegpontra ható centrifugális erő nagyságát és irányát!

Részletesebben

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória Oktatási Hivatal A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható. Megoldandó

Részletesebben

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny Nyomás Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny, mértékegysége N (newton) Az egymásra erőt kifejtő testek, tárgyak érintkező felületét nyomott felületnek

Részletesebben

ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Biológia tagozat. Fizika 10. osztály. II. rész: Elektrosztatika. Készítette: Balázs Ádám

ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Biológia tagozat. Fizika 10. osztály. II. rész: Elektrosztatika. Készítette: Balázs Ádám ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Biológia tagozat Fizika 10. osztály II. rész: Elektrosztatika Készítette: Balázs Ádám Budapest, 2019 2. Tartalomjegyzék Tartalomjegyzék II. rész:

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

1.1 Hasonlítsa össze a valós ill. ideális folyadékokat legfontosabb sajátosságaik alapján!

1.1 Hasonlítsa össze a valós ill. ideális folyadékokat legfontosabb sajátosságaik alapján! Kérem, þ jellel jelölje be képzését! AKM VBK Környezetmérnök BSc AT0 Ipari termék- és formatervező BSc AM0 Mechatronikus BSc AM Mechatronikus BSc ÁRAMLÁSTAN. FAKULTATÍV ZH 203.04.04. KF8 Név:. NEPTUN kód:

Részletesebben

HIDROSZTATIKA, HIDRODINAMIKA

HIDROSZTATIKA, HIDRODINAMIKA HIDROSZTATIKA, HIDRODINAMIKA Hidrosztatika a nyugvó folyadékok fizikájával foglalkozik. Hidrodinamika az áramló folyadékok fizikájával foglalkozik. Folyadékmodell Önálló alakkal nem rendelkeznek. Térfogatuk

Részletesebben

1. Cartesius-búvár. 1. tétel

1. Cartesius-búvár. 1. tétel 1. tétel 1. Cartesius-búvár Feladat: A rendelkezésre álló eszközök segítségével készítsen el egy Cartesius-búvárt! A búvár vízben való mozgásával mutassa be az úszás, a lebegés és az elmerülés jelenségét!

Részletesebben

NE HABOZZ! KÍSÉRLETEZZ!

NE HABOZZ! KÍSÉRLETEZZ! NE HABOZZ! KÍSÉRLETEZZ! FOLYADÉKOK FELSZÍNI TULAJDONSÁGAINAK VIZSGÁLATA KICSIKNEK ÉS NAGYOKNAK Országos Fizikatanári Ankét és Eszközbemutató Gödöllő 2017. Ötletbörze Kicsiknek 1. feladat: Rakj három 10

Részletesebben

TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor

TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor légnyomás függ... 1. 1:40 Normál egyiktől sem a tengerszint feletti magasságtól a levegő páratartalmától öntsd el melyik igaz vagy hamis. 2. 3:34 Normál E minden sorban pontosan egy helyes válasz van Hamis

Részletesebben

TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor

TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor Melyik állítás az igaz? (1 helyes válasz) 1. 2:09 Normál Zárt térben a gázok nyomása annál nagyobb, minél kevesebb részecske ütközik másodpercenként az edény falához. Zárt térben a gázok nyomása annál

Részletesebben

Ajánlott szakmai jellegű feladatok

Ajánlott szakmai jellegű feladatok Ajánlott szakmai jellegű feladatok A feladatok szakmai jellegűek, alkalmazásuk mindenképpen a tanulók motiválását szolgálja. Segít abban, hogy a tanulók a tanultak alkalmazhatóságát meglássák. Értsék meg,

Részletesebben

1. Súlymérés. Eszközjegyzék: Mikola-cső mm beosztással digitális mérleg ékek A/4 lapok ismeretlen súlyú test (kő) Mikola-cső.

1. Súlymérés. Eszközjegyzék: Mikola-cső mm beosztással digitális mérleg ékek A/4 lapok ismeretlen súlyú test (kő) Mikola-cső. 1. Súlymérés Mikola-cső mm beosztással digitális mérleg ékek A/4 lapok ismeretlen súlyú test (kő) Mikola-cső ék digitális mérleg ismeretlen súlyú test (kő) A4-es papírlapok 2. A rugóra függesztett test

Részletesebben

A kísérlet célkitűzései: A súrlódási erőtípusok és a közegellenállási erő kísérleti vizsgálata.

A kísérlet célkitűzései: A súrlódási erőtípusok és a közegellenállási erő kísérleti vizsgálata. A kísérlet célkitűzései: A súrlódási erőtípusok és a közegellenállási erő kísérleti vizsgálata. Eszközszükséglet: Mechanika I. készletből: kiskocsi, erőmérő, súlyok A/4-es írólap, smirgli papír gyurma

Részletesebben

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra TANMENET FIZIKA 10. osztály Hőtan, elektromosságtan Heti 2 óra 2012-2013 I. Hőtan 1. Bevezetés Hőtani alapjelenségek 1.1. Emlékeztető 2. 1.2. A szilárd testek hőtágulásának törvényszerűségei. A szilárd

Részletesebben

ELEKTROSZTATIKA. Ma igazán feltöltődhettek!

ELEKTROSZTATIKA. Ma igazán feltöltődhettek! ELEKTROSZTATIKA Ma igazán feltöltődhettek! Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Elektrosztatikai alapjelenségek Az egymással

Részletesebben

Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály

Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály Osztályozóvizsga témakörök 1. FÉLÉV 9. osztály I. Testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás; átlagsebesség, pillanatnyi sebesség 3. Gyorsulás 4. Szabadesés, szabadon eső test

Részletesebben

58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Okresné kolo kategórie F Texty úloh v maďarskom jazyku

58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Okresné kolo kategórie F Texty úloh v maďarskom jazyku 58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Okresné kolo kategórie F Texty úloh v maďarskom jazyku 3. feladat megoldásához 5-ös formátumú milliméterpapír alkalmas. Megjegyzés a feladatok

Részletesebben

Galilei lejtő golyóval (golyó, ejtő-csatorna) stopperóra, mérőszalag vagy vonalzó (abban az esetben, ha a lejtő nincsen centiméterskálával ellátva),

Galilei lejtő golyóval (golyó, ejtő-csatorna) stopperóra, mérőszalag vagy vonalzó (abban az esetben, ha a lejtő nincsen centiméterskálával ellátva), Egyenes vonalú egyenletes mozgás vizsgálata A rendelkezésre álló eszközökkel vizsgálja meg a buborék mozgását a kb. 30 -os szögben álló csőben! Az alábbi feladatok közül válasszon egyet! a) Igazolja, hogy

Részletesebben

Egyenes vonalú egyenletes mozgás vizsgálata

Egyenes vonalú egyenletes mozgás vizsgálata Egyenes vonalú egyenletes mozgás vizsgálata A rendelkezésre álló eszközökkel vizsgálja meg a buborék mozgását a kb. 30 -os szögben álló csőben! Az alábbi feladatok közül válasszon egyet! a) Igazolja, hogy

Részletesebben

A nyomás. IV. fejezet Összefoglalás

A nyomás. IV. fejezet Összefoglalás A nyomás IV. fejezet Összefoglalás Mit nevezünk nyomott felületnek? Amikor a testek egymásra erőhatást gyakorolnak, felületeik egy része egymáshoz nyomódik. Az egymásra erőhatást kifejtő testek érintkező

Részletesebben

MÁGNESES TÉR, INDUKCIÓ

MÁGNESES TÉR, INDUKCIÓ Egy vezetéket 2 cm átmérőjű szigetelő testre 500 menettel tekercselünk fel, 25 cm hosszúságban. Mekkora térerősség lép fel a tekercs belsejében, ha a vezetékben 5 amperes áram folyik? Mekkora a mágneses

Részletesebben

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny Nyomás Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny, mértékegysége N (newton) Az egymásra erőt kifejtő testek, tárgyak érintkező felületét nyomott felületnek

Részletesebben

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben

. T É M A K Ö R Ö K É S K Í S É R L E T E K

. T É M A K Ö R Ö K É S K Í S É R L E T E K T É M A K Ö R Ö K ÉS K Í S É R L E T E K Fizika 2018. Egyenes vonalú mozgások A Mikola-csőben lévő buborék mozgását tanulmányozva igazolja az egyenes vonalú egyenletes mozgásra vonatkozó összefüggést!

Részletesebben

A FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI 2015. június

A FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI 2015. június A FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI 2015. június I. Mechanika Newton törvényei Egyenes vonalú mozgások Munka, mechanikai energia Pontszerű és merev test egyensúlya, egyszerű gépek Periodikus

Részletesebben

Hidrosztatika. Folyadékok fizikai tulajdonságai

Hidrosztatika. Folyadékok fizikai tulajdonságai Hidrosztatika A Hidrosztatika a nyugalomban lévő folyadékoknak a szilárd testekre, felületekre gyakorolt hatásával foglalkozik. Tárgyalja a nyugalomban lévő folyadékok nyomásviszonyait, vizsgálja a folyadékba

Részletesebben

EGYSZERŰ GÉPEK. Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét.

EGYSZERŰ GÉPEK. Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét. EGYSZERŰ GÉPEK Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét. Az egyszerű gépekkel munkát nem takaríthatunk meg, de ugyanazt a munkát kisebb

Részletesebben

Newton törvények, lendület, sűrűség

Newton törvények, lendület, sűrűség Newton törvények, lendület, sűrűség Newton I. törvénye: Minden tárgy megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú

Részletesebben

Mechanika - Versenyfeladatok

Mechanika - Versenyfeladatok Mechanika - Versenyfeladatok 1. A mellékelt ábrán látható egy jobbmenetű csavar és egy villáskulcs. A kulcsra ható F erővektor nyomatékot fejt ki a csavar forgatása céljából. Az erő támadópontja és az

Részletesebben

FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK

FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK 2007-2008-2fé EHA kód:.név:.. 1. Egy 5 cm átmérőjű vasgolyó 0,01 mm-rel nagyobb, mint a sárgaréz lemezen vágott lyuk, ha mindkettő 30 C-os. Mekkora

Részletesebben

Középszintű fizika érettségi (2018. május-június) Nyilvánosságra hozható adatok

Középszintű fizika érettségi (2018. május-június) Nyilvánosságra hozható adatok Középszintű fizika érettségi (2018. május-június) Nyilvánosságra hozható adatok I. Szóbeli témakörök: A szóbeli vizsgán a jelöltnek 20 tételből kell húznia egyet. A tételek tartalmi arányai a témakörökön

Részletesebben

Bor Pál Fizikaverseny, középdöntő 2016/2017. tanév, 8. osztály

Bor Pál Fizikaverseny, középdöntő 2016/2017. tanév, 8. osztály Bor Pál Fizikaverseny, középdöntő 2016/2017. tanév, 8. osztály 1. Igaz-hamis Döntsd el az állításokról, hogy igazak, vagy hamisak! Válaszodat az állítás melletti cellába írhatod! (10 pont) Két különböző

Részletesebben

1. Az egyenes vonalú egyenletes mozgás kísérleti vizsgálata és jellemzői. 2. A gyorsulás

1. Az egyenes vonalú egyenletes mozgás kísérleti vizsgálata és jellemzői. 2. A gyorsulás 1. Az egyenes vonalú egyenletes mozgás kísérleti vizsgálata és jellemzői Kísérlet: Határozza meg a Mikola féle csőben mozgó buborék mozgásának sebességét! Eszközök: Mikola féle cső, stopper, alátámasztó

Részletesebben

Elektrosztatikai alapismeretek

Elektrosztatikai alapismeretek Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Az egymással szorosan érintkező anyagok elektromosan feltöltődnek, elektromos állapotba

Részletesebben

Windowfarm keretben. A keret talpa szélesebb (150 mm), hogy ne boruljon fel a szerkezet.

Windowfarm keretben. A keret talpa szélesebb (150 mm), hogy ne boruljon fel a szerkezet. Windowfarm keretben Az eredeti windofarm több PET palack egymás alá szereléséből állt. Ezzel sok problémám volt a cserepek esetleges cseréjekor. Főleg amikor benőtte a növényzet az egészet. Ezért készítettem

Részletesebben

Newton törvények, erők

Newton törvények, erők Newton törvények, erők Newton I. törvénye: Minden test megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja (amíg külső

Részletesebben

Szűrő berendezések. Használati útmutató. mágneses vízszűrők HASZNÁLATI ÚTMUTATÓ FL1-03-01274 - WE FL1-03-01688 CP1-03-00022 - WE FL1-03-01690

Szűrő berendezések. Használati útmutató. mágneses vízszűrők HASZNÁLATI ÚTMUTATÓ FL1-03-01274 - WE FL1-03-01688 CP1-03-00022 - WE FL1-03-01690 Szűrő berendezések HASZNÁLATI ÚTMUTATÓ Használati útmutató 2014 mágneses vízszűrők MC22001 MC22002 FL1-03-01274 - WE FL1-03-01689 CP1-03-00022 - WE FL1-03-01688 FL1-03-01690 Mágneses szűrők 1. HASZNÁLATI

Részletesebben

Mechanika. Kinematika

Mechanika. Kinematika Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

Az úszás biomechanikája

Az úszás biomechanikája Az úszás biomechanikája Alapvető összetevők Izomerő Kondíció állóképesség Mozgáskoordináció kivitelezés + Nem levegő, mint közeg + Izmok nem gravitációval szembeni mozgása + Levegővétel Az úszóra ható

Részletesebben

1. feladat. CAD alapjai c. tárgyból nappali tagozatú ipari formatervező szakos mérnök hallgatóknak

1. feladat. CAD alapjai c. tárgyból nappali tagozatú ipari formatervező szakos mérnök hallgatóknak 1. feladat CAD alapjai c. tárgyból nappali tagozatú ipari formatervező szakos mérnök hallgatóknak Vetületek képzése, alkatrészrajz készítése (formátum: A4) Készítse el a gyakorlatvezető által kiadott,

Részletesebben

A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p

A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p Jedlik 9-10. o. reg feladat és megoldás 1) Egy 5 m hosszú libikókán hintázik Évi és Peti. A gyerekek tömege 30 kg és 50 kg. Egyikük a hinta végére ült. Milyen messze ült a másik gyerek a forgástengelytől,

Részletesebben

DÖNTŐ 2013. április 20. 7. évfolyam

DÖNTŐ 2013. április 20. 7. évfolyam Bor Pál Fizikaverseny 2012/2013-as tanév DÖNTŐ 2013. április 20. 7. évfolyam Versenyző neve:.. Figyelj arra, hogy ezen kívül még két helyen (a belső lapokon erre kijelölt téglalapokban) fel kell írnod

Részletesebben

Ex Fórum 2009 Konferencia. 2009 május 26. robbanásbiztonság-technika 1

Ex Fórum 2009 Konferencia. 2009 május 26. robbanásbiztonság-technika 1 1 Az elektrosztatikus feltöltődés elleni védelem felülvizsgálata 2 Az elektrosztatikus feltöltődés folyamata -érintkezés szétválás -emisszió, felhalmozódás -mechanikai hatások (aprózódás, dörzsölés, súrlódás)

Részletesebben

3. Gyakorlat Áramlástani feladatok és megoldásuk

3. Gyakorlat Áramlástani feladatok és megoldásuk 3 Gyakorlat Áramlástani feladatok és megoldásuk 681 Feladat Adja meg Kelvin és Fahrenheit fokban a T = + 73 = 318 K o K T C, T = 9 5 + 3 = 113Fo F T C 68 Feladat Adja meg Kelvin és Celsius fokban a ( T

Részletesebben

rugós erőmérő parafa dugó kapilláris csövek drótkeret cérnaszállal műanyag pohár víz, mosogatószer

rugós erőmérő parafa dugó kapilláris csövek drótkeret cérnaszállal műanyag pohár víz, mosogatószer A kísérlet célkitűzései: A folyadék felületén lejátszódó jelenségek értelmezése, adhéziós és kohéziós erők fogalmának megismerése Eszközszükséglet: kristályosító csésze rugós erőmérő parafa dugó üveglap

Részletesebben

Szekszárdi I Béla Gimnázium Emelt szintű szóbeli vizsgaközpont. Eltérések az OH honlapján közzétettektől

Szekszárdi I Béla Gimnázium Emelt szintű szóbeli vizsgaközpont. Eltérések az OH honlapján közzétettektől Szekszárdi I Béla Gimnázium Emelt szintű szóbeli vizsgaközpont Eltérések az OH honlapján közzétettektől az emelt szintű fizika szóbeli érettségi mérési feladataihoz a kísérleti elrendezésekben, a mérési

Részletesebben

Középszintű fizika érettségi szóbeli vizsga kísérleti eszközeinek listája. 1. Newton törvényei

Középszintű fizika érettségi szóbeli vizsga kísérleti eszközeinek listája. 1. Newton törvényei Középszintű fizika érettségi szóbeli vizsga kísérleti eszközeinek listája 1. Newton törvényei Két egyforma, könnyen mozgó iskolai kiskocsi rugós ütközőkkel; különböző, a kocsikra rögzíthető nehezékek;

Részletesebben

Elektrosztatika tesztek

Elektrosztatika tesztek Elektrosztatika tesztek 1. A megdörzsölt ebonitrúd az asztalon külön-külön heverő kis papírdarabkákat messziről magához vonzza. A jelenségnek mi az oka? a) A papírdarabok nem voltak semlegesek. b) A semleges

Részletesebben

Elektromos alapjelenségek

Elektromos alapjelenségek Elektrosztatika Elektromos alapjelenségek Dörzselektromos jelenség: egymással szorosan érintkező, vagy egymáshoz dörzsölt testek a szétválasztásuk után vonzó, vagy taszító kölcsönhatást mutatnak. Ilyenkor

Részletesebben

Mérés: Millikan olajcsepp-kísérlete

Mérés: Millikan olajcsepp-kísérlete Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat

Részletesebben

Méréstechnika. Hőmérséklet mérése

Méréstechnika. Hőmérséklet mérése Méréstechnika Hőmérséklet mérése Hőmérséklet: A hőmérséklet a termikus kölcsönhatáshoz tartozó állapotjelző. A hőmérséklet azt jelzi, hogy egy test hőtartalma milyen szintű. Amennyiben két eltérő hőmérsékletű

Részletesebben

Javítási útmutató Fizika felmérő 2015

Javítási útmutató Fizika felmérő 2015 Javítási útmutató Fizika felmérő 2015 A tesztkérdésre csak 2 vagy 0 pont adható. Ha a fehér négyzetben megadott választ a hallgató áthúzza és mellette egyértelműen megadja a módosított (jó) válaszát a

Részletesebben

Hatvani István fizikaverseny Döntő. 1. kategória

Hatvani István fizikaverseny Döntő. 1. kategória 1. kategória 1.D.1. A villamosiparban a repülő drónok nagyon hasznosak, például üzemzavar esetén gyorsan és hatékonyan tudják felderíteni, hogy hol van probléma. Egy ilyen hibakereső drón felszállás után,

Részletesebben

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

FIZIKA II. Dr. Rácz Ervin. egyetemi docens FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés

Részletesebben

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el. 1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus

Részletesebben

Szent István Egyetem FIZIKA. Folyadékok fizikája (Hidrodinamika) Dr. Seres István

Szent István Egyetem FIZIKA. Folyadékok fizikája (Hidrodinamika) Dr. Seres István Szent István Egyetem (Hidrodinamika) Dr. Seres István Hidrosztatika Ideális folyadékok áramlása Viszkózus folyadékok áramlása Felületi feszültség fft.szie.hu 2 Hidrosztatika Nyomás: p F A Mértékegysége:

Részletesebben

Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013

Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013 Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013 2. Kísérleti feladat (10 pont) B rész. Rúdmágnes mozgásának vizsgálata fémcsőben (6 pont)

Részletesebben

U = 24 V I = 4,8 A. Mind a két mellékágban az ellenállás külön-külön 6 Ω, ezért az áramerősség mindkét mellékágban egyenlő, azaz :...

U = 24 V I = 4,8 A. Mind a két mellékágban az ellenállás külön-külön 6 Ω, ezért az áramerősség mindkét mellékágban egyenlő, azaz :... Jedlik Ányos Fizikaverseny regionális forduló Öveges korcsoport 08. A feladatok megoldása során végig századpontossággal kerekített értékekkel számolj! Jó munkát! :). A kapcsolási rajz adatai felhasználásával

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben

Szakmai fizika Gázos feladatok

Szakmai fizika Gázos feladatok Szakmai fizika Gázos feladatok 1. *Gázpalack kivezető csövére gumicsövet erősítünk, és a gumicső szabad végét víz alá nyomjuk. Mennyi a palackban a nyomás, ha a buborékolás 0,5 m mélyen szűnik meg és a

Részletesebben

ÁRAMLÁSTAN MFKGT600443

ÁRAMLÁSTAN MFKGT600443 ÁRAMLÁSTAN MFKGT600443 Környezetmérnöki alapszak nappali munkarend TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI FÖLDTUDOMÁNYI KAR KŐOLAJ ÉS FÖLDGÁZ INTÉZET Miskolc, 2018/2019. II. félév TARTALOMJEGYZÉK

Részletesebben

Ábragyűjtemény levelező hallgatók számára

Ábragyűjtemény levelező hallgatók számára Ábragyűjtemény levelező hallgatók számára Ez a bemutató a tanszéki Fizika jegyzet kiegészítése Mechanika I. félév 1 Stabilitás Az úszás stabilitása indifferens a stabil, b labilis S súlypont Sf a kiszorított

Részletesebben

ISO-BUTIL 1000 Primer tömítő extruder hőszigetelő üveggyártáshoz

ISO-BUTIL 1000 Primer tömítő extruder hőszigetelő üveggyártáshoz Speciális gép 5. ISO-BUTIL 1000 Primer tömítő extruder hőszigetelő üveggyártáshoz A butilozó gép segítségével a hőszigetelő üvegszerkezetben lévő, alumínium távtartó lécek primer tömítését végezhetjük

Részletesebben

Fogalma. bar - ban is kifejezhetjük (1 bar = 10 5 Pa 1 atm.). A barométereket millibar (mb) beosztású skálával kell ellátni.

Fogalma. bar - ban is kifejezhetjük (1 bar = 10 5 Pa 1 atm.). A barométereket millibar (mb) beosztású skálával kell ellátni. A légnyomás mérése Fogalma A légnyomáson a talajfelszín vagy a légkör adott magasságában, a vonatkoztatás helyétől a légkör felső határáig terjedő függőleges légoszlop felületegységre ható súlyát értjük.

Részletesebben

Elektronikus fekete doboz vizsgálata

Elektronikus fekete doboz vizsgálata Elektronikus fekete doboz vizsgálata 1. Feladatok a) Munkahelyén egy elektronikus fekete dobozt talál, amely egy nem szabványos egyenáramú áramforrást, egy kondenzátort és egy ellenállást tartalmaz. Méréssel

Részletesebben

FELÜLETI FESZÜLTSÉG. Jelenség: A folyadék szabad felszíne másképp viselkedik, mint a folyadék belseje.

FELÜLETI FESZÜLTSÉG. Jelenség: A folyadék szabad felszíne másképp viselkedik, mint a folyadék belseje. Jelenség: A folyadék szabad felszíne másképp iselkedik, mint a folyadék belseje. A felületen leő molekulákra a saját részecskéik onzása csak alulról hat, a felülettel érintkező leegő molekulái által kifejtett

Részletesebben

34. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló 2015. március 17. 14-17 óra. A verseny hivatalos támogatói

34. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló 2015. március 17. 14-17 óra. A verseny hivatalos támogatói 34. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló 2015. március 17. 14-17 óra A verseny hivatalos támogatói Gimnázium 9. évfolyam 1.) Egy test vízszintes talajon csúszik. A test és a

Részletesebben

Fizika 11. osztály. 1. Mágneses mező szemléltetése és mérése, mágneses pörgettyű (levitron)... 2. 2. Lenz törvénye: Waltenhofen-inga, Lenz-ágyú...

Fizika 11. osztály. 1. Mágneses mező szemléltetése és mérése, mágneses pörgettyű (levitron)... 2. 2. Lenz törvénye: Waltenhofen-inga, Lenz-ágyú... Fizika 11. osztály 1 Fizika 11. osztály Tartalom 1. Mágneses mező szemléltetése és mérése, mágneses pörgettyű (levitron)............. 2 2. Lenz törvénye: Waltenhofen-inga, Lenz-ágyú......................................

Részletesebben

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása

a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása Bolyai Farkas Országos Fizika Tantárgyverseny 2016 Bolyai Farkas Elméleti Líceum, Marosvásárhely XI. Osztály 1. Adott egy alap áramköri elemen a feszültség u=220sin(314t-30 0 )V és az áramerősség i=2sin(314t-30

Részletesebben

Folyadékok és gázok mechanikája. Fizika 9. osztály 2013/2014. tanév

Folyadékok és gázok mechanikája. Fizika 9. osztály 2013/2014. tanév Folyadékok és gázok mechanikája Fizika 9. osztály 2013/2014. tanév Szilárd testek nyomása Az egyenlő alaplapon álló hengerek közül a legsúlyosabb nyomódik legmélyebben a homokba. Belenyomódás mértéke a

Részletesebben

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2) 2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,

Részletesebben

KÍSÉRLETEK HŐVEL ÉS HŐMÉRSÉKLETTEL KAPCSOLATBAN

KÍSÉRLETEK HŐVEL ÉS HŐMÉRSÉKLETTEL KAPCSOLATBAN KÍSÉRLETEK HŐVEL ÉS HŐMÉRSÉKLETTEL KAPCSOLATBAN Tóth Gergely ELTE Kémiai Intézet Látványos kémiai kísérletek ALKÍMIA MA sorozat részeként 2013. január 31. Hőközlés hatására hőmérsékletváltozás azonos tömegű

Részletesebben

Áramlástechnikai mérések

Áramlástechnikai mérések Áramlástehnikai mérések Mérés Prandtl- ső segítségével. Előző tanulmányaikból ismert: A kontinuitás elve: A A Ahol: - a közeg sebessége az. pontban - a közeg sebessége a. pontban A, A - keresztmetszetek

Részletesebben

Érettségi témakörök fizikából őszi vizsgaidőszak

Érettségi témakörök fizikából őszi vizsgaidőszak Érettségi témakörök fizikából -2016 őszi vizsgaidőszak 1. Egyenes vonalú egyenletes mozgás Mikola-cső segítségével igazolja, hogy a buborék egyenes vonalú egyenletes mozgást végez. Két különböző hajlásszög

Részletesebben

XVIII. TORNYAI SÁNDOR ORSZÁGOS FIZIKAI FELADATMEGOLDÓ VERSENY

XVIII. TORNYAI SÁNDOR ORSZÁGOS FIZIKAI FELADATMEGOLDÓ VERSENY Hódmezővásárhely, 014. március 8-30. évfolyamon 5 feladatot kell megoldani. Egy-egy feladat hibátlan megoldása 0 pontot ér, a tesztfeladat esetén a 9. évfolyam 9/1. feladat. Egy kerékpáros m/s gyorsulással

Részletesebben

a) Az első esetben emelési és súrlódási munkát kell végeznünk: d A

a) Az első esetben emelési és súrlódási munkát kell végeznünk: d A A 37. Mikola Sándor Fizikaverseny feladatainak egoldása Döntő - Gináziu 0. osztály Pécs 08. feladat: a) Az első esetben eelési és súrlódási unkát kell végeznünk: d W = gd + μg cos sin + μgd, A B d d C

Részletesebben

5. A súrlódás. Kísérlet: Mérje meg a kiadott test és az asztal között mennyi a csúszási súrlódási együttható!

5. A súrlódás. Kísérlet: Mérje meg a kiadott test és az asztal között mennyi a csúszási súrlódási együttható! FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI ÉS KÍSÉRLETEI a 2015/2016. tanév május-júniusi vizsgaidőszakában Vizsgabizottság: 12.a Vizsgáztató tanár: Bartalosné Agócs Irén 1. Egyenes vonalú mozgások dinamikai

Részletesebben

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel 1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora

Részletesebben

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04.

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04. .feladat A derékszögű koordinátarendszer origójába elhelyezünk egy q töltést. Mekkora ennek a töltésnek a 4,32 0 nagysága, ha a töltés a koordinátarendszer P(0,03;0,04)[m] pontjában E(r ) = 5,76 0 nagyságú

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben