VI. Földi János országos természettudományi verseny I. FORDULÓ - beküldési határidő: november 7.
|
|
- Ödön Somogyi
- 5 évvel ezelőtt
- Látták:
Átírás
1 VI. Földi János országos természettudományi verseny I. FORDULÓ - beküldési határidő: november 7. Az I. korcsoport (3. és 4. évfolyam) feladatai: 1.1. feladat Készíts vízórát, vagyis víz segítségével működő időmérő eszközt! Határozd meg a periódus (működési) idejét! Milyen hátrányai vannak az időmérés ezen formájának? A vízórádról készíts néhány fotót és küldd el ezeket a verseny címére (a feladat sorszáma mellett, a levélben írd le neved, osztályod és iskolád nevét is)! 1.2. feladat Newton, a lelkész macskája, és Paszkálka, a templom egere célba dobósat játszanak. A feladat az, hogy a templom ajtajától kavicsot dobjanak a néhány méterre álló vödörbe. Megállapodtak abban, hogy a kisegér akkor nyer egy fordulót, ha 6, a macska pedig akkor, ha 8 kavicsot tud a vödörbe juttatni. A játékot akkor fejezik be, ha valamelyikük két fordulót nyer. Legfeljebb hány kavics lehet a vödörben, amikor a játékot abbahagyják? (Válaszodat részletesen indokold!) 1.3. feladat Töltsd ki a táblázatot! Kit rejt a kiemelt oszlop? (Írd le a teljes nevét!) Kik tanították matematikából és fizikából a Fasori Evangélikus Gimnáziumban? Melyik költőnk verseit kedvelte különösen? Milyen feladattal bízták meg között Chicagoban? (A válaszok mellett a kitöltött táblázatot is küldd el!) 1. A fizika angol atyja. Ő fedezte fel a dinamika és a gravitáció alapvető törvényeit. 2. A salétromsav és a sósav speciális keveréke, amely oldja az aranyat és a platinát is. 3. A tengerek homokszigetekkel részben (vagy teljesen) elzárt sekély öble. 4. A Jónás prófétát elnyelő tengeri emlős mai neve. 5. A fürge tolvaj névre keresztelt ősragadozó. 6. Zöld virágú, cm magas, hazánk pusztáin élő gyógynövény, melyet gyomorerősítőnek, májproblémák kezelésére használtak. Levelei kámforos illatúak. 7. A Kárpát-medence dombvidékein rágcsálókra és kisebb szárnyasokra vadászó madár
2 1.4. feladat Településed környékén keress két különböző fajta gombát (a növényeket ne szedd le, ne érintsd meg)! Készíts róluk néhány fotót úgy, hogy melléjük helyezel egy gyufásdobozt. Küldd el a képeket a verseny címére (a feladat sorszáma mellett, a levélben írd le neved, osztályod és iskolád nevét is)! Milyen időjárás kedvez a gombák megjelenésének növekedésének? Miért kell óvatosan bánni ezekkel a növényekkel? Elfogyasztásuk előtt mit kell tenni? Minden feladat megoldását külön írólapra készítsd el (tollal, ügyelve a külalakra). Minden lapon tüntesd fel a neved, évfolyamod és iskolád nevét. Ne feledkezz meg a nevezési lapról sem! A megoldásokat a következő címre várjuk: Eötvös József Református Oktatási Központ - Kis Tamás, 3360 Heves, Dobó út 29. Kérjük, hogy a borítékra írd rá: Földi János természettudományi verseny.
3 A II. korcsoport (5. és 6. évfolyam) feladatai 2.1. feladat Készíts vízórát, vagyis víz segítségével működő időmérő eszközt! Határozd meg a periódus (működési) idejét! Milyen előnyei és hátrányai vannak az időmérés ezen formájának? A vízórádról készíts néhány fotót és küldd el ezeket a verseny címére (a feladat sorszáma mellett, a levélben írd le neved, osztályod és iskolád nevét is)! 2.2. feladat Zolika 2018 végéig épp annyiszor ünnepelte születésnapját, mint nővére a sajátját. A köztük lévő korkülönbség 11 év. Hány esztendős lett idén Zolika? Mikor született a nővére? (Válaszodat részletesen indokold!) 2.3. feladat Töltsd ki a táblázatot! Kit rejt a kiemelt oszlop? (Írd le a teljes nevét!) Kik tanították matematikából és fizikából a Fasori Evangélikus Gimnáziumban? Melyik költőnk verseit kedvelte különösen? Milyen feladattal bízták meg között Chicagoban? (A válaszok mellett a kitöltött táblázatot is küldd el!) 1. A fizika angol atyja. Ő fedezte fel a dinamika és a gravitáció alapvető törvényeit. 2. A salétromsav és a sósav speciális keveréke, amely oldja az aranyat és a platinát is. 3. A tengerek homokszigetekkel részben (vagy teljesen) elzárt sekély öble. 4. A Jónás prófétát elnyelő tengeri emlős mai neve. 5. A fürge tolvaj névre keresztelt ősragadozó. 6. Zöld virágú, cm magas, hazánk pusztáin élő gyógynövény, melyet gyomorerősítőnek, májproblémák kezelésére használtak. Levelei kámforos illatúak. 7. A Kárpát-medence dombvidékein rágcsálókra és kisebb szárnyasokra vadászó madár
4 2.4. feladat Helyezd el az itt látható ábra megfelelő helyére a felsorolt növényekhez tartozó számokat: Az A halmazba kerüljenek a mellékgyökérzettel rendelkező növények, a B jelű halmazba pedig a zárvatermők: 1. őszibarack 5. lucfenyő 2. búza 6. nagy őzlábgomba 3. paprika 7. napraforgó 4. erdei pajzsika 8. szamóca Milyen egyéb gyökér(zet) típusokat ismersz? Ismertesd fő jellegzetességeiket! (A válaszokkal együtt a kitöltött ábrát is küldd el címünkre!) Minden feladat megoldását külön írólapra készítsd el (tollal, ügyelve a külalakra). Minden lapon tüntesd fel a neved, évfolyamod és iskolád nevét. Ne feledkezz meg a nevezési lapról sem! A megoldásokat a következő címre várjuk: Eötvös József Református Oktatási Központ - Kis Tamás, 3360 Heves, Dobó út 29. Kérjük, hogy a borítékra írd rá: Földi János természettudományi verseny.
5 A III. korcsoport (7. és 8. évfolyam) feladatai: 3.1. feladat Készíts vízórát, vagyis víz segítségével működő időmérő eszközt! Határozd meg a periódus (működési) idejét! Milyen előnyei és hátrányai vannak az időmérés ezen formájának? Mikor és melyik nép használt ilyen eszközöket? A vízórádról készíts néhány fotót és küldd el ezeket a verseny címére (a feladat sorszáma mellett, a levélben írd le neved, osztályod és iskolád nevét is)! 3.2. feladat A balatonszárszói hittan táborban több református iskola kisdiákjai nyaraltak. Az első este véletlenszerűen ültek le vacsorázni a gyerekek. Az egyik asztalnál ülők megfigyelték, hogy közöttük minden fiú pontosan három lányt, és minden leány pontosan két fiút ismer. (Az ismeretség kölcsönös.) A gyerekek azt is észrevették, hogy nincs köztük két olyan lány, akik épp ugyanazokat a fiúkat ismerik. Legkevesebben mennyien ülhettek ennél az asztalnál? (Válaszodat részletesen indokold!) Szorgalmi kiegészítés (többlet pontért) Ha nem szabjuk feltételként a minimumot, akkor mennyi gyermek vacsorázhatott ennél az asztalnál? 3.3. feladat Töltsd ki a táblázatot! Kit rejt a kiemelt oszlop? (Írd le a teljes nevét!) Kik tanították matematikából és fizikából a Fasori Evangélikus Gimnáziumban? Melyik költőnk verseit kedvelte különösen? Milyen feladattal bízták meg között Chicagoban? (A válaszok mellett a kitöltött táblázatot is küldd el!) 1. A fizika angol atyja. Ő fedezte fel a dinamika és a gravitáció alapvető törvényeit. 2. A salétromsav és a sósav speciális keveréke, amely oldja az aranyat és a platinát is. 3. A tengerek homokszigetekkel részben (vagy teljesen) elzárt sekély öble. 4. A Jónás prófétát elnyelő tengeri emlős mai neve. 5. A fürge tolvaj névre keresztelt ősragadozó. 6. Zöld virágú, cm magas, hazánk pusztáin élő gyógynövény, melyet gyomorerősítőnek, májproblámák kezelésére használtak. Levelei kámforos illatúak. 7. A Kárpát-medence dombvidékein rágcsálókra és kisebb szárnyasokra vadászó madár
6 3.4. feladat A lóverseny 2,4 km-es távját a győztes, Csokoládé 54 km/h (átlag) sebességgel teljesítette. A második befutó, Szafaládé 2 másodperccel maradt el a győzelemtől. Amikor Csokoládé célba ért, akkor a sereghajtó, Filippóne 57,1 méterrel volt Szafaládé mögött. Mekkora táv volt még Filippóne előtt abban a pillanatban, amikor Szafaládé is célba ért? (Feltételezzük, hogy a lovak közelítőleg egyenletes mozgással teljesítették a teljes távot.) Minden feladat megoldását külön írólapra készítsd el (tollal, ügyelve a külalakra). Minden lapon tüntesd fel a neved, évfolyamod és iskolád nevét. A megoldásokat a következő címre várjuk: Eötvös József Református Oktatási Központ - Kis Tamás, 3360 Heves, Dobó út 29. Kérjük, hogy a borítékra írd rá: Földi János természettudományi verseny.
VI. Földi János országos természettudományi verseny II. FORDULÓ - beküldési határidő: január 11.
VI. Földi János országos természettudományi verseny II. FORDULÓ - beküldési határidő: 2019. január 11. Az I. korcsoport (3. és 4. évfolyam) feladatai: 1.5. feladat Előfordul, hogy a kardszárnyú delfinek
VI. Földi János országos természettudományi verseny III. FORDULÓ - beküldési határidő: február 28.
VI. Földi János országos természettudományi verseny III. FORDULÓ - beküldési határidő: 2019. február 28. Az I. korcsoport (3. és 4. évfolyam) feladatai: 1.9. feladat Készítsd el az ábrán látható mérleget
V. Földi János természettudományi verseny II. FORDULÓ - beküldési határidő: január 9.
V. Földi János természettudományi verseny II. FORDULÓ - beküldési határidő: 2018. január 9. Az I. kategória (3. és 4. évfolyam) feladatai: 1.5. feladat Szerezz be néhány közepes méretű, új vasszeget és
V. Földi János természettudományi verseny I. FORDULÓ - beküldési határidő: november 7.
V. Földi János természettudományi verseny I. FORDULÓ - beküldési határidő: 2017. november 7. Az I. kategória (3. és 4. évfolyam) feladatai: 1.1. feladat Vágj ki különböző anyagokból (pl. fa, PVC, üveg,
III. Földi János természettudományi verseny
III. Földi János természettudományi verseny I. FORDULÓ - beküldési határidő: 2015. október 20. Az I. kategória (3. és 4. évfolyam) feladatai: 1.1. feladat Mérd meg, hogy milyen magasra tud felrepülni egy
PRÓBAÉRETTSÉGI MATEMATIKA május-június EMELT SZINT. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA EMELT SZINT Vizsgafejlesztő Központ Kedves Tanuló! Kérjük, hogy a feladatsort legjobb tudása szerint oldja meg! A feladatsorban található szürke téglalapokat
4 ÉVFOLYAMOS FELVÉTELI EREDMÉNYEK
71400510854-9. évfolyam Magyar nyelv 46 71400510854-9. évfolyam Matematika 31 71479247326-9. évfolyam Magyar nyelv 37 71479247326-9. évfolyam Matematika 25 71507778014-9. évfolyam Magyar nyelv 43 71507778014-9.
FÖL(D)PÖRGETŐK HÁZI VERSENY 4. FORDULÓ 7-8. évfolyam Téma: Az idő járás a
A Földpörgetők versenyen, minden tantárgy feladataira összesen 20 pontot lehet kapni, így egy forduló összpontszáma 100 pont a feladatok számától függetlenül. Csak a kiosztott fejléces üres papírokra lehet
Tehát az A, C, D szabályosan közlekedik, a B nem szabályosan.
Jedlik korcsoport Jedlik Ányos Fizikaverseny. (regionális) forduló 7. o. 017. március 01. 1. A következő sebességkorlátozó táblával találkoztunk. Az alábbi járművek közül melyik közlekedik szabályosan?
9. évfolyam Javítóvizsga felkészülést segítő feladatok
Halmazok: 9. évfolam Javítóvizsga felkészülést segítő feladatok. Adott két halmaz. A : a ; a : páros és B : ;;8;0;;;8;0;. Add meg a következő halmazműveleteket az elemek felsorolásával és készíts Venn
Megoldások IV. osztály
Bolyai Farkas Elméleti Líceum Marosvásárhely, 2015. március 20-22. Megoldások IV. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől, hogy
Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc
PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben
KOMPETENCIA ALAPÚ LEVELEZŐ MATEMATIKA VERSENY
Név:.Iskola: KOMPETENCIA ALAPÚ LEVELEZŐ MATEMATIKA VERSENY 2012. november 12. 12. évfolyam I. forduló Pótlapok száma db Matematika 12. évfolyam 1. forduló 1. Az alábbiakban számtani sorozatokat adtunk
FÖL(D)PÖRGETŐK HÁZI VERSENY 4. FORDULÓ 5-6. évfolyam Téma: Az idő járás a
A Földpörgetők versenyen, minden tantárgy feladataira összesen 20 pontot lehet kapni, így egy forduló összpontszáma 100 pont a feladatok számától függetlenül. Csak a kiosztott fejléces üres papírokra lehet
SZKB_106_03. Arányosságok II.
SZKB_106_03 Arányosságok II. TANULÓI melléklet Arányosságok II. 6. évfolyam 21 D1 Szerepkártyák 22 Szociális, életviteli és környezeti kompetenciák TANULÓI melléklet D2 Helyszínkártyák TANULÓI melléklet
MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész
MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.
MATEMATIKA ÍRÁSBELI VIZSGA KÖZÉPSZINT% II. ÉRETTSÉGI VIZSGA október október 25. 8:00 MINISZTÉRIUM. Idtartam: 135 perc.
a feladat sorszáma elért összesen maximális II./A rész 13. 12 14. 12 15. 12 II./ B rész m nem választott feladat 17 17 ÖSSZESEN 70 maximáli s elért I. rész 30 II. rész 70 MINDÖSSZESEN 100 dátum javító
az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára
8. témakör: FÜGGVÉNYEK A feladatok megoldásához használjuk a Négyjegyű függvénytáblázatot! Függvények: 6-30. oldal. Ábrázold a koordinátasíkon azokat a pontokat, amelyek koordinátái kielégítik a következő
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
PRÓBAÉRETTSÉGI VIZSGA
PRÓBAÉRETTSÉGI VIZSGA 2018. február 10. STUDIUM GENERALE MATEMATIKA SZEKCIÓ MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2018. február 10. I. Az írásbeli próbavizsga időtartama: 45 perc Kérjük, nyomtatott
1. Egy italautomatában hétféle rostos üdítő kapható. Hányféle sorrendben vehet Anna a rostos üdítőkből három különbözőt?
1. Egy italautomatában hétféle rostos üdítő kapható. Hányféle sorrendben vehet Anna a rostos üdítőkből három különbözőt? A) 35 B) 210 C) 343 D) 1320 E) 1728 2. Hány olyan háromjegyű természetes szám van,
1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR
1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött
Oktatási azonosító Vizsga idıpontja Vizsga típusa Tantárgy Elért pontszám
71358932434 71457472261 71605522862 71650660111 71660992975 71665377048 71679875605 71768484518 71768486497 71769281879 71833697122 71872475320 71943429914 71959440135 71959443861 2015-01-17 10:00 9. évfolyam
TestLine - Bemeneti mérés 8. o. matematika Minta feladatsor
TestLine - emeneti mérés 8. o. matematika oldal 1/12 1. 4:05 Normál nyolcadikosok a pályaválasztás előtt orvosi vizsgálaton vesznek részt. vizsgálat után a kosaras lányok táblázatba foglalták a tömegmérés
PRÓBAÉRETTSÉGI MATEMATIKA május-június KÖZÉPSZINT. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA KÖZÉPSZINT I. Vizsgafejlesztő Központ Kedves Tanuló! Kérjük, hogy a feladatsort legjobb tudása szerint oldja meg! A feladatsorban található szürke téglalapokat
M A T EMATIKA 9. évfo lyam
Fıvárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet Az iskola Az osztály A tanuló A tanuló neme: Kompetenciaalapú mérés 2007/2008. M A T EMATIKA 9. évfo lyam A változat Az FPPTI nem járul hozzá a
2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!
1. Egy 27 fős osztályban mindenki tesz érettségi vizsgát angolból vagy németből. 23 diák vizsgázik angolból, 12 diák pedig németből. Hány olyan diák van az osztályban, aki angolból és németből is tesz
Próbaérettségi feladatsor_b NÉV: osztály Elért pont:
Próbaérettségi feladatsor_b NÉV: osztály Elért pont: I. rész A feladatsor 12 példából áll, a megoldásokkal maimum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy derékszögű háromszög
Megoldások 4. osztály
Brenyó Mihály Pontszerző Matematikaverseny Megyei döntő 2015. február 14. Megoldások 4. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől,
TestLine - Bemeneti mérés 8. o. matematika Minta feladatsor
lkalom: n/a átum: 2018.12.25 14:47:48 Oktató: n/a soport: n/a Kérdések száma: 14kérdés kérdés Kitöltési idő: 1:02:54 Szélsőséges pontok: 0 pont +52 pont 1. 3:20 Normál z autók üzemanyag-fogyasztása elsősorban
2009. májusi matematika érettségi közép szint
I 1.feladat Oldja meg a valós számok halmazán az alábbi egyenletet! 2 x 2 +13x +24=0 2.feladat Számítsa ki a 12 és 75 számok mértani közepét! 3.feladat Egy négytagú csoportban minden tagnak pontosan két
X. TOLLFORGATÓ TEHETSÉGKUTATÓ VERSENY MATEMATIKA 5-6. OSZTÁLY
Monorierdei Fekete István Általános Iskola 2213 Monorierdő, Szabadság u. 43. Tel./Fax: 06-29-419-113 www.fekete-merdo.sulinet.hu X. TOLLFORGATÓ 1. forduló X. TOLLFORGATÓ TEHETSÉGKUTATÓ VERSENY MATEMATIKA
Helvécia-Ballószög Általános Iskola Feketeerdői Általános Iskolája 6034 Helvécia, Korhánközi dülő 1. OM azonosító: Telephely kódja: 003
Országos kompetencia mérés Telephelyi jelentés 6.évfolyam : Általános iskola Helvécia-Ballószög Általános Iskola Feketeerdői Általános Iskolája 6034 Helvécia, Korhánközi dülő 1. OM azonosító: 201076 Telephely
MATEMATIKA VERSENY --------------------
Eötvös Károly Közös Fenntartású Általános Iskola 2013. és Alapfokú Művészetoktatási Intézmény 831 Vonyarcvashegy, Fő u. 8/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,
I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?
1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan
DÖNTŐ 2013. április 20. 7. évfolyam
Bor Pál Fizikaverseny 2012/2013-as tanév DÖNTŐ 2013. április 20. 7. évfolyam Versenyző neve:.. Figyelj arra, hogy ezen kívül még két helyen (a belső lapokon erre kijelölt téglalapokban) fel kell írnod
= 4perc40sec időtartamig v 2. = 4perc55sec időtartamig v 3
Első feladat a) Ioana, Catalin és Raluca VI-os osztálytársak, villamossal mennek haza.útközben mérik az időt a mobil telefonukkal és leolvassák a sebesség értékét a villamos sebességmérőjéről. A villamos
Feladatok MATEMATIKÁBÓL
Feladatok MATEMATIKÁBÓL a 12. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! 2. Írjuk fel gyökjelekkel a következő hatványokat! 3. Az ötnek hányadik hatványa a következő kifejezés?
FIT jelentés Kompetencia mérés 6.és 8. évfolyamon
Intézményi jelentés FIT jelentés 2016 Kompetencia mérés 6.és 8. évfolyamon Az intézmény egy jelentést kap a 6- és a 8. évfolyam esetében. Emellett készült egy összesített jelentés is. Az adatok a 2015-16-os
Keresd meg a többi lapot, ami szintén 1 tulajdonságban különbözik csak a kitalált laptól! Azokat is rajzold le!
47. modul 1/A melléklet 2. évfolyam Feladatkártyák tanuló/1. Elrejtettem egy logikai lapot. Ezt kérdezték tőlem: én ezt feleltem:? nem? nem? nem nagy? nem? igen? nem Ha kitaláltad, rajzold le az elrejtett
PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc
PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok
Kompetencia Alapú Levelező Matematika Verseny
Név: Iskola: Kompetencia Alapú Levelező Matematika Verseny 2012. december 10. 2. forduló Pótlapok száma: db. 1. Egy telek területe 2000 m 2. Adja meg az érdeklődő angol vevőnek, hány négyzetlábbal egyenlő
Matematika kisérettségi
Matematika kisérettségi 2010. május 11. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az idő elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetszőleges. 3.
Gyakorló feladatok Egyenletes mozgások
Gyakorló feladatok Egyenletes mozgások 1. Egy hajó 18 km-t halad északra 36 km/h állandó sebességgel, majd 24 km-t nyugatra 54 km/h állandó sebességgel. Mekkora az elmozdulás, a megtett út, és az egész
A kísérlet célkitűzései: A súrlódási erőtípusok és a közegellenállási erő kísérleti vizsgálata.
A kísérlet célkitűzései: A súrlódási erőtípusok és a közegellenállási erő kísérleti vizsgálata. Eszközszükséglet: Mechanika I. készletből: kiskocsi, erőmérő, súlyok A/4-es írólap, smirgli papír gyurma
Érettségi feladatok: Trigonometria 1 /6
Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat
1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4
. Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :
PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT II. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA KÖZÉPSZINT II. Vizsgafejlesztő Központ Kedves Tanuló! Kérjük, hogy a feladatsort legjobb tudása szerint oldja meg! A feladatsorban található szürke téglalapokat
MATEMATIKA ÉRETTSÉGI 2009. május 5. KÖZÉPSZINT I.
MATEMATIKA ÉRETTSÉGI 009. május 5. KÖZÉPSZINT I. 1) Oldja meg a valós számok halmazán az alábbi egyenletet! x 1x 4 0 Az egyenlet gyökei 1, 5 és 8. ) Számítsa ki a 1 és 75 számok mértani közepét! A mértani
Megoldások III. osztály
Bolyai Farkas Elméleti Líceum Marosvásárhely, 2015. március 20-22. Megoldások III. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől, hogy
835 + 835 + 835 + 835 + 835 5
Orchidea Iskola VI. Matematika verseny 20/20 II. forduló. A macska és az egér jobbra indulnak el. Ha az egér négyzetet ugrik, akkor a macska 2 négyzetet lép előre. Melyik négyzetnél éri utol a macska az
Levelező Matematika Verseny Versenyző neve:... Évfolyama:... Iskola neve:... Postára adási határidő: január 19. Feladatok
Postára adási határidő: 2017. január 19. Tollal dolgozz! Feladatok 1.) Az ábrán látható piramis természetes számokkal megszámozott kockákból áll. Az alsó szinten semelyik két kockának nincs ugyanolyan
3. MINTAFELADATSOR KÖZÉPSZINT
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 3. MINTAFELADATSOR KÖZÉPSZINT 2015 I. Időtartam: 45 perc Oktatáskutató
Kompetenciaalapú mérés 2009/2010. M A T E M A T I K A 9. é v f o l y a m A változat
Az iskola Az osztály neme: Kompetenciaalapú mérés 2009/2010. M A T E M A T I K A 9. é v f o l y a m A változat Az iskola bélyegzője: Az MFFPPTI nem járul hozzá a feladatok részben vagy egészben történő
a. Melyik nagyvárost hívják Nagy Almának? Itt rendezik meg évente a világ leghosszabb ultra maratoni futóversenyét.
1. feladat a. Melyik nagyvárost hívják Nagy Almának? Itt rendezik meg évente a világ leghosszabb ultra maratoni futóversenyét. Hogyan hívják ezt a versenyt? Pontosan hol rendezik meg a versenyt? Hány kilométert
MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.
1) Adott két pont: A ; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. MATEMATIKA ÉRETTSÉGI 005. május 10. KÖZÉP SZINT I. és B 1; Írja fel az AB szakasz 1 1 F ; F ;1 ) Az ábrán egy ; intervallumon
1 m = 10 dm 1 dm 1 dm
Ho szúságmérés Hosszúságot kilométerrel, méterrel, deciméterrel, centiméterrel és milliméterrel mérhetünk. A mérés eredménye egy mennyiség 3 cm mérôszám mértékegység m = 0 dm dm dm cm dm dm = 0 cm cm dm
MATEMATIKA VERSENY
Eötvös Károly Közös Fenntartású Óvoda, Általános Iskola 2012. és Alapfokú Művészetoktatási Intézmény 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,
A 2017/2018. tanév rendje
A 2017/2018. tanév rendje A 2017/2018. tanévben a szorgalmi idő első tanítási napja 2017. szeptember 1. (péntek) és utolsó tanítási napja 2018. június 15. (péntek). A tanítási napok száma: 180 nap. A szorgalmi
A) 0 B) 2 C) 8 D) 20 E) 32
1. X és Y egyjegyű nemnegatív számok. Az X378Y ötjegyű szám osztható 72-vel. Mennyi X és Y szorzata? A) 0 B) 2 C) 8 D) 20 E) 32 2. Hány valós gyöke van a következő egyenletnek? (x 2 1) (x + 1) (x 2 1)
Próbaérettségi feladatsor_a NÉV: osztály Elért pont:
Próbaérettségi feladatsor_a NÉV: osztály Elért pont: I. rész A feladatsor 1 példából áll, a megoldásokkal maximum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy osztály tanulói a
HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK
I. Témakör: feladatok 1 Huszk@ Jenő IX.TÉMAKÖR I.TÉMAKÖR HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK Téma A halmaz fogalma, alapfogalmak, elemek száma, üres halmaz, egyenlő halmazok, ábrázolás Venn-diagrammal
MATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 9. szakiskolai évfolyam 1. félév ESZKÖZÖK Matematika A 9. szakiskolai évfolyam Betűkészlet csoportalakításhoz A D G B E H C F G H I J Matematika A 9. szakiskolai
Rendszertan. biol_7_rendszertan.notebook. April 23, 2013. Osztályzat: «grade» Tárgy: Biológia Dátum:«date» ápr. 23 12:28. ápr. 23 12:51. ápr.
Rendszertan Osztályzat: «grade» Tárgy: Biológia Dátum:«date» ápr. 23 12:28 1 A rendszerezés alapegysége: A csoport B halmaz C faj D törzs E osztály F ország ápr. 23 12:51 2 A faj jellemzői: A A faj egyedei
Feladatok MATEMATIKÁBÓL II.
Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2
MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT
MATEMATIKA ÉRETTSÉGI 005. május 9. KÖZÉPSZINT 1) Mely x valós számokra igaz, hogy x I. 9? x 1 3. x 3. Összesen: pont ) Egy háromszög egyik oldalának hossza 10 cm, a hozzá tartozó magasság hossza 6 cm.
MATEMATIKA VERSENY
Vonyarcvashegyi Eötvös Károly Általános Iskola 2016. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket
FÖL(D)PÖRGETŐK TERMÉSZETTUDOMÁNYOS HÁZI CSAPATVERSENY 2015/ FORDULÓ Téma: Tűz 5 6. évfolyam
FÖL(D)PÖRGETŐK TERMÉSZETTUDOMÁNYOS HÁZI CSAPATVERSENY 2015/2016 3. FORDULÓ Téma: Tűz 5 6. évfolyam 1. feladat A kísérlet felnőtt felügyelet mellett hajtható végre!!! Gyújtsatok meg egy gyertyát és figyeljétek
V-VI.korcsoport A kategória FIÚK
V-VI.korcsoport A kategória FIÚK A verseny célja: Versenyzési lehetőségek biztosítása mellett eldönteni a megyei bajnoki címet. Verseny rendezője: a Veszprém Megyei Diáksport Egyesület Nevezés: Az MDSZ
MATEMATIKA ÍRÁSBELI VIZSGA KÖZÉPSZINT% II. ÉRETTSÉGI VIZSGA május 3. MINISZTÉRIUM NEMZETI ERFORRÁS május 3. 8:00. Idtartam: 135 perc
a feladat sorszáma maximális elért összesen II./A rész 13. 12 14. 12 15. 12 II./B rész 17 17 m nem választott feladat ÖSSZESEN 70 maximális elért I. rész 30 II. rész 70 Az írásbeli vizsgarész a 100 dátum
BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2013. NOVEMBER 23.) 3. osztály
3. osztály Egy asztal körül 24-en ülnek, mindannyian mindig igazat mondanak. Minden lány azt mondja, hogy a közvetlen szomszédjaim közül pontosan az egyik fiú, és minden fiú azt mondja, hogy mindkét közvetlen
PRÓBAÉRETTSÉGI VIZSGA 2016. január 16.
STUDIUM GENERALE MATEMATIKA SZEKCIÓ PRÓBAÉRETTSÉGI VIZSGA 2016. január 16. MATEMATIKA EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2016. január 16. Az írásbeli próbavizsga időtartama: 240 perc Név E-mail cím SG-s
PRÓBAÉRETTSÉGI VIZSGA
MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2012. 2013. április január 7. 19. KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név Tanárok neve Pontszám 2013. január 19. II. Időtartam: 135 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ
Próba érettségi feladatsor április I. RÉSZ
Név: osztály: Próba érettségi feladatsor 2007 április 17-18 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe
Statisztika a hétköznapokban
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. (: 27-317 - 077 (/fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör Statisztika
2. A választott kerettanterv feletti óraszám, a nem kötelező tanórai foglalkozások
2. A választott kerettanterv feletti óraszám, a nem kötelező tanórai foglalkozások Iskolánk nevelőtestülete úgy döntött, hogy a 10%-os szabad órakeretet osztálytípusoktól függően osztja fel a tantárgyak
GÁRDONYI ZOLTÁN REFORMÁTUS ÁLTALÁNOS ISKOLA és AMI Biharkeresztes, Damjanich u. 21. Telephely: Biharkeresztes, Kossuth u. 52.
GÁRDONYI ZOLTÁN REFORMÁTUS ÁLTALÁNOS ISKOLA és AMI 4110. Biharkeresztes, Damjanich u. 21. Telephely: Biharkeresztes, Kossuth u. 52. Telefon: 06-54-431-258, Telephely:06-30-2495215 Email cím: gardonyi.zoltan.iskola@reformatus.hu
MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám
MATEMATIKA KISÉRETTSÉGI 011. Ponthatárok: (5) 83-100 (4) 65-8 (3) 47-64 () 30-46 (1) 0-9 Név, osztály Pontszám I. rész - A rendelkezésre álló idő: 45 perc I. rész 30 pont Érdemjegy II. rész 70 pont Összesen
U = 24 V I = 4,8 A. Mind a két mellékágban az ellenállás külön-külön 6 Ω, ezért az áramerősség mindkét mellékágban egyenlő, azaz :...
Jedlik Ányos Fizikaverseny regionális forduló Öveges korcsoport 08. A feladatok megoldása során végig századpontossággal kerekített értékekkel számolj! Jó munkát! :). A kapcsolási rajz adatai felhasználásával
Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan
Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan TOLLAL DOLGOZZ, SZÁMOLÓGÉPET NEM HASZNÁLHATSZ, A LAPRA SZÁMOLJ! 1. A következő ábrán egy
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika középszint
} számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! A = { } 1 pont. B = { } 1 pont. x =
. Az { a n } számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! a = 26 2. Az A és B halmazokról tudjuk, hogy A B = {;2;3;4;5;6}, A \ B = {;4} és A B = {2;5}. Sorolja fel
A feladatlap 5 6. o. Országos döntı Számkeresztrejtvény
A feladatlap 6. o. Országos döntı.. 8. Számkeresztrejtvény Azonosító: a b c Pontozás: A táblázatba beírt számokra - pont, összesen 7. A megoldásokra feladatonként pont, összesen 8 = 6 pont. Szerezhetı
A Magyar Köztársaság évi Maraton Futó Bajnoksága 25. SPAR Budapest Maraton
A Magyar Köztársaság 2010. évi Maraton Futó Bajnoksága 25. SPAR Budapest Maraton A verseny rendezője: Budapest Sportiroda, Magyar Atlétikai Szövetség A verseny időpontja és helyszíne: 2010. szeptember.
ORSZÁGÚTI KERÉKPÁR ORSZÁGOS DÖNTŐ 2016/17
ORSZÁGÚTI KERÉKPÁR ORSZÁGOS DÖNTŐ 2016/17 1. Az országos döntő rendezője: Szenyor Szabadidő Kerékpáros Sport egyesület Magyar Kerékpáros Szakági Szövetség megbízása alapján a Magyar Diáksport Szövetség
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok 1) Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először
HAZA ÉS HALADÁs a reformkor
HAZA ÉS HALADÁs a reformkor MEGYEI TÖRTÉNELEM VERSENY 7-8. ÉVFOLYAMOS TANULÓK RÉSZÉRE 1. FORDULÓ I. FORDULÓ Név:... Cím:.. Iskola, évfolyam:.. E-mail cím:... 1.Európa politikai helyzete Napóleon bukása
KOMPETENCIA ALAPÚ LEVELEZŐ MATEMATIKA VERSENY
Név:.Iskola: KOMPETENCIA ALAPÚ LEVELEZŐ MATEMATIKA VERSENY 2012. november 12. 9. évfolyam I. forduló Pótlapok száma db Matematika 9. évfolyam 1. forduló 1. Írja be a megrajzolt halmazábrába az A és B halmazok
V-VI.korcsoport B kategória FIÚK
V-VI.korcsoport B kategória FIÚK A verseny célja: Versenyzési lehetőségek biztosítása mellett eldönteni a megyei bajnoki címet. Verseny rendezője: a Veszprém Megyei Diáksport Egyesület Nevezés: Az MDSZ
;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ;
. A racion lis sz mok A tanult sz mok halmaza A) Ábrázold számegyenesen az alábbi számokat! 8 + + 0 + 7 0 7 7 0 0. 0 Válogasd szét a számokat aszerint, hogy pozitív: pozitív is, negatív is: negatív: sem
Német Nemzetiségi Gimnázium és Kollégium
2006 Német Nemzetiségi Gimnázium és Kollégium Az Önök iskolájára vonatkozó egyedi adatok táblázatokban és grafikonokon 10. évfolyam szövegértés Előállítás ideje: 2007.03.19. 7:25:21 1 Standardizált átlagos
I. kerületi forduló: január 26. (csütörtök) 15 óra. Iskola hivatalo s ímélcím e. Iskola irányító száma. Versenyző neve
A Magyar Természettudományi Társulat által meghirdetett XXV. Telei Pál Kárpát-medencei Földrajz-Földtan Verseny 2016/2017. tanév budapesti versenykiírása Központi honlapcím: www.mtte.hu www.foldrajzitarsasag.hu
Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
A verseny időpontja: március 23. (szerda)
Énekeljetek az Úrnak, áldjátok nevét, hirdessétek szabadítását mindennap! Zsoltárok 96:2. Tisztelt Igazgató Asszony / Igazgató Úr! Tisztelt Énektanár Kolléganő / Kolléga! Örömmel értesítjük Önöket, hogy
NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz
NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz Gedeon Veronika (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre
2018/2019. TANÉVI PÁLYAKERÉKPÁR DIÁKOLIMPIA ORSZÁGOS DÖNTŐ VERSENYKIÍRÁSA
2018/2019. TANÉVI PÁLYAKERÉKPÁR DIÁKOLIMPIA ORSZÁGOS DÖNTŐ VERSENYKIÍRÁSA A Pályakerékpár Diákolimpiát az oktatásért felelős miniszter a Magyar Diáksport Szövetséggel (a továbbiakban: MDSZ) közösen hirdeti
Matematika 8. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos Matematika 8. osztály IV. rész: Egyenletrendszerek Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék IV.
FÖL(D)PÖRGETŐK HÁZI VERSENY 2. FORDULÓ 5-6. évfolyam Téma: Lelkünk temploma, avagy nagyító alatt az emberi test
A Földpörgetők versenyen, minden tantárgy feladataira összesen 20 pontot lehet kapni, így egy forduló összpontszáma 100 pont a feladatok számától függetlenül. Csak a kiosztott fejléces üres papírokra lehet
TERMÉSZETTUDOMÁNYOS HÉT. 2014. november 10 - november 14.
TERMÉSZETTUDOMÁNYOS HÉT 2014. november 10 - november 14. A TERMÉSZETTUDOMÁNYOS HÉT PROGRAMJA 2014. november 10 - november 14. November 10. hétfő 13 45 óra Megnyitó 14 00 óra Matematika verseny I. forduló
JELENTKEZÉSI LAP. Név: Osztály: E-mail cím (továbbjutásról itt is értesítünk): Iskola: Felkészítő tanár:
JELENTKEZÉSI LAP Név: Osztály: E-mail cím (továbbjutásról itt is értesítünk): Iskola: Felkészítő tanár: Második fordulóba jutás esetén Windows 7 operációs rendszert, és Office 2007 programcsomagot fogsz