Fontos fogalmak. A pörgettyűmodell
|
|
- Marika Valéria Hegedüs
- 8 évvel ezelőtt
- Látták:
Átírás
1 Diagnosztikai és terápiás módszerek biofizikai alapjai Rádióspektroszkópiai módszerek: Elektronspin-Rezonancia Spektroszkópia (ESR) és Mágneses Magrezonancia Spektroszkópia (NMR) alapelvei Február 24. Türmer Katalin NMR A két módszer fizikai alapelvei hasonlóak ESR Különbségek: a mágneses kölcsönhatások erősségében és irányában A mágneses rezonancia jelensége Vizsgálhatóságának feltételei: mágnesezhető rendszerek, amelyek impulzusmomentummal valamint mágneses momentummal is rendelkeznek Rezonancia: a jelenséget csak a mágneses rendszer természetes (saját) vagy rezonancia frekvenciáján lehet megfigyelni Fontos fogalmak Az atommagot alkotó részecskék: protonok és neutronok, valamint az elektronok is feles spinű részecskék Spin: az elemi részecskék saját perdülete, egy alapvető fizikai tulajdonságuk Impulzus: az elektronok mozgást végeznek, ezért forgási impulzussal, impulzusmomentummal rendelkeznek ; elektronok esetében pálya (L) és saját impulzusmomentumról(elektronspinről) (S)beszélünk (vektormennyiség) A pörgettyűmodell A magok mágneses volta a spinimpulzus-momentumra vezethető vissza. NMR-1/2 spinű magokat vizsgálunk: Az atommagok spinkvantumszáma: 0, 1/2, 1, 3/2, 2... ~4. meghatározza, hogy az adott mag mágneses-e ( NMR aktív ). Minden páratlan tömegszámú mag rendelkezik spinnel (impulzusmomentummal). A 12 C spinkvantumszáma 0 nincsen NMR spektruma. A 13 C spinkvantumszáma ½ mágneses momentuma ½ NMR jelet ad. A leggyakrabban mért magok: 1 H, 13 C, 15 N, 17 O, 19 F. Az atommagok és elektronok saját mágneses momentumának eredete A magok töltésének és spinjének együttes jelenléte a forgó töltés révén saját mágneses momentum megjelenéséhez vezet, ez függ a spin nagyságától Az elektronok e elektromos töltéssel is bírnak, ez a mozgó töltés maga körül mágneses teret gerjeszt, ezért az elektronok µ mágneses momentummal (pályamágnesség és spinmágnesség)rendelkeznek Spinmágnesség (mágneses momentum): (arányos az impulzusmentummal) µ=γs µ-elektronok saját mágneses momentuma S-elektronok saját impulzusmomentuma γ-arányossági tényező 1
2 A mágneses momentum eredete II. A mágneses momentum abszolútértéke: g Ahol: S S 1 eh g S 4 mc β-a mágneses momentum elemi egysége, az ún, Bohr magneton e-az elektron töltése m-az elektron tömege h-planck-állandó c-a fény terjedési sebessége g-g-faktor Az iránykvantálás jelensége Stern és Gerlach (1921) a megengedett spinállapotok kvantáltak és a magspin ill. elektronspin vektor egy kijelölt Z irányra -egyben a külső mágneses tér irányára is-vonatkozó vetülete csak diszkrét értékeket vehet fel (a kvantumnak (ez az elemi egység) csak többszöröse lehet) Rezonancia jelensége Mágneses tér jelenlétében az elektronok járulékos energiára tesznek szert, ennek nagysága: E=gβHmS ms-elektronspin vetülete H-a mágneses tér iránya Külső mágneses tér jelenlétében a tér és a mágneses momentum kölcsönhatásának eredményeként a proton és az elektron energiaszintje felhasad két energiaszintre. Ezek közül az alacsonyabb a részecske alap, A magasabb a gerjesztett állapotának felel meg. A felhasadás mértéke függ a mágneses térerősségtől Tehát külső mágneses térben az elektronspin vagy paralel vagy antiparalel orientációt vehet fel a tér irányára vonatkoztatva. A párnélküli elektronok járulékos energiája a két orientációnak megfelelően E1=1/2 gβh E2=-1/2 gβh A két energia különbsége: h*ν=gβh Ν- a spektrométerben alkalmazott frekvencia Ekkor a rendszer energiacserére kényszerül a környező elektromágneses térrel. Ez a jelenség az elektronparamágneses rezonancia. A rezonancia feltétel A proton ill. elektron (magspin és elektronspin) által elfoglalható energiaszintek (nívók) között átmenet hozható létre f0 frekvenvenciájú elektromágneses sugárzás alkalmazásával A következő egyenlet a rezonancia feltétel: ΔΕ=h* f0 Állandó frekvencia esetén a különböző magok különböző mágneses térerősségnél mutatnak rezonanciát E E 2 E 1 h 2
3 A mágneses térben levő protonok és E elektronok alap és gerjesztett állapota 2 különböző E 1 A forgó (saját impulzusmomentummal rendelkező) proton ill. elektron helyzetét leíró spin és mágneses momentum vektorok alapállapotban a külső mágneses térhez képest párhuzamosan, gerjesztett állapotban pedig ellentett irányba állnak be A 2 mágneses momentum vektor a mágneses erővonalakat körülvevő kúp palástja mentén precesszáló (egy forgó tárgy forgástengelyének megváltozása) mozgást végez f0 frekvenciával A külső mágneses tér irányában a magspinek véletlenszerűen állnak be E h A kísérletekhez szükséges mágneses tér bekapcsolásakor a véletlenszerű beállásoknak megfelelő állapot megszűnik, a magspinek a tér irányához viszonyítva rendezett állapotot vesznek fel Egyes protonok illetve elektronok a párhuzamos, mások ellentett spinállapotba kerülnek és precesszáló mozgást végeznek a mágneses tér iránya körül A Boltzmann-eloszlás Szabályozza a 2 állapot közötti spinmegoszlást Az elektronok illetve protonok egy része s=+1/2 állapotban, másik részük az s=-1/2 állapotban található. A Boltzmann-eloszlás szerint az alacsonyabb energiájú állapot betöltöttsége (N-) nagyobb. N+/N-=exp(-ΔE/kT) Mivel a környezetével hőegyensúlyban levő mintában kicsit több proton található alapállapotban NMR spektrum A mintát homogén elektromágneses térbe helyezzük A rá ható elektromágneses sugárzás frekvenciájának szabályozásával a besugárzott energia egy részének abszorpcióját idézzük elő Az elnyelt elektromágneses sugárzás intenzitásának frekvenciafüggése az NMR spektrum Egymással kölcsönhatásban nem álló protonok NMR spektruma közelít egy Gauss-görbéhez A spektrum görbe alatti területe arányos a mintában levő abszorbeáló atommagok (protonok) számával Kémiai eltolódás A mag-mágnesek olyan érzékenyek, hogy eltérő kémiai környezetben (molekulán belüli elhelyezkedésbeli különbségnél) megváltozik a rezonanciafrekvenciájuk. kémiai eltolódás: az NMR spektrumból nyerhető elsődleges információ. A spektrum egyéb adatai is jelentős információval szolgálnak. Tehát: a mag kémiai környezetétől függően eltolódhat a spektrum Fourier-transzformáció A modern NMR készülékek ún. Fourier-transzform üzemmódban működnek. Mi történik a magok mágneses momentumaival, ha azokat a rezonancia frekvenciának megfelelő elektromágneses sugárzásnak tesszük ki A magok mágneses momentumai a mágneses tér irányával paralel ill. antiparalel állnak be és vektoriálisan összeadódva létrehozzák a minta makroszkópikus mágnesezettségét A spinek 2 ellentétes kúppalást mentén tömörülve a rezonanciának megfelelő sebességgel precessziós mozgást végeznek 3
4 Ha a mintát gerjesztjük a rezonanciafrekvenciának megfelelőradiofrekvenciás impulzussal, Akkor a minta makroszkópikus mágnesezettsége kölcsönhatásba lép a radiofrekvenciás tér mágneses komponensével Ennek következtében a minta mágnesezettsége a radiofrekvenciás tér mágneses komponensének iránya körüli precessziós mozgást végez a tér jelenlétének ideje alatt, elfordul az idő hosszának megfelelő mértékben (90 vagy 180 fokkal) Relaxációs folyamatok Ha az elektronok ill. magok környezete eltérő, akkor a különböző g- faktorok miatt különböző mágneses térnél figyelhetjük meg a rezonancia jelenségét. Az energiacsere a rendszer és a környezete között nagyon gyorsan lezajlik, ezért folyamatos energiaelnyelést figyelhetünk meg A gerjesztett állapotban levő elektronok alapállapotba történő visszatérését irányító folyamatok a. Relaxáció: a kibillent rendszer visszatérése alapállapotba. Exponenciális függvény szerint, időállandója a relaxációs idő. (Az az időtartam, amely alatt az állapotot jellemző paraméter elérése az egyensúlyi állapothoz tartozó értéktől e-ad részére csökken.) spin-rács relaxáció: a gerjesztett spinek a fölösleges energiától a környezettel való kölcsönhatás révén szabadulnak meg. spin-spin relaxáció: a gerjesztett spinrendszeren belül történik az energiaátadás (ha térbeli közelség van). ESR Az előbb elhangzottak érvényesek az ESR-re is kisebb megszorításokkal A magmagneton és Bohr-magneton közti 2000-szeres különbség miatt az ESR frekvenciák jóval magasabbak, mint az NMR esetében Az ESR spektométerek technikailag eltérő felépítésűek Az energiakülönbség jóval nagyon ESR esetében A Boltzmann-eloszlásnak megfelelően jóval több elektron tartózkodik az alacsonyabb E-jú spinállapotban, így több a gerjeszthető elektron, ezért a jel is nagyságrendekkel nagyobb Éppen ezért jóval kisebb anyagmennyiség szükséges a méréshez Tehát az ESR jóval érzékenyebb technika Az ESR alkalmazása azon rendszerekre korlátozódik, amelyekben az elektronok eredő mágneses momentuma nullától különböző, azaz paramágnesesek ezen atomok vagy molekulák A paramágneses molekula érzékeny a környezetére, változásaira, az elektronok közelebbi kölcsönhatásban vannak környezetükkel, mint az atommagok GHz elektromágneses sugárzás alkalmazható A molekuláris mozgások dinamikája szélesebb időtartományban figyelhető meg Az elektronspin-magspin kölcsönhatások miatt kialakul ehy hiperfinom szerkezet a spektrumokon (makroszkópikus rendezettség: egy adott molekula mozgása mennyire korlátozott a tér valamely szögtartományára ESR jelet csak akkor detektálhatunk, ha a vizsgált rendszerben jelen van paramágneses centrum pl. egy szabad gyök Jelölő molekula (SL) a fehérjén N terminal Spin label Spin label Linker C terminal 4
5 Hogyan működik a spektrométer? 26 Az EPR Spektrum Az EPR spektrumot rendszerint a mágneses tér változtatásával valósítják meg. A spektrométer kimenő jele az energiaelnyelés első deriváltjával arányos, ez a mágneses tér függvényében kapott jel az EPR spektrum. 28 Troponin C in EGTA- and Ca-state I I +1 0 e ff = 2.0 ns H +1 e ff = 16.0 ns I -1 2A' zz (Nuclear) Magnetic Resonance Imaging : mágneses magrezonancia képalkotás Orvosi diagnosztikában: a test szerkezetének leképezéséhez agyi képalkotás területén Előnye a komputertomográfiához képest: jobb a kontrasztfelbontó képessége a lágy szövetek területein Létezik: a strukturális MRI vizsgálat (smri) mellett ún. funkcionális MRI (fmri) is, amellyel a vizsgált szervek működéséről nyerhető információ. H 5
6 Az MRI működési alapelve mágneses térbe helyezik a testrészt ez megdönti a protonok tengelyének irányát a hidrogénatomokban Elektromágneses tér plusz energiával bombázzák, megváltoztatják a tengelyek dőlését igyekszik visszaállítani eredeti dőlésszögét a kapott energiát visszasugározza ezt a visszasugárzott energiát mérjük ez egy 3D képrekonstrukció A mágneses térerősségnek a rezonanciafeltételt egy adott pillanatban a leképzendő testszelvény kicsiny térfogatelemében kell kielégítenie több mágneses tér egyidejű alkalmazásával. A gradiensek változtatásával a sík pásztázása. beállított síkokban képeket készítenek, amelyekről információt nyernek az adott térfogaton található szövetek víztartalmáról, sűrűségéről Voxel A képalkotásban a legkisebb vizsgálati egység. Meghaladja a sejtek méretét (1-3 mm oldalhosszúságú) megeshet, hogy egy adott voxel például szürke és fehérállományhoz tartozó sejteket is tartalmaz. Statisztikai eljárások, beprogramozott elvek segítségével a szoftver döntést hoz az adott területtel kapcsolatban. A műszer gerjesztési adatok: B=0,05 2 T f=mhz-10mhz Adatok forrása: a protonokból visszasugárzott energia mennyisége. Info: szövetek sűrűsége szövetek kémiai környezete víztartalom eloszlása Az MRI képek jellemzői súlyozási eljárások: :strukturális elemzésekhez - a szürkeállomány sötétebb szürke, a fehérállomány világosabb, esetleg fehér, és a liquor fekete. a szürkeállomány vékony felülete világosabb tónusú a fehérállománynál, ám a liquor itt is fekete. Nehézségek az elemzésben Voxelek: a legnagyobb felbontású gépekben is milliméter nagyságrendűek. Hosszadalmas, nagy körültekintést igényel és drága. A páciens mozog, a képek egymáshoz képest elmozdulnak. Egyenetlen mágneses mező torzulások. A szkenner felmelegszik. rossz jel-zaj arány rontja a statisztikák megbízhatóságát is. 6
7 Nehézségek Az emberi agyak nem egyformák. barázdáltság, méret alak összehasonlításhoz megfeleltetik őket egymásnak regisztráció: szükséges átalakítások felmérése, számítása transzformáció: fentiek végrehajtása. illesztés A számításokat a koordináta-transzformáció szabályai szerint végzik. lineáris transzformáció - merev testek esetén (ugyanazon személy elmozdult agyának illesztésére): mozgatás, forgatás, három dimenzió mentén; méretezés, torzítás MR-biztonság Elektromos implantátumok: pl. pacemaker, inzulin-pumpa, megoldás lehet: implantátumok olyan nanoborítása, amely leárnyékolja a szerkezetet. Mágnesezhető idegen testek (pl. repeszdarabok) vagy fém implantátumok (pl. sebészeti protézisek, aneurizma sztentek) implantátum mágneses mezőben való elmozdulása, a tárgy indukciós felhevülése. megoldás: titán implantátumok (nem mágnesezhető és gyenge elektromos vezető. implantátumok és egyéb klinikai készülékek besorolása: MR biztos, MR feltételes jelzés, MR veszélyes jelzés MR-biztonság Klausztrofóbia és diszkomfortérzés Vizsgálandó testrészet a hosszú cső közepébe Hosszú szkennelési idő (alkalmanként akár 40 perc is lehet). Mozgolódás torzító hatása nehezen kiküszöbölhető Modern MR készülékek: nagyobb átmérő (70 centimétert), rövidebb szkennelési idő. Előzetes felkészülés a szkenner megtekintése a szoba megismerése céljából, az asztalon való előzetes fekvés vizualizációs technikák gyógyszeres nyugtatás általános altatás Megküzdés a szkennerben pánikgomb szemek csukva tartása zenehallgatás vagy egy film nézése a szkenner szoba megvilágítása, hangok lejátszása, és képek a falon vagy a plafonon Alternatív szkenner kivitelezések: nyitott, vagy álló MRI alacsonyabb szkennelési minőség ( kisebb mágneses mező). A kereskedelemben az 1 teslás nyitott rendszerek kezdenek elterjedni, mivel sokkal jobb képminőséget biztosítanak. Strukturális MRI vizsgálat Az agyi képalkotás módszere. Van-e eltérés egy betegcsoport szürkeállományának méretében a normál populációhoz képest? Bizonyos tevékenységek hosszú éveken át történő űzése együtt jár-e strukturális elváltozásokkal? Adott beteg agysérülésének pontos felmérése. Strukturális elváltozások kapcsolata neurológiai, pszichiátriai tünetekkel. ublications/mri1.jpg ublications/mri_neuro1.jpg Funkcionális MRI A funkcionális MRI (fmri) az MRI vizsgálat egy specializált típusa, amely az idegi aktivitással összefüggésben lévő hemodinamikus választ méri az emberek és állatok agyában vagy spinális kötegében. Az 1990-es évek elejétől kezdve az fmri domináns módszerré vált az agy feltérképezésének területén, mivel nem invazív eljárás, nem használ radioaktivitást, valamint viszonylag széleskörűen hasznosítható. BOLD MRI A vér-oxigén-szint függő (Blood-oxygen-level dependent) MRI lehetővé teszi, hogy megfigyeljük, hogy az agy mely területei aktívak adott időben. Hemodinamikus válasz-folyamaton keresztül a vér nagyobb mértékben szállít oxigént az aktív, mint az inaktív neuronokhoz. Mágneses érzékenységben különbségek vannak az oxihemoglobin és a deoxihemoglobin között, és így az oxigéndús és az oxigénszegény vér között a mágneses jel változása MRI szkennerrel detektálható. Statisztikai módszerekkel meghatározható, hogy az agy mely területei aktívak a gondolatok, mozgások és élmények alatt. 7
8 Kontraszt MR, megjelölt spin technika Kontraszt MR Befecskendezett kontraszt anyag (vasoxid) zavart okoz a mágneses mezőben MRI szkenner mérni tudja. A jelek összefüggésben állnak a kontraszt anyag típusával és az agyi vérmennyiséggel. Növelhető az fmri vizsgálatok hasznossága. A mai napig nincs olyan alternatív eljárás, amely ilyen érzékenységgel tudná jelezni az agyi változásokat. Megjelölt spin technika (ASL) Mágneses jelölés esetében a proximális vérellátás megjelölt spin technikát (ASL) használ. Kontraszt anyag nélküli perfúziós vizsgálat. Az eljárás több kvantitatív pszichológiai információt nyújt, mint a BOLD, és hasonló érzékenységgel rendelkezik a feladat-indukált változásokra nézve. 8
Mágneses magrezonancia. Mágneses magrezonancia. (Nuclear) Magnetic Resonance Imaging : mágneses magrezonancia képalkotás
http://renodiagnosticcenters.com/images/d_mri_cover_fc.jpg Magnetic Resonance Imaging Diagnosztikai és terápiás módszerek fizikai alapjai 2009. március 9. Dudás Réka (Nuclear) Magnetic Resonance Imaging
RészletesebbenMűszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 7. előadás NMR spektroszkópia Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék NMR, Nuclear Magnetic
RészletesebbenBiomolekuláris szerkezeti dinamika
Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, stb.) Rádióspektroszkópiák
RészletesebbenMagmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai
Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Dóczy-Bodnár Andrea 2011. szeptember 28. Magmágneses rezonanciához kapcsolódó Nobel-díjak * Otto Stern, USA: Nobel Prize in Physics
RészletesebbenBiomolekuláris szerkezeti dinamika
Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, mozgások, stb.)
RészletesebbenMágneses módszerek a műszeres analitikában
Mágneses módszerek a műszeres analitikában NMR, ESR: mágneses momentummal rendelkező anyagok minőségi és mennyiségi meghatározására alkalmas Atommag spin állapotok közötti energiaátmenetek: NMR (magmágneses
RészletesebbenDóczy-Bodnár Andrea október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai
Dóczy-Bodnár Andrea 2012. október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Atommagok saját impulzusmomentuma (spin) protonok, neutronok (elektronhoz hasonlóan) saját impulzusmomentum
RészletesebbenA nehézfémek növényi vízháztartásra gyakorolt hatásának vizsgálata Mágneses Rezonancia készülékkel. Készítette: Jakusch Pál Környezettudós
A nehézfémek növényi vízháztartásra gyakorolt hatásának vizsgálata Mágneses Rezonancia készülékkel Készítette: Jakusch Pál Környezettudós Célkitűzés MR készülék növényélettani célú alkalmazása Kontroll
RészletesebbenModern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.
Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:
RészletesebbenElektronspinrezonancia (ESR) - spektroszkópia
Elektronspinrezonancia (ESR) - spektroszkópia Paramágneses anyagok vizsgáló módszere. A mágneses momentum iránykvantáltságán alapul. A mágneses momentum energiája B indukciójú mágneses térben E m S μ z
RészletesebbenMágneses módszerek a mőszeres analitikában
Mágneses módszerek a mőszeres analitikában NMR, ESR: mágneses momentummal rendelkezı anyagok minıségi és mennyiségi meghatározására alkalmas analitikai módszer Atommag spin állapotok közötti energiaátmenetek:
RészletesebbenM N. a. Spin = saját impulzus momentum vektor: L L nagysága:
Az MR és MRI alapjai Magmágneses Rezonancia Spektroszkópia (MR) és Mágneses Rezonancia Képalkotás (MRI) uclear Magnetic Resonance: Alapelv felfedezéséért Fizikai obel díj, 1952 Felix Bloch és Edward M.
Részletesebbenhttp://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja
RészletesebbenMágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok
MR-ALAPTANFOLYAM 2011 SZEGED Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok Martos János Országos Idegtudományi Intézet Az agy MR vizsgálata A gerinc MR vizsgálata Felix Bloch Edward Mills
RészletesebbenMRI áttekintés. Orvosi képdiagnosztika 3. ea ősz
MRI áttekintés Orvosi képdiagnosztika 3. ea. 2015 ősz MRI Alapelv: hogyan lehet mágneses vizsgálattal valamilyen anyag (jelen esetben az élő emberi szervezet) belső felépítéséről információt kapni? A mágneses
RészletesebbenModern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. március 2. A mérés száma és címe: 5. Elektronspin rezonancia Értékelés: A beadás dátuma: 2009. március 5. A mérést végezte: Márton Krisztina Zsigmond
RészletesebbenRádióspektroszkópiai módszerek
Rádióspektroszkópiai módszerek NMR : Nuclear magneic resonance : magmágneses rezonancia ESR : electron spin resonance: elektronspin-rezonancia Mikrohullámú spektroszkópia Schay G. Rádióspektroszkópia elég
RészletesebbenMorfológiai képalkotó eljárások CT, MRI, PET
Morfológiai képalkotó eljárások CT, MRI, PET Kupi Tünde 2009. 12. 03. Röntgen 19. sz. vége: Röntgen abszorbciós mechanizmusok: - Fotoelektromos hatás - Compton-szórás - Párkeltés Kép: Röntgenabszorbancia
RészletesebbenMÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN
MÁGNESES MAGREZONANIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN 1) A jelenség 2) Nuclear Magnetic Resonance (NMR) 3) Magnetic Resonance Imaging (MRI) 4) Magnetic Resonance Spectroscopy (MRS) NMR
RészletesebbenMagmágneses rezonancia. alapjai. Magmágneses rezonanciához kapcsolódó Nobel-díjak. γ N = = giromágneses hányados. v v
Magmágneses rezonancia (MR) és elektronspinrezonancia (ESR) alapjai Dóczy-Bodnár Andrea 211. szeptember 28. Magmágneses rezonanciához kapcsolódó obel-díjak * Otto Stern, USA: obel Prize in Physics 1943,
Részletesebben24/04/ Röntgenabszorpciós CT
CT ésmri 2012.04.10. Röntgenabszorpciós CT 1 Élettani és Orvostudományi Nobel díj- 1979 Allan M. Cormack, Godfrey N. Hounsfield Godfrey N. Hounsfield Born:28 August 1919, Newark, United Kingdom Died: 12
RészletesebbenMÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN
MÁGNESES MAGREZONANIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN 1) A jelenség 2) Nuclear Magnetic Resonance (NMR) 3) Magnetic Resonance Imaging (MRI) 4) Magnetic Resonance Spectroscopy (MRS) NMR
RészletesebbenStern Gerlach kísérlet. Készítette: Kiss Éva
Stern Gerlach kísérlet Készítette: Kiss Éva Történelmi áttekintés 1890. Thomson-féle atommodell ( mazsolás puding ) 1909-1911. Rutherford modell (bolygó hasonlat) Bohr-féle atommodell Frank-Hertz kísérlet
RészletesebbenFizikai kémia Részecskék mágneses térben, ESR spektroszkópia. Részecskék mágneses térben. Részecskék mágneses térben
06.08.. Fizikai kémia. 3. Részecskék mágneses térben, ESR spektroszkópia Dr. Berkesi Ottó SZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Részecskék mágneses térben A részecskék mágneses térben ugyanúgy
RészletesebbenElektronspin rezonancia
Elektronspin rezonancia jegyzıkönyv Zsigmond Anna Fizika MSc I. Mérés vezetıje: Kürti Jenı Mérés dátuma: 2010. november 25. Leadás dátuma: 2010. december 9. 1. A mérés célja Az elektronspin mágneses rezonancia
RészletesebbenHogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?
Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Prof. Túri László (ELTE, Kémiai Intézet) turi@chem.elte.hu 2012. november 19. Szent László Gimnázium Önképzőkör 1 Kapcsolódási pontok
RészletesebbenModern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 25. A mérés száma és címe: 5. ESR (Elektronspin rezonancia) Értékelés: A beadás dátuma: 2011. nov. 16. A mérést végezte: Szőke Kálmán Benjamin
RészletesebbenMűszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása
Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása
RészletesebbenMűszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses
RészletesebbenElektronspinrezonancia (ESR) - spektroszkópia
E m S Elektronspinrezonancia (ESR) - spektroszkópia Paramágneses anyagok vizsgáló módszere. A mágneses momentum iránykvantáltságán alapul. A mágneses momentum energiája B indukciójú mágneses térben = µ
RészletesebbenMedical Imaging 10 2009.04.07. 1. Mágneses rezonancia (MR, MRI, NMR) x B. Makroszkopikus tárgyalás
Mágneses rezonancia (MR, MRI, NMR) Bloch, Purcell 1946, Nobel díj 1952. Mágneses momentum + - Mágneses térben a mágneses momentum az erővonalakkal csak meghatározott szöget zárhat be. Különböző irányokhoz
Részletesebbenlásd: enantiotóp, diasztereotóp
anizokrón anisochronous árnyékolási állandó shielding constant árnyékolási járulékok és empirikus értelmezésük shielding contributions diamágneses és paramágneses árnyékolás diamagnetic and paramagnetic
RészletesebbenAlkalmazott spektroszkópia
Alkalmazott spektroszkópia 009 Bányai István MR és a fémionok: koordinációs kémiai alkalmazások Bányai István Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék A mágnesség A mágneses erő: F pp
RészletesebbenRadiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,
RészletesebbenAz elektromágneses hullámok
203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert
RészletesebbenESR színképek értékelése és molekulaszerkezeti értelmezése
ESR színképek értékelése és molekulaszerkezeti értelmezése Elméleti alap: Atkins: Fizikai Kémia II, 187-188, 146, 1410, 152 158 fejezetek A gyakorlat során egy párosítatlan elektronnal rendelkező benzoszemikinon
RészletesebbenFizikai kémia 2. ZH V. kérdések I. félévtől
Fizikai kémia 2. ZH V. kérdések 2016-17 I. félévtől Szükséges adatok és állandók: k=1,38066 10-23 JK; c= 2,99792458 10 8 m/s; e= 1,602177 10-19 C; h=6,62608 10-34 Js; N A= 6,02214 10 23 mol -1 ; me= 9,10939
RészletesebbenAz elektromágneses tér energiája
Az elektromágneses tér energiája Az elektromos tér energiasűrűsége korábbról: Hasonlóképpen, a mágneses tér energiája: A tér egy adott pontjában az elektromos és mágneses terek együttes energiasűrűsége
RészletesebbenAz atommag összetétele, radioaktivitás
Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron
RészletesebbenA testek részecskéinek szerkezete
A testek részecskéinek szerkezete Minden test részecskékből, atomokból vagy több atomból álló molekulákból épül fel. Az atomok is összetettek: elektronok, protonok és neutronok találhatók bennük. Az elektronok
RészletesebbenAtomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós
Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe
Részletesebbenm ág n e ses momentum É T ö ltés elektro n vagy atommag
Elektron spin rezonancia (ESR) A molekulákban fizikai illetve biológiai rendszerekben található elektronok túlnyomó többsége olyan párokban található, amelyek spinjei ellentétes orientációt mutatnak. Ezek
RészletesebbenSugárzások kölcsönhatása az anyaggal
Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy
RészletesebbenAtommodellek de Broglie hullámhossz Davisson-Germer-kísérlet
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
RészletesebbenMézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.
és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán
RészletesebbenA különböző anyagok mágneses térrel is kölcsönhatásba lépnek, ugyanúgy, ahogy az elektromos térrel. Ez a kölcsönhatás szintén kétféle lehet.
1 A különböző anyagok mágneses térrel is kölcsönhatásba lépnek, ugyanúgy, ahogy az elektromos térrel. Ez a kölcsönhatás szintén kétféle lehet. A legjobban az ún. Gouy-mérlegben való viselkedés példázza
RészletesebbenMi mindenről tanúskodik a Me-OH néhány NMR spektruma
Mi mindenről tanúskodik a Me-OH néhány NMR spektruma lcélok és fogalmak: l- az NMR-rezonancia frekvencia (jel), a kémiai környezete, a kémiai eltolódás, l- az 1 H-NMR spektrum, l- az -OH és a -CH 3 csoportokban
RészletesebbenAtomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét
RészletesebbenAdatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
RészletesebbenFunkcionális konnektivitás vizsgálata fmri adatok alapján
Funkcionális konnektivitás vizsgálata fmri adatok alapján Képalkotási technikák 4 Log Resolution (mm) 3 Brain EEG & MEG fmri TMS PET Lesions 2 Column 1 0 Lamina -1 Neuron -2 Dendrite -3 Synapse -4 Mikrolesions
RészletesebbenFluoreszcencia módszerek (Kioltás, Anizotrópia, FRET)
Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Biofizika szeminárium PTE ÁOK Biofizikai Intézet Huber Tamás 2014. 02. 11-13. A gerjesztett állapotú elektron lecsengési lehetőségei Gerjesztés Fluoreszcencia
RészletesebbenTermészettudományi Kutatóközpont, Magyar Tudományos Akadémia (MTA-TTK) Agyi Képalkotó Központ (AKK)
Szimultán multi-slice EPI szekvenciák: funkcionális MRI kompromisszumok nélkül? Kiss Máté, Kettinger Ádám, Hermann Petra, Gál Viktor MTA-TTK Agyi Képalkotó Központ Természettudományi Kutatóközpont, Magyar
RészletesebbenAbszorpció, emlékeztetõ
Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése
RészletesebbenAtomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson
Részletesebben2, = 5221 K (7.2)
7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon
RészletesebbenRöntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)
Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken
RészletesebbenÁtmenetifém-komplexek ESR-spektrumának jellemzıi
Átmenetifém-komplexek ESR-spektrumának jellemzıi A párosítatlan elektron d-pályán van. Kevéssé delokalizálódik a fémionról, a fém-donoratom kötések meglehetısen ionos jellegőek. A spin-pálya csatolás viszonylag
RészletesebbenNMR, MRI. Magnetic Resonance Imaging. Times, 2003. október 9 MRI
Times, 2003. október 9 NMR, MRI Magnetic Resonance Imaging This Year s Nobel Prize in Medicine The Shameful Wrong That Must Be Righted This year the committee that awards The Nobel Prize for Physiology
RészletesebbenATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő
ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás
RészletesebbenSpeciális fluoreszcencia spektroszkópiai módszerek
Speciális fluoreszcencia spektroszkópiai módszerek Fluoreszcencia kioltás Fluoreszcencia Rezonancia Energia Transzfer (FRET), Lumineszcencia A molekuláknak azt a fényemisszióját, melyet a valamilyen módon
RészletesebbenÚton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16.
Úton az elemi részecskék felé Atommag és részecskefizika 2. előadás 2010. február 16. A neutron létének következményei I. 1. Az atommag alkotórészei Z db proton + N db neutron, A=N+Z az atommag tömege
Részletesebbenhttp://www.flickr.com Az atommag állapotait kvantummechanikai állapotfüggvénnyel írjuk le. A mag paritását ezen fv. paritása adja meg. Paritás: egy állapot tértükrözéssel szemben mutatott viselkedését
RészletesebbenGnädig Péter: Golyók, labdák, korongok és pörgettyűk csalafinta mozgása április 16. Pörgettyűk különböző méretekben az atomoktól a csillagokig
Gnädig Péter: Golyók, labdák, korongok és pörgettyűk csalafinta mozgása 2015. április 16. Pörgettyűk különböző méretekben az atomoktól a csillagokig Egyetlen tömegpont: 3 adat (3 szabadsági fok ) Példa:
RészletesebbenAz NMR képalkotás alapjai. Bányai István Kolloid- és Környezetkémiai Tanszék DE, TEK
Az NMR képalkotás alapjai Bánai István Kolloid- és Körnezetkémiai Tanszék DE, TEK Az NMR alapjai alapjai Bánai István Kolloid- és Körnezetkémiai Tanszék DE, TEK A mágnesség A mágneses erı: F = pp 1 2 r
RészletesebbenAz MR(I) módszer elve. Dr.Fidy Judit 2012 március 7
Az MR(I) módszer elve Dr.Fidy Judit 2012 március 7 Az MR(I) módszer Ábrák: Kastler-Patay: MRI orvosoknak, Folia Neuroradiologica, 1993 (Nuclear) Magnetic Resonance Imaging mag (atommag) mágneses rezonancia
RészletesebbenRöntgendiagnosztikai alapok
Röntgendiagnosztikai alapok Dr. Voszka István A röntgensugárzás keltésének alternatív lehetőségei (röntgensugárzás keletkezik nagy sebességű, töltéssel rendelkező részecskék lefékeződésekor) Röntgencső:
Részletesebbenτ Γ ħ (ahol ħ=6,582 10-16 evs) 2.3. A vizsgálati módszer: Mössbauer-spektroszkópia (Forrás: Buszlai Péter, szakdolgozat) 2.3.1. A Mössbauer-effektus
2.3. A vizsgálati módszer: Mössbauer-spektroszkópia (Forrás: Buszlai Péter, szakdolgozat) 2.3.1. A Mössbauer-effektus A Mössbauer-spektroszkópia igen nagy érzékenységű spektroszkópia módszer. Alapfolyamata
RészletesebbenMérés és adatgyűjtés
Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény
RészletesebbenAtommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek
Démokritosz: a világot homogén szubsztanciájú oszthatatlan részecskék, atomok és a közöttük lévı őr alkotja. Az atom szerkezete Egy atommodellt akkor fogadunk el érvényesnek, ha megmagyarázza a tapasztalati
RészletesebbenTartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;
RészletesebbenMagfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem
1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok
RészletesebbenA fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás
A fény Abszorpciós fotometria Fluoreszcencia spektroszkópia. 2010. október 19. Huber Tamás PTE ÁOK Biofizikai Intézet E A fény elektromos térerısségvektor hullámhossz A fény kettıs természete: Hullám (terjedéskor)
RészletesebbenTimes, 2003. október 9 MRI
Times, 2003. október 9 MRI: orvosi diagnosztikát forradalmasító képalkotó módszer This Year s Nobel Prize in Medicine The Shameful Wrong That Must Be Righted This year the committee that awards The Nobel
RészletesebbenMag-mágneses rezonancia
Mag-mágneses rezonancia jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csorba Ottó Mérés dátuma: 2010. március 25. Leadás dátuma: 2010. április 7. Mérés célja A labormérés célja a mag-mágneses
Részletesebben3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék
3. (b) Kereszthatások Utolsó módosítás: 2013. április 1. Vezetési együtthatók fémekben (1) 1 Az elektrongáz hővezetési együtthatója A levezetésben alkalmazott feltételek: 1. Minden elektron ugyanazzal
RészletesebbenOrvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
RészletesebbenAlkalmazott spektroszkópia Serra Bendegúz és Bányai István
Alkalmazott spektroszkópia 2014 Serra Bendegúz és Bányai István A mágnesség A mágneses erő: F p1 p2 r p1 p2 C ( F C ) C áll 2 2 r r r A mágneses (dipólus) momentum: m p l ( m p l ) Ahol p a póluserősség
RészletesebbenModern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: Az optikai pumpálás. A beadás dátuma: A mérést végezte:
Modern Fizika Labor A mérés dátuma: 2005.10.19. A mérés száma és címe: 7. Az optikai pumpálás Értékelés: A beadás dátuma: 2005.10.28. A mérést végezte: Orosz Katalin Tóth Bence Optikai pumpálás segítségével
RészletesebbenAz NMR spektroszkópia a fehérjék szolgálatában. Bodor Andrea. ELTE Szerkezeti Kémia és Biológia Laboratórium Visegrád
Az NMR spektroszkópia a fehérjék szolgálatában Bodor Andrea ELTE Szerkezeti Kémia és Biológia Laboratórium 2011.01.18. Visegrád Nobel díjak tükrében 1952 Fizika: Módszer és elméleti alapok Felix Bloch
RészletesebbenIMPULZUS MOMENTUM. Impulzusnyomaték, perdület, jele: N
IPULZUS OENTU Impulzusnyomaték, perdület, jele: N Definíció: Az (I) impulzussal rendelkező test impulzusmomentuma egy tetszőleges O pontra vonatkoztatva: O I r m Az impulzus momentum vektormennyiség: két
RészletesebbenMagnesia. Itt találtak már az ókorban mágneses köveket. Μαγνησία. (valószínű villámok áramának a tere mágnesezi fel őket)
Mágnesség Schay G. Magnesia Μαγνησία Itt találtak már az ókorban mágneses köveket (valószínű villámok áramának a tere mágnesezi fel őket) maghemit Köbös Fe 2 O 3 magnetit Fe 2 +Fe 3 +2O 4 mágnesvasérc
RészletesebbenFluoreszcencia 2. (Kioltás, Anizotrópia, FRET)
Fluoreszcencia 2. (Kioltás, Anizotrópia, FRET) Gerjesztés A gerjesztett állapotú elektron lecsengési lehetőségei Fluoreszcencia 10-9 s k f Foszforeszcencia 10-3 s k ph 10-15 s Fizika-Biofizika 2. Huber
RészletesebbenAz MR(I) módszer elve. Az MR(I) módszer. (Nuclear) Magnetic Resonance Imaging mag (atommag) mágneses rezonancia alapu képalkotó módszer
Az MR(I) módszer elve Mai kérdés: Hogyan változik a röntgensugárzás elnyelődésének valószínűsége lágy szövetekben a sugárzás foton-energiájával? Dr.Fidy Judit 05 március 8 Az MR(I) módszer Történelem -
RészletesebbenAdatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI
RészletesebbenOsztályozó vizsga anyagok. Fizika
Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes
RészletesebbenAbszorpciós spektrometria összefoglaló
Abszorpciós spektrometria összefoglaló smétlés: fény (elektromágneses sugárzás) tulajdonságai, kettős természet fény anyag kölcsönhatás típusok (reflexió, transzmisszió, abszorpció, szórás) Abszorpció
RészletesebbenAz időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben
Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),
Részletesebben9. évfolyam. Osztályozóvizsga tananyaga FIZIKA
9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni
RészletesebbenNév... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez
A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási
RészletesebbenFluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek
Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek 2012. 11. 08. Fotonok és molekulák ütközése Fény (foton) ütközése a molekulákkal fényszóródás abszorpció E=hν
RészletesebbenVezetők elektrosztatikus térben
Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)
Részletesebben1D multipulzus NMR kísérletek
D multipulzus NMR kísérletek Rohonczy János ELTE, Szervetlen Kémia Tanszék Modern szerkezetkutatási módszerek elıadás 202. . Protonlecsatolt heteronukleáris mérések Elv 3 C mag detektálása alatt a protoncsatornán
RészletesebbenOPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István
OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt
RészletesebbenMágneses magrezonancia (NMR) spektroszkópiák
1 A szerves vegyületek szerkezetének meghatározására kezdetben az elemi analízist és az analógiákon alapuló szerkezetbizonyító szintézist illetve lebontást alkalmazták. Bonyolultabb vegyületek szerkezetének
RészletesebbenAlkalmazás a makrókanónikus sokaságra: A fotongáz
Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,
RészletesebbenSohár Pál Varázslat, amitől láthatóvá válnak és életre kelnek a molekulák: Az NMR spektroszkópia
MTA -ELTE FEÉRJEMODELLEZŐ KUTATÓCSOPORT - ÁLTALÁNOS ÉS SZERVETLEN KÉMIAI TANSZÉK EÖTVÖS LORÁND TUDOMÁNYEGYETEM Sohár Pál Varázslat, amitől láthatóvá válnak és életre kelnek a molekulák: Az NMR spektroszkópia
RészletesebbenFermi Dirac statisztika elemei
Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika
RészletesebbenSzerves vegyületek szerkezetfelderítése NMR spektroszkópia
Szerves vegyületek szerkezetfelderítése NMR spektroszkópia Az anyag összeállításához Krajsovszky Gábor, Mátyus Péter és Perczel András diáit is felhasználtuk. 1 (hullámhossz) -sugárzás röntgensugárzás
RészletesebbenGamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére
Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére OAH-ABA-16/14-M Dr. Szalóki Imre, egyetemi docens Radócz Gábor, PhD
RészletesebbenAbszorpciós fotometria
A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség
Részletesebben