V. Földi János természettudományi verseny I. FORDULÓ - beküldési határidő: november 7.
|
|
- Ilona Bognárné
- 6 évvel ezelőtt
- Látták:
Átírás
1 V. Földi János természettudományi verseny I. FORDULÓ - beküldési határidő: november 7. Az I. kategória (3. és 4. évfolyam) feladatai: 1.1. feladat Vágj ki különböző anyagokból (pl. fa, PVC, üveg, műanyag, fém stb.) 20 cm oldalhosszúságú négyzeteket! A vízszintesen elhelyezett lapra, egyik oldalának közelébe, önts néhány cseppnyi vizet egy kávés kanálból. Óvatosan emeld meg a lapnak azt a szélét, melyhez legközelebb van a vízfolt. Mérd meg, hogy milyen magasra kell emelni ezt az oldalélt ahhoz, hogy az így keletkezett kicsiny lejtőn a víz végigfolyjon! A mérést végezd el három különböző anyagú lap esetében és a kapott eredményt foglald táblázatba: a 20 cm hosszú lejtő anyaga a lejtő magassága mm-ben 1.2. feladat Paszkálka, a templom egere szereti a változatosságot: reggel, délben és este mindig más lyukból bújik elő. Newton, a lelkész macskája megfigyelte, hogy Paszkálka 4 egérlyukat fúrt összesen: - egyet a templomajtó mellé, - egyet a szószék alá, - egyet az orgona bal, egyet pedig a jobb oldalára. Legfeljebb hány nap telhet el úgy egymás után, hogy Paszkálka nem ugyanazokból a lyukakból jön elő a három napszakban, mint valamelyik korábbi napon? (Válaszodat részletesen indokold!) 1.3. feladat Töltsd ki a táblázatot! Kit rejt a kiemelt oszlop? (Írd le a teljes nevét!) Születésének 250. évfordulója alkalmából emlékbélyeget adott ki az az ország, ahová szülővárosa akkor tartozott. Melyik országról van szó? Milyen jellegzetes ruhában ábrázolja a bélyeg a híres tudóst? (forrás: Fizikai Szemle, 59. évf szám) 1. Az a vonal ahol az ég és a föld összeérni látszik. 2. Kémiai reakcióval tovább nem bontható anyagok. 3. Gőték családjába tartozó kopoltyús kétéltű. Fő élőhelye Mexikó. 4. A kalapos gombák rendjébe tartozó nemzetség. Lehet például légyölő-; gyilkos-; piruló-. 5. Egysejtű élőlény, egy igen népszerű társasjátékot is elneveztek róla
2 1.4.feladat Színezd ki a megadott módon az ábrát! Melyik madár látható a rajzon? Miért esett különösen sok szó idén erről a madárról? Hol található élőhelye Magyarországon? Mivel táplálkozik ez a kis élőlény? (A válaszokkal együtt a színes rajzot is küldd el címünkre!) Minden feladat megoldását külön írólapra készítsd el (tollal, ügyelve a külalakra). Minden lapon tüntesd fel a neved, évfolyamod és iskolád nevét. Ne feledkezz meg a nevezési lapról sem! A megoldásokat a következő címre várjuk: Eötvös József Református Oktatási Központ - Kis Tamás, 3360 Heves, Dobó út 29. Kérjük, hogy a borítékra írd rá: Földi János természettudományi verseny.
3 V. Földi János természettudományi verseny I. FORDULÓ - beküldési határidő: november 7. A II. kategória (5. és 6. évfolyam) feladatai 2.1. feladat Vágj ki különböző anyagokból (pl. fa, PVC, üveg, műanyag, fém stb.) 20 cm oldalhosszúságú négyzeteket! A vízszintesen elhelyezett lapra, egyik oldalának közelébe, önts néhány cseppnyi vizet egy kávés kanálból. Óvatosan emeld meg a lapnak azt a szélét, melyhez legközelebb van a vízfolt. Mérd meg, hogy milyen magasra kell emelni ezt az oldalélt ahhoz, hogy az így keletkezett kicsiny lejtőn a víz végigfolyjon! A mérést végezd el három különböző anyagú lap esetében és a kapott eredményt foglald táblázatba: a 20 cm hosszú lejtő anyaga a lejtő magassága mm-ben Írj - a lakókörnyezetedből vett - három olyan példát, ahol a víz lefolyását kell biztosítani! Mire kell ügyelni a felületek kialakításánál? 2.2. feladat Paszkálka, a templom egere háromféle sajtból tett szeletkéket a pizzájára. Ezek közül 3 nem trappista, 4 nem mozzarella és 5 nem ementali szelet volt. a. Összesen hány sajtszelet került a tésztára? b. Legalább hány darab sajtszeletet kell Paszkálkának elfogyasztania ahhoz, hogy biztosan egyen mindhárom fajtából? 2.3. feladat Töltsd ki a táblázatot! Kit rejt a kiemelt oszlop? (Írd le a teljes nevét!) Születésének 250. évfordulója alkalmából emlékbélyeget adott ki az az ország, ahová szülővárosa akkor tartozott. Melyik országról van szó? Milyen jellegzetes ruhában ábrázolja a bélyeg a híres tudóst? (forrás: Fizikai Szemle, 59. évf szám) 1. Az a vonal ahol az ég és a föld összeérni látszik. 2. Kémiai reakcióval tovább nem bontható anyagok. 3. Gőték családjába tartozó kopoltyús kétéltű. Fő élőhelye Mexikó. 4. A kalapos gombák rendjébe tartozó nemzetség. Lehet például légyölő-; gyilkos-; piruló-. 5. Egysejtű élőlény, egy igen népszerű társasjátékot is elneveztek róla
4 2.4.feladat Keress otthonodban újrafelhasználható anyagból készült tárgyakat. Mutass be két (lényegesen eltérő) példát! Mi a nemzetközi jele az ilyen anyagból készült termékeknek? Mi a jelentősége az anyagok újrahasznosításának? (Foglald össze mondatban!) Minden feladat megoldását külön írólapra készítsd el (tollal, ügyelve a külalakra). Minden lapon tüntesd fel a neved, évfolyamod és iskolád nevét. Ne feledkezz meg a nevezési lapról sem! A megoldásokat a következő címre várjuk: Eötvös József Református Oktatási Központ - Kis Tamás, 3360 Heves, Dobó út 29. Kérjük, hogy a borítékra írd rá: Földi János természettudományi verseny.
5 V. Földi János természettudományi verseny I. FORDULÓ - beküldési határidő: november 7. A III. kategória (7. és 8. évfolyam) feladatai: 3.1. feladat Vágj ki különböző anyagokból (pl. fa, PVC, üveg, műanyag, fém stb.) egy-egy téglalapot (kb cm-es oldalakkal)! A vízszintesen elhelyezett lapra, rövidebb oldalának közelébe, önts néhány cseppnyi vizet egy kávés kanálból. Óvatosan emeld meg a lapnak azt a szélét, melyhez legközelebb van a vízfolt. Mérd meg, hogy milyen magasra kell emelni ezt az oldalélt ahhoz, hogy az így keletkezett kicsiny lejtőn a víz végigfolyjon! A mérést végezd el öt különböző anyagú lap esetében és a kapott eredményt foglald táblázatba: a lejtő anyaga a lejtő hossza cm-ben a lejtő magassága cm-ben a magasság és a hossz hányadosa Melyik anyagról folyik le legkönnyebben a víz? Miért folyik le egyes anyagokon nehezebben a víz? Mi ennek a gyakorlati jelentősége? 3.2. feladat Hány olyan XYXYXY alakú pozitív egész szám van, amely pontosan négy prímszám szorzataként írható fel? (Válaszodat részletesen indokold!) 3.3. feladat Töltsd ki a táblázatot! Kit rejt a kiemelt oszlop? (Írd le a teljes nevét!) Születésének 250. évfordulója alkalmából emlékbélyeget adott ki az az ország, ahová szülővárosa akkor tartozott. Melyik országról van szó? Milyen jellegzetes ruhában ábrázolja a bélyeg a híres tudóst? (forrás: Fizikai Szemle, 59. évf szám) 1. Az a vonal ahol az ég és a föld összeérni látszik. 2. Kémiai reakcióval tovább nem bontható anyagok. 3. Gőték családjába tartozó kopoltyús kétéltű. Fő élőhelye Mexikó. 4. A kalapos gombák rendjébe tartozó nemzetség. Lehet például légyölő-; gyilkos-; piruló-. 5. Egysejtű élőlény, egy igen népszerű társasjátékot is elneveztek róla
6 3.4.feladat Az előző feladatban szereplő tudós Vardőben végzett mérései alapján a Nap és a Föld távolságát német mérföldnek számította. a. Körülbelül hány %-kal tér ez el a jelenlegi adattól? b. Hozzávetőlegesen mennyi idő alatt tenné meg a Nap - Föld távolságot az ember által gyártott leggyorsabb űreszköz? Minden feladat megoldását külön írólapra készítsd el (tollal, ügyelve a külalakra). Minden lapon tüntesd fel a neved, évfolyamod és iskolád nevét. A megoldásokat a következő címre várjuk: Eötvös József Református Oktatási Központ - Kis Tamás, 3360 Heves, Dobó út 29. Kérjük, hogy a borítékra írd rá: Földi János természettudományi verseny.
V. Földi János természettudományi verseny II. FORDULÓ - beküldési határidő: január 9.
V. Földi János természettudományi verseny II. FORDULÓ - beküldési határidő: 2018. január 9. Az I. kategória (3. és 4. évfolyam) feladatai: 1.5. feladat Szerezz be néhány közepes méretű, új vasszeget és
III. Földi János természettudományi verseny
III. Földi János természettudományi verseny I. FORDULÓ - beküldési határidő: 2015. október 20. Az I. kategória (3. és 4. évfolyam) feladatai: 1.1. feladat Mérd meg, hogy milyen magasra tud felrepülni egy
VI. Földi János országos természettudományi verseny II. FORDULÓ - beküldési határidő: január 11.
VI. Földi János országos természettudományi verseny II. FORDULÓ - beküldési határidő: 2019. január 11. Az I. korcsoport (3. és 4. évfolyam) feladatai: 1.5. feladat Előfordul, hogy a kardszárnyú delfinek
VI. Földi János országos természettudományi verseny III. FORDULÓ - beküldési határidő: február 28.
VI. Földi János országos természettudományi verseny III. FORDULÓ - beküldési határidő: 2019. február 28. Az I. korcsoport (3. és 4. évfolyam) feladatai: 1.9. feladat Készítsd el az ábrán látható mérleget
VI. Földi János országos természettudományi verseny I. FORDULÓ - beküldési határidő: november 7.
VI. Földi János országos természettudományi verseny I. FORDULÓ - beküldési határidő: 2018. november 7. Az I. korcsoport (3. és 4. évfolyam) feladatai: 1.1. feladat Készíts vízórát, vagyis víz segítségével
9. évfolyam Javítóvizsga szóbeli. 1. Mit ért két halmaz unióján? 2. Oldja meg a következő egyenletrendszert a valós számok halmazán!
9. évfolyam Javítóvizsga szóbeli 1. tétel 1. Mit ért két halmaz unióján? 2. Oldja meg a következő egyenletrendszert a valós számok halmazán! 3. Írja fel a és b hatványaiként a következő kifejezést! 4.
Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal:
Gyakorló feladatok 9.évf.. Mennyi az összes részhalmaza az A a c; d; e; f halmaznak, írd fel az öt elemű részhalmazokat!. Legyen U ;;;;;6;7;8;9, A ;;6;7; és B ;;8. Add meg a következő halmazokat és ábrázold
835 + 835 + 835 + 835 + 835 5
Orchidea Iskola VI. Matematika verseny 20/20 II. forduló. A macska és az egér jobbra indulnak el. Ha az egér négyzetet ugrik, akkor a macska 2 négyzetet lép előre. Melyik négyzetnél éri utol a macska az
2004_02/10 Egy derékszögű trapéz alapjainak hossza a, illetve 2a. A rövidebb szára szintén a, a hosszabb b hosszúságú.
Geometria háromszögek, négyszögek 2004_01/10 Az ABC háromszög C csúcsánál derékszög van. A derékszöget a CT és CD szakaszok három egyenlő részre osztják. A CT szakasz a háromszög egyik magassága is egyben.
1 m = 10 dm 1 dm 1 dm
Ho szúságmérés Hosszúságot kilométerrel, méterrel, deciméterrel, centiméterrel és milliméterrel mérhetünk. A mérés eredménye egy mennyiség 3 cm mérôszám mértékegység m = 0 dm dm dm cm dm dm = 0 cm cm dm
I. A gyökvonás. cd c) 6 d) 2 xx. 2 c) Szakaszvizsgára gyakorló feladatok 10. évfolyam. Kedves 10. osztályos diákok!
Kedves 10. osztályos diákok! Szakaszvizsgára gyakorló feladatok 10. évfolyam Közeleg a szakaszvizsga időpontja, amelyre 019. április 1-én kerül sor. A könnyebb felkészülés érdekében adjuk közre ezt a feladatsort,
EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a 2016 MATEMATICĂ
EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a 2016 MATEMATICĂ Test 1 Judeţul/sectorul... Localitatea... Şcoala... Numele şi prenumele elevei / elevului...... Clasa a IV-a... Băiat Fată EN IV 2016 Pagina
2005_01/1 Leírtunk egymás mellé hét racionális számot úgy, hogy a két szélső kivételével mindegyik eggyel nagyobb a két szomszédja szorzatánál.
Számolásos feladatok, műveletek 2004_1/1 Töltsd ki az alábbi bűvös négyzet hiányzó mezőit úgy, hogy a négyzetben szereplő minden szám különböző legyen, és minden sorban, oszlopban és a két átlóban is ugyanannyi
A 5-ös szorzó- és bennfoglalótábla
A 5-ös szorzó- és bennfoglalótábla 1. Játsszátok el, amit a képen láttok! Hány ujj van a magasban, ha 1 kezet 3 kezet 4 kezet 0 kezet 6 kezet 8 kezet látsz? 1 @ 5 = 3 @ 5 = 4 @ 5 = 0 @ 5 = 0 2. Építsd
MATEMATIKA VERSENY --------------------
Eötvös Károly Közös Fenntartású Általános Iskola 2013. és Alapfokú Művészetoktatási Intézmény 831 Vonyarcvashegy, Fő u. 8/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,
Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Pótvizsga: beadandó feladatok 45 perces írásbeli szóbeli a megadott témakörökből
Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Természetes számok: 0123 (TK 4-49.oldal) - tízes számrendszer helyi értékei alaki érték valódi érték - becslés kerekítés - alapműveletek:
PRÓBAÉRETTSÉGI MATEMATIKA május-június EMELT SZINT. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA EMELT SZINT Vizsgafejlesztő Központ Kedves Tanuló! Kérjük, hogy a feladatsort legjobb tudása szerint oldja meg! A feladatsorban található szürke téglalapokat
Curie Matematika Emlékverseny 5. évfolyam Országos döntő Megoldása 2017/2018.
Feladatokat írta: Tóth Jánosné Szolnok Kódszám: Lektorálta: Kis Olga Szolnok 08.04.07. Curie Matematika Emlékverseny. évfolyam Országos döntő Megoldása 07/08... Feladat.. 3. 4... összesen Elérhető 4 7
A felszín ábrázolása a térképen
A felszín ábrázolása a térképen Rajzold le annak a három tájnak a felszínét, amelyről a tankönyvben olvastál! Írd a képek alá a felszínformák nevét! Színezd a téglalapokat a magassági számoknak megfelelően!
Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van!
1. Melyik a nagyobb? a) 6 5 vagy 5 7 b) vagy 11 10 vagy Gyökvonás 5 11 vagy 6 8 55 e) 7 vagy 60 16 1. Hozd egyszerűbb alakra a következő kifejezéseket! a) 7 18 b) 1 5 75 8 160 810 650 8a 5 a 7a e) 15a
1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4
. Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :
PYTAGORIÁDA. 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó?
Az iskolai forduló feladatai 2006/2007-es tanév Kategória P 3 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó? 2. Számítsd ki: 19 18 + 17 16 + 15 14 =
Feladatok MATEMATIKÁBÓL II.
Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2
Feladatok MATEMATIKÁBÓL II.
Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2
MATEMATIKA VERSENY
Eötvös Károly Közös Fenntartású Óvoda, Általános Iskola 2012. és Alapfokú Művészetoktatási Intézmény 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,
Matematika kisérettségi
Matematika kisérettségi 2010. május 11. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az idő elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetszőleges. 3.
MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész
MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.
7. osztály 5. gyakorló feladatsor, kompetencia feladatok Nem a végeredményt várom, válaszaid indokold!
7. osztály 5. gyakorló feladatsor, kompetencia feladatok Nem a végeredményt várom, válaszaid indokold! 1. Az alábbi táblázatban az látható, hogy Gábor a legutóbbi hat kosárlabda-mérkőzésén hány büntetődobást
KÉSZÍTSÜNK ÁBRÁT évfolyam
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2018/2019.
Halmazok. Gyakorló feladatsor a 9-es évfolyamdolgozathoz
Halmazok 1. Feladat. Adott négy halmaz: az alaphalmaz, melynek részhalmazai az A, a B és a C halmaz: U {1, 2,,..., 20}, az A elemei a páros számok, a B elemei a hárommal oszthatók, a C halmaz elemei pedig
PRÓBAÉRETTSÉGI FELADATSOR:MATEMATIKA, KÖZÉP SZINT. 1.1.) Jelölje a négyzetekbe írt i vagy h betűvel, hogy az állítás igaz vagy hamis k > 0,
FELADATSOR I. rész Felhasználható idő: 45 perc 1.1.) Jelölje a négyzetekbe írt i vagy h betűvel, hogy az állítás igaz vagy hamis k > 0, 1 a) b) k = k 4 16 5 10 4 k = k 5 1..) Az alábbi állítások közül
6 ; 5 6 ; 4 3 ; 4 3 ; 3 2 ; 9 6 ; 1 2 ; 7 5 ; 3 10 ; 8 4 ; 10 8 ; 2
T rtek. ttekint s A) Ábrázold a törteket az adott számegyenesen! Rendezd nagyság szerint növekvő sorrendbe őket! a) ; 6 ; ; 6 ; ; 6 ; ; 6 ; 7 6 ; ; 9 6 ; 6. 0 b) ; 0 ; ; 7 0 ; ; ; 0 ; 8 0 ; 8 ; ; 0 ; 0.
NÉMETH LÁSZLÓ VÁROSI MATEMATIKA VERSENY 2014 HÓDMEZŐVÁSÁRHELY OSZTÁLY ÁPRILIS 7.
1. Falióránk három mutatója közül az egyik az órát, a másik a percet, harmadik a másodpercet mutatja. Egy bolha ráugrik déli órakor a másodpercmutatóra és megkezdi egy órás körutazását. Ha fedésbe kerül
;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ;
. A racion lis sz mok A tanult sz mok halmaza A) Ábrázold számegyenesen az alábbi számokat! 8 + + 0 + 7 0 7 7 0 0. 0 Válogasd szét a számokat aszerint, hogy pozitív: pozitív is, negatív is: negatív: sem
Műveletek egész számokkal
Mit tudunk az egész számokról? 1. Döntsd el, hogy igazak-e a következő állítások az A halmaz elemeire! a) Az A halmaz elemei között 3 pozitív szám van. b) A legkisebb szám abszolút értéke a legnagyobb.
NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez
NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez Számadó László (Budapest) 1. Számold ki! a) 1 2 3 + 4 5 6 ; b) 1 2 3 + 4 5 6. 2 3 4 5 6 7 2 3 5 6 7 a) 1 2 3 4 2 3 4 +5
Érettségi feladatok: Síkgeometria 1/6
Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
= 4perc40sec időtartamig v 2. = 4perc55sec időtartamig v 3
Első feladat a) Ioana, Catalin és Raluca VI-os osztálytársak, villamossal mennek haza.útközben mérik az időt a mobil telefonukkal és leolvassák a sebesség értékét a villamos sebességmérőjéről. A villamos
A tanulók oktatási azonosítójára és a két mérési területen elér pontszámukra lesz szükség az elemzéshez.
Útmutató az idegen nyelvi mérés adatainak elemzéshez készült Excel táblához A református iskolák munkájának megkönnyítése érdekében készítettünk egy mintadokumentumot (Idegen nyelvi mérés_intézkedési tervhez
Kompetencia Alapú Levelező Matematika Verseny
Név: Iskola: Kompetencia Alapú Levelező Matematika Verseny 2012. december 10. 2. forduló Pótlapok száma: db. 1. Egy telek területe 2000 m 2. Adja meg az érdeklődő angol vevőnek, hány négyzetlábbal egyenlő
Megoldások IV. osztály
Bolyai Farkas Elméleti Líceum Marosvásárhely, 2015. március 20-22. Megoldások IV. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől, hogy
Dr. Enyedy Andor Református Általános Iskola, Óvoda és Bölcsőde 3450 Mezőcsát Szent István út 1-2.
5. osztály 1. feladat: Éva egy füzet oldalainak számozásához 31 számjegyet használt fel. Hány lapja van a füzetnek, ha az oldalak számozását a legelső oldalon egyessel kezdte? 2. feladat: Janó néhány helység
Sorba rendezés és válogatás
Sorba rendezés és válogatás Keress olyan betűket és számokat, amelyeknek vízszintes tükörtengelyük van! Írd le! Keress olyan szavakat, amelyeknek minden betűje tükrös (szimmetrikus), amilyen például a
Szerb Köztársaság FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA. a 2017/2018-as tanévben TESZT MATEMATIKÁBÓL UTASÍTÁS A TESZT MEGÍRÁSÁHOZ
Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA
MATEMATIKA VERSENY
Vonyarcvashegyi Eötvös Károly Általános Iskola 2016. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket
Kisérettségi feladatsorok matematikából
Kisérettségi feladatsorok matematikából. feladatsor I. rész. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) Ha két egész szám összege páratlan, akkor a szorzatuk páros. b)
Arany Dániel Matematikai Tanulóverseny 2009/2010-es tanév első (iskolai) forduló haladók II. kategória
Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 009/00-es tanév első (iskolai) forduló haladók II.
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat
SZKB_106_03. Arányosságok II.
SZKB_106_03 Arányosságok II. TANULÓI melléklet Arányosságok II. 6. évfolyam 21 D1 Szerepkártyák 22 Szociális, életviteli és környezeti kompetenciák TANULÓI melléklet D2 Helyszínkártyák TANULÓI melléklet
Jó munkát! 8. OSZTÁLY 2 = C = A B =
BEM JÓZSEF Jelszó:... MEGYEI MATEMATIKAVERSENY Terem: I. FORDULÓ 2019. január 1. Hely:.... Tiszta versenyidő: 4 perc. Minden feladatot indoklással együtt oldj meg! A részműveletek is pontot érnek. Számológép
BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK
IV. forduló 1. Hány olyan legfeljebb 5 jegyű, 5-tel nem osztható természetes szám van, amelynek minden jegye prím? Mivel a feladatban számjegyekről van szó, akkor az egyjegyű prímszámokról lehet szó: 2;
Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!
Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása
4,5 1,5 cm. Ezek alapján 8 és 1,5 cm lesz.
1. Tekintse az oldalsó ábrát! a. Mekkora lesz a 4. sor téglalap mérete? b. Számítsa ki az ábrán látható három téglalap területösszegét! c. Mekkora lesz a 018. sorban a téglalap oldalai? d. Hány téglalapot
Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...
Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (
fmaozaik :n :m :h :s járóóra
A változók 3+2 = mit írnál a helyére? 12 + 8 > mit írnál a helyére? A fióknak először is adni kell egy értéket, majd egy nevet is! Kétféleképpen nézhetjük meg, mi van a fiókunkban. mutat parancs mutat_:mit
Próbaérettségi feladatsor_b NÉV: osztály Elért pont:
Próbaérettségi feladatsor_b NÉV: osztály Elért pont: I. rész A feladatsor 12 példából áll, a megoldásokkal maimum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy derékszögű háromszög
Szorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is!
Szorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is! Ha a zöld vonalak mentén lévő pöttyöket adod össze, akkor 5+5+5=, vagy 3 =. Ha a piros
Kincsvadászat. Feladatleírás Regular Category / Junior High School. WRO Magyarország Nemzeti Forduló 2015
Kincsvadászat Feladatleírás Regular Category / Junior High School WRO Magyarország Nemzeti Forduló 2015 Ez a dokumentum a World Robot Olympiad magyarországi Nemzeti Fordulóján érvényes. A Nemzetközi Döntő
Jegyzőkönyv A lágymányosi kampusz területe: Felhasznált eszközök: 3 méteres mérőszalag, papír, ceruza/ toll, vázlatos térkép a területről
Jegyzőkönyv A lágymányosi kampusz területe: A mérés ideje: 00.0.. 8.-0.00 óra között Helye: ELTE lágymányosi kampusz Mérők: Adora Nikoletta, Kapos Bálint, Visnovitz Ferenc Felhasznált eszközök: 3 méteres
VIII. TOLLFORGATÓ TEHETSÉGKUTATÓ VERSENY KÉMIA-FIZIKA 7-8. OSZTÁLY
Monorierdei Fekete István Általános Iskola 13 Monorierdő, Szabadság u. 43. Tel./Fax: 06-9-419-113 www.fekete-merdo.sulinet.hu VIII. TOLLFORGATÓ 1. forduló VIII. TOLLFORGATÓ TEHETSÉGKUTATÓ VERSENY KÉMIA-FIZIKA
Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012.
Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012. A feladatokat írta: Kozma Lászlóné, Sajószentpéter Tóth Jánosné, Szolnok Lektorálta: Fodor Csaba, Szeged Név:..... Iskola:. Beküldési határidő:
mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel
6.osztály 1.foglalkozás 6.osztály 2.foglalkozás kocka kockafal :db minta Készítsd el ezt a mintát! A minta hosszú oldala 60 a rövid oldala 40 egység hosszú. A hosszú oldal harmada a négyzet oldala! A háromszög
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat
MATEMATIKA VERSENY ABASÁR, 2018
MATEMATIKA VERSENY ABASÁR, 2018 1. osztály 2018 /55 pont 1. Folytasd a sort! 0 1 1 2 3 5 /4 pont 2. Melyik ábra illik a kérdőjel helyére? Karikázd be a betűjelét! (A) (B) (C) (D) (E) 3. Számold ki a feladatokat,
Bevezető Kedves Negyedik Osztályos Tanuló!
Bevezető Kedves Negyedik Osztályos Tanuló! A matematika-munkafüzeted II. kötetét tartod a kezedben, amely hasonlóan az I. kötethez segítségedre lesz a tankönyvben tanultak gyakorlásához. Reméljük, örömödet
Cél(ok): Készítsünk egy egyszerű napenergiával működő sütőt, hogy szemléltessük, hogyan használható a Nap megújuló energiaforrásként.
A NAP MELEGE Cél(ok): Készítsünk egy egyszerű napenergiával működő sütőt, hogy szemléltessük, hogyan használható a Nap megújuló energiaforrásként. A tevékenység általános leírása: A gyerekeket osszuk néhány
Készítette: Bruder Júlia
Készítette: Bruder Júlia nkp.hu Megfigyelés Kísérlet Mérés Feladat: Lakóhely időjárásának megfigyelése 2 hétig: max. hőmérséklet, min. hőmérséklet, szél (nincs, gyenge, erős), csapadék. Az adatokat táblázatba
EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a 2017 MATEMATICĂ
EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a 2017 MATEMATICĂ Test 2 Judeţul/sectorul... Localitatea... Şcoala... Numele şi prenumele elevei / elevului...... Clasa a IV-a... Băiat Fată EN IV 2017 Pagina
Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET
Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2011/2012-es tanévben TESZT 3 matematikából
Számok és műveletek 10-től 20-ig
Számok és műveletek től 20ig. Hány gyerek vesz részt a síversenyen? 2. Hányas számú versenyző áll a 4. helyen, 3. helyen,. helyen? A versenyzők közül hányadik helyen áll a 4es számú, 3as számú, es számú?
2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 9. osztály
A közölt megoldási utak a feladatoknak nem az egyetlen helyes megoldási módját adják meg, több eltérő megoldás is lehetséges. Az útmutatótól eltérő megoldásokat a kialakult tanári gyakorlat alapján, az
NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz
NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz Gedeon Veronika (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre
Országos Szakiskolai Közismereti Tanulmányi Verseny 2005/2006 SZÁMÍTÁSTECHNIKA
Országos Szakiskolai Közismereti Tanulmányi Verseny 2005/2006 SZÁMÍTÁSTECHNIKA II. (regionális) forduló 2006. február 17... Helyszín fejbélyegzője Versenyző Pontszám Kódja Elérhető Elért Százalék. 100..
. Számítsuk ki a megadott szög melletti befogó hosszát.
Szögek átváltása fokról radiánra és fordítva 2456. Hány fokosak a következő, radiánban (ívmértékben) megadott szögek? π π π π 2π 5π 3π 4π 7π a) π ; ; ; ; ; b) ; ; ; ;. 2 3 4 8 3 6 4 3 6 2457. Hány fokosak
ÍRÁSBELI FELADAT MEGOLDÁSA
33 582 01 1000 00 00-2014 MAGYAR KERESKEDELMI ÉS IPARKAMARA Szakma Kiváló Tanulója Verseny Elődöntő ÍRÁSBELI FELADAT MEGOLDÁSA Szakképesítés: 33 582 01 1000 00 00 SZVK rendelet száma: Modul: 6237-11 Ácsszerkezetek
M A T EMATIKA 9. év fo ly am
Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 1088 Budapest, Vas utca 8-10. Az iskola kódja: Az osztály kódja: A tanuló kódja: A tanuló neme: Kompetenciaalapú mérés 2008/2009. M A T EMATIKA
52 213 03 1000 00 00 Nyomdai gépmester Nyomdai gépmester
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA
0644. MODUL SZÁMELMÉLET Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály
Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket!
Másodfokú egyenletek 1. Alakítsuk teljes négyzetté a következő kifejezéseket! a.) - 4 + 4 b.) - 6 + 8 c.) + 8 - d.) - 4 + 9 e.) - + 8 - f.) - - 4 + 3 g.) + 8-5 h.) - 4 + 3 i.) -3 + 6 + 1. Ábrázoljuk és
2. Melyik kifejezés értéke a legnagyobb távolság?
1. Határozd meg, hogy az alábbi öt híres matematikus közül kinek volt a megélt éveinek száma prímszám? A) Rényi Alfréd (1921-1970) B) Kőnig Gyula (1849-1913) C) Kalmár László (1905-1976) D) Neumann János
A 27/2012. (VIII. 27.) NGM rendelet a 29/2016. (VIII. 26.) NGM rendelet által módosított szakmai és vizsgakövetelménye alapján.
A 27/2012. (VIII. 27.) NGM rendelet a 29/2016. (VIII. 26.) NGM rendelet által módosított szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosítószáma és megnevezése 34 582 14 Kőműves Tájékoztató
XLII. Országos Komplex Tanulmányi Verseny Megyei forduló. Matematika
7. Matematika Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult. (Neumann János) 2017. április 04. Készítette: Szafiánné Csécsei Tímea,
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA JAVÍTÁSI ÚTMUTATÓ. Pohár rezonanciája
Oktatási Hivatal A 017/018. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA JAVÍTÁSI ÚTMUTATÓ Pohár rezonanciája A mérőberendezés leírása: A mérőberendezés egy változtatható
Épület- és építménybádogos Épület- és építménybádogos
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
matematikából 1. TESZT
Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA
Informatika OKTV 2004 Első forduló Alkalmazás kategória
1. feladat: Rajzolás (20 pont) Készíts állományokat (TABLA1, TABLA2, TABLA3, TABLA4),amelyek az alábbi 4 KRESZ-táblát tartalmazzák: TABLA1 TABLA2 TABLA3 TABLA4 Segítségként mindegyikhez megadunk körülbelüli
a) A dobogó aljának (a földdel érintkező részének) a területe 108 dm 2. Hány dm élhosszúságú volt egy kocka?...
Térgeometria 2004_01/8 A szabályos dobókockák szemközti lapjain lévő számok összege mindig 7. Amelyik hálóból nem készíthető szabályos dobókocka, az alá írj N betűt, amelyikből készíthető, az alá írj I
Kemping szett TAPADÓKORONG. USA SZABADALOM no. 5647143 LNB LNB TARTÓ KAR. Rend.szám: 282600
Rend.szám: 282600 Conrad Szaküzlet, 1067 Budapest, VI., Teréz krt 23. Tel: 302 3588 Kemping szett PARABOLA TÁNYÉR RECÉS FEJŰ CSAVAR LNB LNB TARTÓ RECÉS FEJŰ CSAVAR KAR HÁROMSZÖGLETŰ GOMB TAPADÓKORONG USA
A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatai. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal A 217/218 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatai 1. feladat: Csatornák (24 pont) INFORMATIKA II. (programozás) kategória Egy város csomópontjait csatornahálózat
PRÓBAÉRETTSÉGI MATEMATIKA május-június KÖZÉPSZINT. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA KÖZÉPSZINT I. Vizsgafejlesztő Központ Kedves Tanuló! Kérjük, hogy a feladatsort legjobb tudása szerint oldja meg! A feladatsorban található szürke téglalapokat
Curie Matematika Emlékverseny 8. évfolyam I. forduló 2011/2012.
Curie Matematika Emlékverseny 8. évfolyam I. forduló 2011/2012. A feladatokat írta: Kozma Lászlóné, Sajószentpéter Tóth Jánosné, Szolnok Lektorálta: Lengyel Lászlóné, Nádudvar Név:........ Iskola:.. Beküldési
Megyei matematikaverseny évfolyam 2. forduló
Megyei matematikaverseny 0. 9. évfolyam. forduló. Mennyi a tizenkilencedik prím és a tizenkilencedik összetett szám szorzata? (A) 00 (B) 0 (C) 0 (D) 04 (E) Az előző válaszok egyike sem helyes.. Az 000
NEVEZETES FOLYTONOS ELOSZLÁSOK
Bodó Beáta - MATEMATIKA II 1 NEVEZETES FOLYTONOS ELOSZLÁSOK EXPONENCIÁLIS ELOSZLÁS 1. A ξ valószínűségi változó eponenciális eloszlású 80 várható értékkel. (a) B Adja meg és ábrázolja a valószínűségi változó
1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR
1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött
ÉLÔ ÉS ÉLETTELEN KÖRNYEZETEM
Tompáné Balogh Mária ÉLÔ ÉS ÉLETTELEN KÖRNYEZETEM A fák birodalma Környezetismeret TÉMAZÁRÓ FELADATLAPOK éves tanulók részére 0. kiadás Évfolyam 0... A tanuló neve pauz westermann kiadó ÔSZ A PARKBAN A.
1. feladat. CAD alapjai c. tárgyból nappali tagozatú ipari formatervező szakos mérnök hallgatóknak
1. feladat CAD alapjai c. tárgyból nappali tagozatú ipari formatervező szakos mérnök hallgatóknak Vetületek képzése, alkatrészrajz készítése (formátum: A4) Készítse el a gyakorlatvezető által kiadott,
Geometriai feladatok, 9. évfolyam
Geometriai feladatok, 9. évfolyam Szögek 1. Nevezzük meg az ábrán látható szögpárokat. Mekkora a nagyságuk, ha α =52 o fok? 2. Mekkora az a szög, amelyik a, az egyenesszög 1/3-ad része b, pótszögénél 32
Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam
Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész
Bizonyítvány nyomtatása hibamentesen
Bizonyítvány nyomtatása hibamentesen A korábbi gyakorlat A nyomtatásra kerülő bizonyítványokat, pontosabban a lap egy pontját megmértük, a margót ehhez igazítottuk. Hibalehetőségek: - mérés / mérő személy