A fehérjehálózatok vizsgálatának matematikai módszereiről. ELTE Matematikai Intézet Protein Információs Technológia Csoport & URATIM Kft.
|
|
- Gréta Halász
- 5 évvel ezelőtt
- Látták:
Átírás
1 A fehérjehálózatok vizsgálatának matematikai módszereiről Grolmusz Vince Köszönet: Iván Gábor ELTE Matematikai Intézet Protein Információs Technológia Csoport & URATIM Kft.
2 Néhány vélemény szerint: A jelenlegi egy-egy fehérjét vagy egy receptort tekintø vagy támadó terápiás eljárásokból túl sok új eredményt nem lehet kihozni. Sok betegség komplex, sok biokémiai folyamatot érint, sok fehérjével van kapcsolatban. Pl. depresszió: nem feleløs érte egyetlen fehérje. Molekuláris mechanizmus nincs felderítve, marker sincs.
3 Több fehérje együttes hatását kell nézni! Rendszerbiológia, Proteomika, (metabolomika, genomika, stb.) Vigyázat! Nagy veszélye van annak, hogy (nem túl értelmes) általánosságokat mondjunk. Karl Popper: Az az állítás tudományos, amelyet elvileg lehetne cáfolni. Pl. Nehéz az élet! Minden mindennel összefügg nem tudományos állítások. Az Antarktisz jégtömege nøvekszik tudományos állítás (pontosabban: mikor, mihez képest )
4 Proteomikai technikák széles körű elterjedése Hatalmas mennyiségű mérési adat és fehérjehálózat Az eredmények kézzel, ránézéssel nem értékelhetők ki Gyors, hibatűrő, biológiailag verifikált kiértékelési eljárásokra van szükség
5 Hálózatok- gráfok Matematikailag a hálózatok gráfok. Gráf: G(V,E) V: csúcsok, E élek halmaza Gráfelmélet: magyar matematikusok igen sokat tettek benne: König Dénes, König Gyula, Egervári Jenø, Turán Pál, Erdøs Pál, Rényi Alfréd, Lovász László,. Milyen problémák lehetnek itt? Legrövidebb út-leghosszabb út; színezések, párosítások, stb.
6 Itt és most nagy hálózatokban a fontos csúcsok megtalálására szeretnénk koncentrálni. Egy csúcs lehet fontos: 1. önmagában, a teljes hálózatban, 2. vagy néhány más csúcshoz képest A 2. típusú kérdés a biológiában például proteomikai mérések kiértékelésénél merül fel: Ha néhány fehérje koncentrációja megváltozik egy folyamatban, akkor szeretnénk tudni, hogy mely más fehérjék vannak ezekkel szoros kapcsolatban. A cél: fontos csúcsok megtalálása fehérjehálózatokban
7 Ha nem a saját méréseinket használjuk, hol találunk fehérjehálózatokat? MINT (UniRoma): él, fehérje, csak kisérleti DIP (UCLA): él, fehérje HPRD (Johns Hopkins): él, fehérje, humán IntAct (EMBL-EBI): él, fehérje KEGG (Kyoto Univ.) metabolikus hálózatok Generált hálózatok: nascent.pitgroup.org, nem csak modell organizmusokra (részletek: poszter-szekció P6-02) A cél: fontos csúcsok megtalálása fehérjehálózatokban
8 Milyen hálózatokat tekintünk? Fizikai interakciós hálózatok: Csúcsok: fehérjék, élek: két fehérje éllel van összekötve, ha köztük interakció van: mért {TAP, Y2H, ko-immunoprecitipáció vagy egyéb}, jósolt Irányítatlan gráfok: A cél: fontos csúcsok megtalálása fehérjehálózatokban
9 Milyen hálózatokat tekintünk? Metabolikus hálózatokat: Csúcsok: reakciók, élek az A-ból B-be: ha van az A reakciónak olyan terméke, amelyet a B használ fel. A B Az éleket lehet a fluxussal is címkézni. Példa: Az Mtb mikolsav pathway-e A cél: fontos csúcsok megtalálása fehérjehálózatokban
10
11 A hálózatokat a matematikában gráfoknak hívják Konkrét, nagy gráfok struktúrájának gyakorlati vizsgálatához a WWW web-gráfjának tanulmányozása vezetett a 90-es évek közepén és végén; A cél a fontos csúcsok kiszűrése volt a web-gráfból: ez azért volt érdekes, mert amikor valaki rákeres egy web-keresőben (pl. Google) egy kifejezésre, akkor a fontos találatokat akarja látni az elsők közt. Sokszor azonban több millió találat van... A cél: fontos csúcsok megtalálása fehérjehálózatokban
12 Web-gráf: csúcsok: a web oldalai élek: A B, ha az A oldal hivatkozik B-re; DEF 1:Fontos oldal azaz fontos csúcs: amelyre sokan hivatkoznak,azaz magas a be-foka: be-fok=4 Sok alkalmazás; scientometria: hivatkozások száma, impakt faktor hátránya: nem veszi figyelembe a hivatkozók minőségét, ezért befolyásolható A cél: fontos csúcsok megtalálása fehérjehálózatokban
13 DEF 2: Fontos oldal azaz fontos csúcs: amelyre sok fontos csúcs hivatkozik... Mint definíció, ez így persze rossz. De könnyen lehet egy iteratív algoritmust csinálni belőle: az elején mindenkinek adok egy egységnyi fontosságot, aztán ezt (pongyolán fogalmazva) a csúcsok átörökítik azokra a csúcsokra, akikre mutatnak, és ezt ismételjük, amíg egy stabilizálódott határ-eloszláshoz nem jutunk (ez legtöbbször létezik). Könnyen, gyorsan számolható, általában gyorsan konvergál. Ennek az eljárásnak a hibatűrését és robusztusságát lehet egy új ötlettel növelni. Ezt véletlen bolyongással lehet jól elmondani. A cél: fontos csúcsok megtalálása fehérjehálózatokban
14 Elindítunk egy sétáló embert a gráfon: ha egy csúcsba ér, akkor egyenletes valószínűséggel valamely kimenő élen megy tovább, vagy egy c valószínűséggel teleportál, egy véletlenül kiválasztott csúcsba: Pl. c=0.2 8/50 Egy csúcs fontossága az a valószínűség, amellyel ott tartózkodunk (pontosabban a határeloszlás)
15 Ezt használta az első időkben a Google (Brin & Page 1998), tehát csak a linkek struktúrájából osztályozott). Előnyei: Aránylag nehéz mesterségesen befolyásolni (WWW) Hibatűrő (Biológiai felhasználások) PageRang vektorok különbségének normája A megváltozott csúcsok PageRangjainak összege c a teleportálási valószínűség, c=0.2-re ez 8 Ha a fontos csúcsoknál kevés hiba van, akkor ez hibatűrő!
16 Irányítatlan gráfokban (ilyenek a fizikai interakciókat leíró gráfok) a PageRang arányos a fokszámmal, azaz felesleges használni. De! Metabolikus gráfokban érdemes, hiszen azok irányítottak; sőt, a fluxust is figyelembe lehet venni: az élválasztási valószínűségeket lehet vele súlyozni. Érdemes nézni azt is, hogy mely csúcsok kapnak a be-fokuknál nagyobb/kisebb PageRangot. Példa: Az Mtb mikolsav-szintézis gráfja
17
18 PageRang relativizált változata: a perszonalizált PageRang 1-(c+d) vsz. c vsz-el teleportál egyenletesen; d vsz-el a kiválasztott csúcsokba Azért nevezték perszonalizáltnak, mert a web egyes felhasználóinak személyes érdeklődését is figyelembe lehet venni a csúcsok fontosságának kiszámolásánál.
19 A perszonalizált PageRank néhány tulajdonsága: A biológiai hálózatok jelenlegi méreteire könnyen, gyorsan számolható; hibatűrő, Jól használható irányítatlan, fizikai interakciós hálózatokra is óriási hálózatokra (több millió csúcstól) jó közelítő algoritmusok vannak a gyors kiszámítására is (így pl. www, vagy az agy hálózatára is használható {Fogaras, Rácz}).
20 Miért hangsúlyozzuk a kiértékelő módszer hibatűrését? Proteomikai mérések erősen laborfüggő eredményeket szolgálatnak gyakran; Pl ban a Nature ugyanazon számában jelent meg Gavin et al. és Krogan et al. két cikke az élesztő (S. cerevisiae) teljes interaktómjáról; nagy különbségek voltak a két csoport eredményei között. Értelmes kiértékeléshez jelentősen hibatűrő eljárások kellenek, különben értéktelen eredményeket kapunk.
21 Miért nem sima távolságot nézünk? Mert nem hibatűrő.
22 Az alábbiakban Gavin et al. legnagyobb élesztő-fehérje komplexét tekintjük; véletlenül kiválasztunk belőle néhány fehérjét; ezekre perszonalizálunk; azt nézzük, hogy mennyire húzza be a PageRang a többi csúcsot:
23 A perszonalizált PageRang biológiai alkalmazásai - 1
24 A perszonalizált PageRang biológiai alkalmazásai - 1
25 Alkalmazás proteomikai adatok analízisére Forgber et al (PlosOne ápr.) melanoma páciensek vérszérumában az alábbi fehérjék megnövekedett szintjét találta: Enolase 1: P06733 Calumenin: O43852 HSP70 protein B: P ,4-dienoyl-CoA reductase: Q9NUI1 Aldolase A: P04075 Fumarate hydratase: P07954 Aldose reductase: P15121 HSP70 protein 9B: Q96EY1 Aconitase 2: P21399 hnrnp1: P26599 VCP: P55072 LDH H: P07195 LAP3: Q944P7 UniProt accession numbers A perszonalizált PageRang biológiai alkalmazásai - 2
26 Tekintettük a HPRD-ben megtalálható humán interaktomot ( él, fehérje); perszonalizáltunk az előző oldalon látható mérési eredményekre megnéztük a legnagyobb perszonalizált PageRangú csúcsokat: A perszonalizált PageRang biológiai alkalmazásai - 2
27
28 2356 csúcs, él, 2 sugarú környezet
29 Köszönöm a figyelmet!
A gyógyszergyárakról. Mi a cél? A jogi környezet. Matematika a biológiában és a gyógyszerkutatásban & a webgráf
Matematika a biológiában és a gyógyszerkutatásban és a webgráf Ördög Rafael, Bánky Dániel, Iván Gábor Juhász Péter, Szerencsi Balázs Grolmusz Vince matematikus egyetemi tanár ELTE Matematikai Intézet Protein
Társadalmi és gazdasági hálózatok modellezése
Társadalmi és gazdasági hálózatok modellezése 2. el adás A hálózatkutatás néhány fontos fogalma El adó: London András 2015. szeptember 15. Átmér l ij a legrövidebb út a hálózatban i és j pont között =
Hogy keres a Google?
Hogy keres a Google? Kevei Péter SZTE Bolyai Intézet Kutatók Éjszakája 208. szeptember 28. WWW Könyvtár 25 milliárd (25 0 9 ) dokumentummal, és nincs könyvtáros (a Somogyi Könyvtárban 900 000, a Bolyai
Hálózatok fejlődése A hatványtörvény A preferential attachment A uniform attachment Vertex copy. SZTE Informatikai Intézet
Hálózattudomány SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Előadó: London András 4. Előadás Hogyan nőnek a hálózatok? Statikus hálózatos modellek: a pontok száma (n) fix, az éleket valamilyen
Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés
Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük
22. GRÁFOK ÁBRÁZOLÁSA
22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is
Társadalmi és gazdasági hálózatok modellezése
Társadalmi és gazdasági hálózatok modellezése 6. el adás Hálózatok növekedési modelljei: `uniform és preferential attachment' El adó: London András 2015. október 12. Hogyan n nek a hálózatok? Statikus
Komplex hálózatok: alapfogalmak, modellek, módszerek
Komplex hálózatok: alapfogalmak, modellek, módszerek London András, Németh Tamás 2015. április 13. Motiváció Alapfogalmak Centralitás mértékek Néhány gráfmodell Hálózatok mindenhol! ábra 1: Facebook kapcsolati
Algoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y.
Algoritmuselmélet Bonyolultságelmélet Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
Ramsey-féle problémák
FEJEZET 8 Ramsey-féle problémák "Az intelligens eljárást az jellemzi, hogy még a látszólag megközelíthetetlen célhoz is utat nyit, megfelelő segédproblémát talál ki és először azt oldja meg." Pólya György:
Közösség detektálás gráfokban
Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - következtetés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Következtetés
Szociális hálózatok Gráf alapú módszerek. Adatbányászat. Klaszterezés Szociális hálózatok. Szegedi Tudományegyetem. Adatbányászat
Klaszterezés Szegedi Tudományegyetem Élei lehetnek címkézettek (pl. ellenség, barát), továbbá súlyozottak (pl. telefonbeszélgetés) Megjelenési formái Ismeretségi, társszerzőségi gráf (Erdős-Bacon szám)
Véletlen gráfok. Backhausz Ágnes Eötvös Loránd Tudományegyetem és MTA Rényi Alfréd Matematikai Kutatóintézet december 2.
Véletlen gráfok Backhausz Ágnes Eötvös Loránd Tudományegyetem és MTA Rényi Alfréd Matematikai Kutatóintézet agnes@cs.elte.hu 2015. december 2. Nagy hálózatok Példák valós hálózatokra társadalmi hálózatok
Adatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat
Zsidók, tudomány és hálózatok?
Zsidók, tudomány és hálózatok? Bevezető gondolatok és alapfogalmak Biró Tamás OR-ZSE Hálózatkutatás a Zsidó Tanulmányokban kutatócsoport 2018. 12. 19. Hálózatok mindenhol Például: emberek alkotta társadalmi
TDK lehetőségek az MTA TTK Enzimológiai Intézetben
TDK lehetőségek az MTA TTK Enzimológiai Intézetben Vértessy G. Beáta egyetemi tanár TDK mind 1-3 helyezettek OTDK Pro Scientia különdíj 1 második díj Diákjaink Eredményei Zsűri különdíj 2 első díj OTDK
Gráfelméleti alapfogalmak
1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont
~ 1 ~ Ezek alapján a következő célokat valósítottuk meg a Ph.D. munkám során:
~ 1 ~ Bevezetés és célkitűzések A sejtekben egy adott időpillanatban expresszált fehérjék összessége a proteom. A kvantitatív proteomika célja a proteom, egy adott kezelés vagy stimulus hatására bekövetkező
Totális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
SzA II. gyakorlat, szeptember 18.
SzA II. gyakorlat, 015. szeptember 18. Barátkozás a gráfokkal Drótos Márton drotos@cs.bme.hu 1. Az előre megszámozott (címkézett) n darab pont közé hányféleképp húzhatunk be éleket úgy, hogy egyszerű gráfhoz
1. tétel - Gráfok alapfogalmai
1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési
Közösségek keresése nagy gráfokban
Közösségek keresése nagy gráfokban Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2011. április 14. Katona Gyula Y. (BME SZIT) Közösségek
Tudásmenedzsment és gyógyszerinnováció
Tudásmenedzsment és gyógyszerinnováció Ipari szükségletek / elvárások Dr. Bátori Sándor Sanofi-aventis Innovatív Gyógyszerek Kutatása, MAGYOSZ, 2009.01.07. Alapvető együttm ttműködések Hosszútávú elhatározás:
Számítógépes döntéstámogatás. Genetikus algoritmusok
BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as
A Barabási-Albert-féle gráfmodell
A Barabási-Albert-féle gráfmodell és egyéb véletlen gráfok Papp Pál András Gráfok, hálózatok modelljei Rengeteg gráfokkal modellezhető terület: Pl: Internet, kapcsolati hálók, elektromos hálózatok, stb.
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Szalai Péter. April 17, Szalai Péter April 17, / 36
Szociális hálók Szalai Péter April 17, 2015 Szalai Péter April 17, 2015 1 / 36 Miről lesz szó? 1 Megfigyelések Kis világ Power-law Klaszterezhetőség 2 Modellek Célok Erdős-Rényi Watts-Strogatz Barabási
Hálózati elemzések az üzleti életben. Kovács Gyula Sixtep Kft.
Hálózati elemzések az üzleti életben Kovács Gyula Sixtep Kft. Hálózat kutatás rövid ismertetése Königsbergi hidak problémája Háttér: A probléma története, hogy a poroszországi Königsberg (most Kalinyingrád,
Diszkrét matematika II. gyakorlat
Diszkrét matematika II. gyakorlat 9. Gyakorlat Szakács Nóra Helyettesít: Bogya Norbert Bolyai Intézet 2013. április 11. Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat 2013. április 11.
Csima Judit BME, SZIT február 18.
1 Véletlen gráfok és valós hálózatok Csima Judit BME, SZIT 2011. február 18. Tartalom 2 1. Motiváció: miért pont véletlen gráfok? Tartalom 2 1. Motiváció: miért pont véletlen gráfok? 2. A klasszikus modell:
Biomatematika 13. Varianciaanaĺızis (ANOVA)
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:
A Jövő Internet elméleti alapjai. Vaszil György Debreceni Egyetem, Informatikai Kar
A Jövő Internet elméleti alapjai Vaszil György Debreceni Egyetem, Informatikai Kar Kutatási témák Bizalmas adatok védelme, kriptográfiai protokollok DE IK Számítógéptudományi Tsz., MTA Atomki Informatikai
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
A matematikai feladatok és megoldások konvenciói
A matematikai feladatok és megoldások konvenciói Kozárné Fazekas Anna Kántor Sándor Matematika és Informatika Didaktikai Konferencia - Szatmárnémeti 2011. január 28-30. Konvenciók Mindenki által elfogadott
Mérés és modellezés 1
Mérés és modellezés 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni kell
Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.
Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma
A Riemann-Siegel zeta függvény kiugró értékeinek keresése A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma 2013 A probléma fontossága és hatása a hétköznapi életre A prímszámok
Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma
Készítette: Laczik Sándor János Gráfelmélet I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Definíció: a G=(V,E) párt egyszerű gráfnak nevezzük, (V elemeit a gráf csúcsainak/pontjainak,e elemeit
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét
Algoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y.
Algoritmuselmélet Gráfok megadása, szélességi bejárás, összefüggőség, párosítás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2. előadás
NGB_IN040_1 SZIMULÁCIÓS TECHNIKÁK dr. Pozna Claudio Radu, Horváth Ernő
SZÉCHENYI ISTVÁN EGYETEM Műszaki Tudományi Kar Informatika Tanszék BSC FOKOZATÚ MÉRNÖK INFORMATIKUS SZAK NGB_IN040_1 SZIMULÁCIÓS TECHNIKÁK dr. Pozna Claudio Radu, Horváth Ernő Fejlesztői dokumentáció GROUP#6
A párbeszéd szerepe az egészségügyi informatika oktatásában/művelésében
A párbeszéd szerepe az egészségügyi informatika oktatásában/művelésében Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet 2014. február 13. Nem tudunk felülni a biciklire,
Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.
Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
Számítógép és programozás 2
Számítógép és programozás 2 11. Előadás Halmazkeresések, dinamikus programozás http://digitus.itk.ppke.hu/~flugi/ A keresési feladat megoldása Legyen a lehetséges megoldások halmaza M ciklus { X legyen
MŰSZAKKIOSZTÁSI PROBLÉMÁK A KÖZÖSSÉGI KÖZLEKEDÉSBEN
infokommunikációs technológiák MŰSZAKKIOSZTÁSI PROBLÉMÁK A KÖZÖSSÉGI KÖZLEKEDÉSBEN Készítette: Árgilán Viktor, Dr. Balogh János, Dr. Békési József, Dávid Balázs, Hajdu László, Dr. Galambos Gábor, Dr. Krész
HAMILTON ÚT: minden csúcson PONTOSAN egyszer áthaladó út
SÍKBA RAJZOLHATÓ GRÁFOK ld. előadás diasorozat SZÍNEZÉS: ld. előadás diasorozat PÉLDA: Reguláris 5 gráf színezése 4 színnel Juhász, PPKE ITK, 007: http://users.itk.ppke.hu/~b_novak/dmat/juhasz_5_foku_graf.bmp
26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA
26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA Az előző két fejezetben tárgyalt feladat általánosításaként a gráfban található összes csúcspárra szeretnénk meghatározni a legkisebb költségű utat. A probléma
Bevezete s a ha ló zatók vila ga ba
Bevezete s a ha ló zatók vila ga ba Bevezetés Kezdjük egy játékkal! Képzeletünkben kalandozzunk el és válasszunk egy tetszőleges országot a világon, annak tetszőleges települését és egy ott élő tetszőleges
Multimédiás és webes adatbányászat KISS LÁSZLÓ
Multimédiás és webes adatbányászat KISS LÁSZLÓ Tartalom Webes keresések kezdete PageRank Alapok Számítása a valóságban Topic-Sensitive PageRank Trust Rank Egyéb algoritmusok HITS Google Panda Google Hummingbird
Méréselmélet MI BSc 1
Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok
A C, C+, D és D+ kategória játékának megoldása (matematika, osztályosok)
A, +, D és D+ kategória játékának megoldása (matematika, 9-2. osztályosok). Az Albrecht Dürer Biokémiai Kutatólaboratóriumban fejlesztették ki a következő játékot., D: A játék kezdetén a szervezők a kapott
1. Gauss-eloszlás, természetes szórás
1. Gauss-eloszlás, természetes szórás A Gauss-eloszlásnak megfelelő függvény: amely egy σ szélességű, µ középpontú, 1-re normált (azaz a teljes görbe alatti terület 1) görbét ír le. A természetben a centrális
Bevezetés a rendszerbiológiába
Bevezetés a rendszerbiológiába Papp Balázs http://group.szbk.u-szeged.hu/sysbiol/ MTA Szegedi Biológiai Központja Biokémiai Intézet Alapprobléma Ma a biológiában rengeteg adat termelődik és áll rendelkezésre.
Mérés és modellezés Méréstechnika VM, GM, MM 1
Mérés és modellezés 2008.02.04. 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
Összefoglalás és gyakorlás
Összefoglalás és gyakorlás High Speed Networks Laboratory 1 / 28 Hálózatok jellemző paraméterei High Speed Networks Laboratory 2 / 28 Evolúció alkotta adatbázis Önszerveződő adatbázis = (struktúra, lekérdezés)
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
Tipikus időbeli internetezői profilok nagyméretű webes naplóállományok alapján
Tipikus időbeli internetezői profilok nagyméretű webes naplóállományok alapján Schrádi Tamás schraditamas@aut.bme.hu Automatizálási és Alkalmazott Informatikai Tanszék BME A feladat A webszerverek naplóállományainak
GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus
GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,
Valószínűségszámítás és statisztika
Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem
Kvalitatív elemzésen alapuló reakciómechanizmus meghatározás
Kvalitatív elemzésen alapuló reakciómechanizmus meghatározás Varga Tamás Pannon Egyetem, Folyamatmérnöki Intézeti Tanszék IX. Alkalmazott Informatika Konferencia ~ AIK 2011 ~ Kaposvár, Február 25. Tartalom
MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005
2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
KOMBINATORIKA ElŐADÁS Matematika BSc hallgatók számára. Klikkek gráfokban-1. Definíció. Egy G gráfban egy K V(G) csúcshalmazt klikknek nevezünk, ha K
KOMBINATORIKA ElŐADÁS Matematika BSc hallgatók számára Klikkek gráfokban Előadó: Hajnal Péter 2017 1. Az alapkérdés Emlékeztetünk egy a gráfok színezésénél tárgyalt fontos fogalomra: Definíció. Egy G gráfban
Diszkrét matematika 2.
Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 1. előadás Gráfok halmaza, gráf, ahol a csúcsok halmaza, az élek illesztkedés reláció: illesztkedik az élre, ha ( -él illesztkedik
10. Genomika 2. Microarrayek és típusaik
10. Genomika 2. 1. Microarray technikák és bioinformatikai vonatkozásaik Microarrayek és típusaik Korrelált génexpresszió mint a funkcionális genomika eszköze 2. Kombinált megközelítés a funkcionális genomikában
Modern Fizika Labor. 11. Spektroszkópia. Fizika BSc. A mérés dátuma: dec. 16. A mérés száma és címe: Értékelés: A beadás dátuma: dec. 21.
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. dec. 16. A mérés száma és címe: 11. Spektroszkópia Értékelés: A beadás dátuma: 2011. dec. 21. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3
Síkgráfok Kuratowski-tétel: egy gráf akkor és csak akkor síkba rajzolható gráf, ha nincs olyan részgráfja, ami a K 5 -el, vagy a K 3,3 -altopologikusan izomorf (homeomorf). Euler síkgráfokra vonatkozó
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Érdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel)
Kombi/2 Egy bizonyos bulin n lány és n fiú vesz részt. Minden fiú pontosan a darab lányt és minden lány pontosan b darab fiút kedvel. Milyen (a,b) számpárok esetén létezik biztosan olyan fiúlány pár, akik
DIGITÁLIS TEREPMODELL A TÁJRENDEZÉSBEN
DIGITÁLIS TEREPMODELL A TÁJRENDEZÉSBEN DR. GIMESI LÁSZLÓ Bevezetés Pécsett és környékén végzett bányászati tevékenység felszámolása kapcsán szükségessé vált az e tevékenység során keletkezett meddők, zagytározók,
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
y ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
Véletlen gráfok, hálózatok
Véletlen gráfok, hálózatok Véletlen gráfok, hálózatok Csirik András 2018.04.25 Erdős-Rényi modell Watts-Strogatz modell Barabási-Albert modell Hálózatok a mindennapokban Hálózatok a világ minden területén
Kedvenc rejtvényeim Mit tudok és mit hiszek el?
Kedvenc rejtvényeim Mit tudok és mit hiszek el? Mottó A matematikus azt old meg, amit tud A mérnök azt old meg, amit kell Ebből következik, hogy Nem tudunk minden részletében tökéleteset csinálni Sok mindent
BME Nyílt Nap november 21.
Valószínűségszámítás, statisztika és valóság Néhány egyszerű példa Kói Tamás Budapesti Műszaki és Gazdaságtudományi Egyetem koitomi@math.bme.hu BME Nyílt Nap 2014. november 21. Matematikai modell Matematikai
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Fejlett kereső és lekérdező eszközök egy elektronikus szakfolyóirathoz (IBVS)
Networkshop, 2008 Márc. 17 19., Dunaújváros Holl Erdődi: Fejlett kereső... 1 Fejlett kereső és lekérdező eszközök egy elektronikus szakfolyóirathoz (IBVS) Holl András Erdődi Péter MTA Konkoly Thege Miklós
értékel függvény: rátermettségi függvény (tness function)
Genetikus algoritmusok globális optimalizálás sok lehetséges megoldás közül keressük a legjobbat értékel függvény: rátermettségi függvény (tness function) populáció kiválasztjuk a legrátermettebb egyedeket
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. 3. Előadás
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára 3. Előadás Előadó: Hajnal Péter Jegyzetelő: Pék Máté 2009. szeptember 21. 1. Folyamok 1.1. Definíció. G = (V, E, K, B) irányított gráf, ha e! v : ekv
Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz
Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot
Dr. Szűts Zoltán Facebook a felsőoktatásban?
Dr. Szűts Zoltán Facebook a felsőoktatásban? A tudásgyárak technológiaváltása és humánstratégiája a felsőoktatás kihívásai a XXI. században A tanulási-tanítási környezetről folytatott vitákba, és a felsőoktatásról
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.
Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 13. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás
Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
TOP SEO Trendek 2015-ben. We understand, we deliver.
TOP SEO Trendek 2015-ben We understand, we deliver. Önök szerint Elvis Presley halott? Elvis Presley is dead: 7 150 000 találat Elvis Presley is not dead: 1 550 000 találat Az Google szerint Elvis sajnos
Új utak az antipszichotikus gyógyszerek fejlesztésében
Új utak az antipszichotikus gyógyszerek fejlesztésében SCHIZO-08 projekt Dr. Zahuczky Gábor, PhD, ügyvezető igazgató UD-GenoMed Kft. Debrecen, 2010. november 22. A múlt orvostudománya Mindenkinek ugyanaz
Adaptív dinamikus szegmentálás idősorok indexeléséhez
Adaptív dinamikus szegmentálás idősorok indexeléséhez IPM-08irAREAE kurzus cikkfeldolgozás Balassi Márton 1 Englert Péter 1 Tömösy Péter 1 1 Eötvös Loránd Tudományegyetem Informatikai Kar 2013. november
Hálózati folyamok. A használt fogalmak definiálása
Hálózati folyamok Hálózat A használt fogalmak definiálása Ez összesen 4 dologból áll: - Egy irányított G gráf - Ennek egy kitüntetett pontja, amit forrásnak hívunk és s-sel jelölünk - A gráf még egy kitüntetett
Gyors szövetazonosítás membránalkotók tömegspektrometriás vizsgálatával egy új technológia tumorok azonosítására műtét közben.
Gyors szövetazonosítás membránalkotók tömegspektrometriás vizsgálatával egy új technológia tumorok azonosítására műtét közben doktori (PhD) értekezés tézisei Balog Júlia Eötvös Loránd Tudományegyetem,
Elektromiográfia (Dinamometria) A motoros egységek toborzása, az izomfáradás vizsgálata A mérési adatok elemzése és értékelése
Elektromiográfia (Dinamometria) A motoros egységek toborzása, az izomfáradás vizsgálata A mérési adatok elemzése és értékelése Biológia Bsc. B / Pszichológia gyakorlat A mérést és kiértékelést végezték:............
1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007
Hálózatok II 2007 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Szerda 17:00 18:30 Gyakorlat: nincs Vizsga írásbeli Honlap: http://people.inf.elte.hu/lukovszki/courses/g/07nwii
A zsebrádiótól Turán tételéig
Jegyzetek egy matekóráról Lejegyezte és kiegészítésekkel ellátta: Meszéna Balázs A katedrán: Pataki János A gráfokat rengeteg életszagú példa megoldásában tudjuk segítségül hívni. Erre nézzünk egy példát:
Tanmenet a évf. fakultációs csoport MATEMATIKA tantárgyának tanításához
ciklus óra óra anyaga, tartalma 1 1. Év eleji szervezési feladatok, bemutatkozás Hatvány, gyök, logaritmus (40 óra) 2. Ismétlés: hatványozás 3. Ismétlés: gyökvonás 4. Értelmezési tartomány vizsgálata 2
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Hálózati Folyamok Alkalmazásai. Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék
Hálózati Folyamok Alkalmazásai Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék Maximális folyam 7 7 9 3 2 7 source 8 4 7 sink 7 2 9 7 5 7 6 Maximális folyam feladat Adott [N, A] digráf (irányított