Informatikai tehetséggondozás:
|
|
- Renáta Faragóné
- 9 évvel ezelőtt
- Látták:
Átírás
1 Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Rekurzió TÁMOP /1/KONV
2 1. A faktoriális függvény A rekurzió, mint eszköz felbukkan specifikációs, algoritmikus, implementációs (nyelvi) eszközként. Kezdjük a specifikációnál, amellyel a matematikusok a problémák megoldását kezdik! A függvény egy igen hatékony absztrakciós eszköz, ugyanis jól kidolgozott formalizmussal rendelkezik és sokrétű, bejáratott operációval (függvényművelettel) lehet építkezni. Mivel sok mindent (érts ezalatt bármilyen tevékenységsort) úgy lehet tekinteni, mint valamiféle függvényt, ami a kezdetben meglévő adatokhoz hozzárendeli a kívánt valamit, ezért nem reménytelen vállalkozás a függvény definiálást választani általános leíró eszközként. Ilyen ok miatt nincs mit csodálkozni azon, hogy példáink java része rekurzív függvény lesz, és elindulásként is az egyik legismertebbiket választottuk ki: a faktoriálist. Definíciója: n! n * n 1! ha n 0 1 ha n 0 A faktoriális definíciója két részre bomlik. Az egyik épít a már meglévő, és működő definícióra, és azt eggyel csökkentett értékkel újra meghívja. A másik bízva abban, hogy valamikor eljő az ő ideje kijáratot biztosít a(z előbbi) végtelenségig való önhívogatásból. Vagyis valahogy így: Faktoriális(n): Ha n=0 akkor [a definíció nem rekurzív része] f:=1 különben [a definíció rekurzív része] f:=n*faktoriális(n-1) Elágazás vége Faktoriális:=f Nézzük meg, hogy pontosan mi is történik pl. a Faktoriális(3) hívásakor! Faktoriális(3) => 3 * Faktoriális(2) 3 * 2 * 1 * 1 Faktoriális(2) => 2 * Faktoriális(1) 2 * 1 * 1 Faktoriális(1)=> 1 * Faktoriális(0) 1 * 1 Faktoriális(0) => 1 1 A faktoriális függvény értéke nagyon gyorsan nő, azaz nem tudjuk nagyobb N értékekre kiszámolni:
3 Érdekességként az utolsó K számjegyét viszont számolhatjuk megfelelő számtípus esetén: Faktoriális(n,k): Ha n=0 akkor f:=1 különben f:=(n*faktoriális(n-1)) mod 10 k Elágazás vége Faktoriális:=f K=6 esetén: néhány következő tag: Könnyű belátni, hogy K=6 esetén N=25-tól kezdődően csupa 0 lesz az így kiszámolt sorozatban. 2. A Fibonacci-számok A rekurzív függvények matematikai elméletében éppúgy ismert, mint a biológiában a Fibonacci olasz matematikusról elnevezett számsorozat. E híres matematikus (aki egyébként a matematikának sok mai szóhasználattal élve ágában jeleskedett) Európában talán elsőként nyúlt egzakt eszközökhöz mindennapos mondhatnánk háztáji probléma megoldásához. Ugyanis azt vizsgálta, hogy egy nyúlpár alapította nyúlnemzetség adott idő alatt mekkora létszámúra növekszik, figyelembe véve, hogy a leszármazottak is alaposan besegítenek a létszámnövelésbe. Ha a szaporodás eléggé szabályosan történik, akkor az új generáció létszámát az előzőek ismeretében könnyen kiszámíthatjuk. Szerinte az új generáció növekedését az előző 2 generáció gyerekei teszik ki. E mögött az a feltételezés húzódik meg, hogy minden nyúlpár egyszerre éppen 2 utóddal járul a népességhez, és e szokásukat születésüket követő 2 egymásutáni időpontban gyakorolják (mert mondjuk mielőtt a harmadik szaporodásra sor kerülhetne, fazékba kerülnek). Definíciója: Fib n 0 ha n 0 1 ha n 1 Fib n 1 Fib n 2 ha n 1 Példa: (a Fibonacci-szám sorozat első néhány tagja) 0,1,1,2,3,5,8,13,21,34,55,... 3
4 Fib(N): Elágazás N=0 esetén Fib:=0 N=1 esetén Fib:=1 egyéb esetben Fib:=Fib(N-1)+Fib(N-2) Elágazás vége Nézzük meg Fib(4) kiszámítását! Fib(4) => Fib(3) + Fib(2) Fib(3) => Fib(2) + Fib(1) Fib(2) => Fib(1) + Fib(0) Fib(2) => Fib(1) + Fib(0) Többször is kiszámításra kerülnek ugyanazok a tagok! Járdakövezés Számítsuk ki, hogy hányféleképpen lehet egy 2xn egység méretű járdát kikövezni 1x2 méretű lapokkal! Az első lapot lerakhatjuk függőlegesen: vagy kettőt vízszintesen: Az első esetben (n-1)*2 cellát kell még lefednünk, a másodikban pedig (n-2)*2 cellát. Azaz az n*2 cella lefedéseinek Lefed(n) száma Lefed(n-1)+Lefed(n-2). Lefed(N): Elágazás N=0 esetén Lefed:=0 N=1 esetén Lefed:=1 egyéb esetben Lefed:=Lefed(N-1)+Lefed(N-2) Elágazás vége 4
5 Járdakövezés újra Számítsuk ki, hogy hányféleképpen lehet egy n egység méretű járdát kikövezni 1x1, 1x2 és 1x3 méretű lapokkal! Az első helyre tehetünk 1x1-es lapot: Az első helyre tehetünk 1x2-es lapot: Az első helyre tehetünk 1x3-as lapot: Az első esetben n-1, a másodikban n-2-t, a harmadikban pedig n-3 cellát kell még lefednünk. Azaz az n cella lefedéseinek Lefed(n) száma Lefed(n-1)+Lefed(n-2)+Lefed(n-3). Lefed(N): Elágazás N=0 esetén Lefed:=0 N=1 esetén Lefed:=1 N=2 esetén Lefed:=2 egyéb esetben Lefed:=Lefed(N-1)+Lefed(N-2)+Lefed(N-3) Elágazás vége Gondolkodtató Hányféleképpen lehet egy 3xn egység méretű járdát kikövezni 1x2 méretű lapokkal! Az első oszlop középső négyzete háromféleképpen fedhető le. A második és harmadik eset ráadásul egymás tükörképe. 1. eset 5
6 2. eset 3. eset Az első oszlop betöltéséhez mindegyik csak egyféleképpen folytatható: 1. eset 2. eset 3. eset 6
7 Lépcső Az iskola bejáratánál N lépcsőfok van. Egyszerre maximum K fokot tudunk lépni, ugrani fölfele. Minden nap egyszer megyünk be az iskolába. Készíts programot, amely megadja, hogy hány napig tudunk más és más módon feljutni a lépcsőkön! Másképp megfogalmazva a feladatot, arra vagyunk kíváncsiak, hogy az N. lépcsőfokra hányféleképpen lehet feljutni. Nézzük először a K=2 esetet! Az N. lépcsőfokra két helyről tudunk lépni, az N-1-edikről és az N-2-edikről. Azaz annyiféle feljutási lehetőség van az N. lépcsőfokra, amennyi az N-1- edikre plusz amennyi az N-2-dikre, tehát Lépcső(N)=Lépcső(N-1)+Lépcső(N-2). Itt is a Fibonacci számokat kapjuk. Ezt kell általánosítanunk K-ra: Lépcső(N)=Lépcső(N-1)+ +Lépcső(N-K). Lépcső(N): Ha N=0 akkor L:=1 különben L:=0 Ciklus i=1-től K-ig Ha N-i 0 akkor L:=L+Lépcső(N-i) Ciklus vége Lépcső:=L 3. M-nél kisebb vagy egyenlő kettő-hatványok előre Adjuk meg az M-nél nem nagyobb kettő-hatványokat növekvő sorrendben! A feladatot átfogalmazhatjuk úgy, hogy adjuk meg a K-nál nagyobb vagy egyenlő, M-nél kisebb vagy egyenlő kettő-hatványokat növekvő sorrendben (ha K kettő-hatvány)! Már itt is a rekurzió: ezek a számok a K, majd pedig a 2*K-nál nagyobb vagy egyenlő, M-nél kisebb vagy egyenlő kettő-hatványok növekvő sorrendben: Hatványok(K,M): Ha KM akkor Ki: K; Hatványok(2*K,M) Példa: K=1, M= M-nél kisebb vagy egyenlő kettő-hatványok visszafelé Adjuk meg az M-nél nem nagyobb kettő-hatványokat csökkenő sorrendben! A feladatot átfogalmazhatjuk úgy, hogy adjuk meg a K-nál nagyobb vagy egyenlő, M-nél kisebb vagy 7
8 egyenlő kettő-hatványokat csökkenő sorrendben (ha K kettő-hatvány)! Már itt is a rekurzió: ezek a számok a 2*K-nál nagyobb vagy egyenlő, M-nél kisebb vagy egyenlő kettő-hatványok csökkenő sorrendben, majd pedig a K: Hatványok(K,M): Ha KM akkor Hatványok(2*K,M); Ki: K Példa: K=1, M= M-nél kisebb vagy egyenlő kettő-hatványok oda és vissza Adjuk meg az M-nél nem nagyobb kettő-hatványokat növekvő, majd visszafelé csökkenő sorrendben! A feladatot átfogalmazhatjuk úgy, hogy adjuk meg a K-nál nagyobb vagy egyenlő, M-nél kisebb vagy egyenlő kettő-hatványokat ilyen sorrendben (ha K kettő-hatvány)! Már itt is a rekurzió: ezek a számok a K, majd a 2*K-nál nagyobb vagy egyenlő, M-nél kisebb vagy egyenlő kettő-hatványok csökkenő sorrendben, végül pedig újra a K: Hatványok(K,M): Ha KM akkor Ki: K; Hatványok(2*K,M); Ki: K Példa: K=1, M= Binomiális együtthatók Egy véges halmaz, melynek N darabszámú elemeiből K elemszámú halmazokat (kombinatorika nevén osztályokat) akarunk mindenféle módon képezni (és minden elem csak egyszer fordul elő). Ezt úgy hívjuk, hogy n elem k-ad osztályú ismétlés nélküli kombinációja. Ezen kombinációk száma megegyezik a matematikából máshonnan is ismert binomiális együtthatókkal. A binomiális együtthatókat a következő képlettel definiálhatjuk: n k n! k! n k! Ennek kiszámítása hosszú programot igényelne, próbálkozzunk inkább egy másik kiszámítási módszerrel! 8
9 Ehhez nézzük meg e számok elrendezését, a Pascal háromszöget: Felfedezhetjük, hogy a fenti táblázatban minden szám a fölötte levő két szám összege, azaz N elemből K elem választása leírható az alábbi módon: az első elemet választjuk, majd még N-1 elemből választunk K-1 elemet. vagy az első elemet nem választjuk és a maradék N-1 elemből választunk K elemet. Bin(n,k): Ha k=0 vagy k=n akkor Bin:=1 különben Bin:=Bin(n-1,k)+Bin(n-1,k-1) Egy gyorsabb módszert is találhatunk N elemből K elem választására, ha felírjuk B(n.k) és B(n,k-1) értékét: B n,k n! k! n k! n! Bn,k 1 (k 1)! n k n n 1... k 1 n kn k n n 1... k 1 k 1! n k 1 n k... 1 Ha az alsó képlet számlálójából elhagyjuk a K értékét, a nevezőjéből pedig az (n-k+1)-et, akkor éppen a felső képletet kapjuk. A módszer másképp megfogalmazva: először kiválasztunk K-1 elemet, majd a maradék N-K+1 elemből kell egyet választani (de így minden kombináció pontosan K-féleképpen áll elő), tehát jön még egy K-val osztás. 9
10 Bin(n,k): Ha k=0 akkor Bin:=1 különben Bin:=Bin(n,k-1)*(n-k+1)/k Eddig közvetlen, szimpla rekurzióval foglalkoztunk. Ideje megnézni a dupla, illetve a közvetett rekurziót is. 7. McCarthy-féle 91-es függvény: Zohar Manna, Amir Pnueli és John McCarthy 1970-ben találta ki elméleti informatikai célokra ezt a rekurzív függvényt. Értéke 91 lesz minden 100-nál kisebb vagy egyenlő n természetes számra. 100-nál nagyobb n-ekre az értéke n-10 lesz. 1. példa: M(99) = M(M(110)) mert = M(100) mert 110 > 100 = M(M(111)) mert = M(101) mert 111 > 100 = 91 mert 101 > példa: M(87) = M(M(98)) = M(M(M(109))) = M(M(99)) = M(M(M(110))) = M(M(100)) = M(M(M(111))) = M(M(101)) = M(91) = M(M(102)) = M(92) 10
11 = M(M(103)) = M(93) = M(99) innen ugyanaz, mint az 1. példa = 91 A függvény duplán rekurzívan: M(n): Ha n>100 akkor M:=n-10 különben M:=M(M(n+11)) A függvényben a dupla rekurzió kifejtve: M(n): Ha n>100 akkor M:=n-10 különben x:=m(n+11); M:=M(x) Tehát a dupla rekurzió algoritmikus szinten nem okoz semmilyen gondot! 8. Döntsük el egy számról, hogy páros-e! Tegyük fel, hogy nincs maradék-számítás műveletünk! A megoldás egy közvetett rekurzív számítás: a párosságot visszavezethetjük eggyel kisebb szám páratlanságára, a páratlanságot pedig eggyel kisebb szám párosságára. Ez a közvetett rekurzió Páros(n): Ha n=0 akkor Páros:=igaz különben Páros:=Páratlan(n-1) Páratlan(n): Ha n=1 akkor Páratlan:=igaz különben Páratlan:=Páros(n-1) Ugyanez összevonva egyetlen rekurzív függvénybe, közvetlen rekurzióvá alakítva: Páros(n): Ha n=0 akkor Páros:=igaz különben ha n=1 akkor Páros:=hamis különben Páros:=Páros(n-2) 11
12 9. Hatványozás Két szám hatványozását (A B ) visszavezethetjük szorzásokra és kettővel osztásra a következőképpen: A B 1 A A A A B / 2 B1 ha ha ha B 0 B B páros páratlan Hatvány(A,B): Ha B=0 akkor Hatvány:=1 különben Ha B páros akkor Hatvány:=Hatvány((A*A),(B/2)) különben Hatvány:=A*Hatvány(A,(B-1)) Példa: 2 10 =4 5 =4*4 4 =4*16 2 =4*256 1 =4*256 12
Informatikai tehetséggondozás:
Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Rekurzió memorizálással TÁMOP-.2.3.-12/1/KONV Bajok a rekurzióval Hely: nagyra dagadt memóriaméret az ismétlődő eljáráshívások miatt.
Algoritmizálás, adatmodellezés tanítása 11. előadás. (Horváth Gyula előadása alapján)
Algoritmizálás, adatmodellezés tanítása 11. előadás (Horváth Gyula előadása alapján) Rekurzió Klasszikus példák Faktoriális n! Fibonacci-számok Fib n A rekurzió lényege: önhivatkozás n * n 1! ha n 0 1
Rekurzió. (Horváth Gyula és Szlávi Péter előadásai felhasználásával)
Rekurzió (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Rekurzió Klasszikus példák Faktoriális n! n * n 1! ha n 0 1 ha n 0 Fibonacci-számok Fib n 0 ha n 0 1 ha n 1 Fib n 1 Fib n 2 ha n 1 A
Rekurzió 2. Belépő a tudás közösségébe Informatika szakköri segédanyag
Belépő a tudás közösségébe Informatika szakköri segédanyag Bende Imre, Heizlerné Bakonyi Viktória, Menyhárt László, Szlávi Péter, Törley Gábor, Zsakó László Szerkesztő: Abonyi-Tóth Andor, Zsakó László
Rekurzív algoritmusok
Rekurzív algoritmusok 11. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. november 14. Sergyán (OE NIK) AAO 11 2011. november 14. 1 / 32 Rekurzív
Rekurzió. (Horváth Gyula és Szlávi Péter előadásai. felhasználásával)
Rekurzió (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Rekurzió Klasszikus példák Faktoriális n! Fibonacci-számok Fib n A rekurzió lényege: önhivatkozás n * n 1! ha n 0 1 ha n 0 0 ha n 0 1
Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása
1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június
Kombinatorikai algoritmusok. (Horváth Gyula és Szlávi Péter előadásai felhasználásával)
Kombinatorikai algoritmusok (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Kombinatorikai algoritmusok A kombinatorika: egy véges halmaz elemeinek valamilyen szabály alapján történő csoportosításával,
Kombinatorikai algoritmusok
Kombinatorikai algoritmusok (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Kombinatorikai algoritmusok A kombinatorika: egy véges halmaz elemeinek valamilyen szabály alapján történő csoportosításával,
Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.
Diszkrét matematika 1.
Diszkrét matematika 1. 2017. ősz 1. Diszkrét matematika 1. 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra Tanszék
Diszkrét matematika 1.
Diszkrét matematika 1. 201. ősz 1. Diszkrét matematika 1. 1. előadás Mérai László diái alapján Komputeralgebra Tanszék 201. ősz Kombinatorika Diszkrét matematika 1. 201. ősz 2. Kombinatorika Kombinatorika
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
FPI matek szakkör 8. évf. 4. szakkör órai feladatok megoldásokkal. 4. szakkör, október. 20. Az órai feladatok megoldása
4. szakkör, 2004. október. 20. Az órai feladatok megoldása Most csak három önmagában nem nehéz feladatot kapsz, és a feladatot magadnak kell általánosítani, szisztematikusan adatot gyűjteni, általános
Adatszerkezetek II. 10. előadás
Adatszerkezetek II. 10. előadás Kombinatorikai algoritmusok A kombinatorika: egy véges halmaz elemeinek valamilyen szabály alapján történő csoportosításával, kiválasztásával, sorrendbe rakásával foglalkozik
Rekurzió. (Horváth Gyula és Szlávi Péter előadásai felhasználásával)
Rekurzió (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Rekurzió Klasszikus példák Faktoriális n! Fibonacci-számok Fib n A rekurzió lényege: önhivatkozás n * n 1! ha n 0 1 ha n 0 0 ha n 0 1
Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 1. MA3-1 modul. Kombinatorika
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 1. MA3-1 modul Kombinatorika SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI.
1.1. Alapfeladatok. hogy F 1 = 1, F 2 = 1 és általában F n+2 = F n+1 + F n (mert a jobboldali ág egy szinttel lennebb van, mint a baloldali).
1.1. Alapfeladatok 1.1.1. Megoldás. Jelöljük F n -el az n-ed rendű nagyapák számát. Az ábra alapján látható, hogy F 1 = 1, F = 1 és általában F n+ = F n+1 + F n mert a jobboldali ág egy szinttel lennebb
Definíció n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük.
9. Kombinatorika 9.1. Permutációk n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük. n elem ismétlés nélküli permutációinak száma: P n = =1 2
ARCHIMEDES MATEMATIKA VERSENY
Koszinusztétel Tétel: Bármely háromszögben az egyik oldal négyzetét megkapjuk, ha a másik két oldal négyzetének összegéből kivonjuk e két oldal és az általuk közbezárt szög koszinuszának kétszeres szorzatát.
Hajnal Péter. Bolyai Intézet, TTIK, SZTE, Szeged április 8.
Fibonacci- számok és tányérok Hajnal Péter Bolyai Intézet, TTIK, SZTE, Szeged 2017. április 8. A Fibonacci-sorozat A Fibonacci-sorozat Rekurzív definíció F 0 = 0, F 1 = 1, F n = F n 1 + F n 2. A Fibonacci-sorozat
A programozás alapjai 1 Rekurzió
A programozás alapjai Rekurzió. előadás Híradástechnikai Tanszék - preorder (gyökér bal gyerek jobb gyerek) mentés - visszaállítás - inorder (bal gyerek gyökér jobb gyerek) rendezés 4 5 6 4 6 7 5 7 - posztorder
Számelmélet Megoldások
Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,
Tamás Ferenc: Nevezetes szögek szögfüggvényei
Tamás Ferenc: Nevezetes szögek szögfüggvényei A derékszögű háromszögekben könnyedén fel lehet írni a nevezetes szögek szögfüggvényeit. Megjegyezni viszont nem feltétlenül könnyű! Erre van egy könnyen megjegyezhető
2010. október 12. Dr. Vincze Szilvia
2010. október 12. Dr. Vincze Szilvia Tartalomjegyzék 1.) Sorozat definíciója 2.) Sorozat megadása 3.) Sorozatok szemléltetése 4.) Műveletek sorozatokkal 5.) A sorozatok tulajdonságai 6.) A sorozatok határértékének
Feladatmegoldási stratégiák
Kumulatív összegzés Algoritmusok kumulatív összegzés Adott egy N elemű számsorozat, adjuk meg a sorozat azon [a,b] intervallumát, ahol az elemek összege maximális! Bemenet: N N, X N * Kimenet: a,b H *
Bevezetés a matematikába (2009. ősz) 1. röpdolgozat
Bevezetés a matematikába (2009. ősz) 1. röpdolgozat 1. feladat. Fogalmazza meg a következő ítélet kontrapozícióját: Ha a sorozat csökkenő és alulról korlátos, akkor konvergens. 2. feladat. Vezessük be
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Felvételi tematika INFORMATIKA
Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.
NT Matematika 11. (Heuréka) Tanmenetjavaslat
NT-17302 Matematika 11. (Heuréka) Tanmenetjavaslat A Dr. Gerőcs László Számadó László Matematika 11. tankönyv a Heuréka-sorozat harmadik tagja. Ebben a segédanyagban ehhez a könyvhöz a tizenegyedikes tananyag
A félév során előkerülő témakörök
A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok
Arany Dániel Matematikai Tanulóverseny 2014/2015-ös tanév első (iskolai) forduló Haladók II. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 01/01-ös tanév első iskolai) forduló Haladók II. kategória Megoldások és javítási útmutató 1. Adott az alábbi két egyenletrendszer:
Játék a szavakkal. Ismétléses nélküli kombináció: n különböző elem közül választunk ki k darabot úgy, hogy egy elemet csak egyszer
Játék a szavakkal A következőekben néhány szóképzéssel kapcsolatos feladatot szeretnék bemutatni, melyek során látni fogjuk, hogy egy ábrából hányféleképpen olvashatunk ki egy adott szót, vagy néhány betűből
1. A Horner-elrendezés
1. A Horner-elrendezés A polinomok műveleti tulajdonságai Polinomokkal a szokásos módon számolhatunk: Tétel (K2.1.6, HF ellenőrizni) Tetszőleges f,g,h polinomokra érvényesek az alábbiak. (1) (f +g)+h =
Szerencsejátékok. Elméleti háttér
Szerencsejátékok A következőekben a Szerencsejáték Zrt. által adott játékokat szeretném megvizsgálni. Kiszámolom az egyes lehetőségeknek a valószínűségét, illetve azt, hogy mennyi szelvényt kell ahhoz
Programozás alapjai. 6. gyakorlat Futásidő, rekurzió, feladatmegoldás
Programozás alapjai 6. gyakorlat Futásidő, rekurzió, feladatmegoldás Háziellenőrzés Egészítsd ki úgy a simplemaths.c programot, hogy megfelelően működjön. A program feladata az inputon soronként megadott
æ A GYAKORLAT (* feladatok nem kötelezőek)
æ A3 6-7. GYAKORLAT (* feladatok nem kötelezőek) 1. Az 1,2,4,5,7 számkártyák mindegyikének felhasználásával hány különböző 5- jegyű szám készíthető? 2. A 0,2,4,5,7 számkártyák mindegyikének felhasználásával
;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ;
. A racion lis sz mok A tanult sz mok halmaza A) Ábrázold számegyenesen az alábbi számokat! 8 + + 0 + 7 0 7 7 0 0. 0 Válogasd szét a számokat aszerint, hogy pozitív: pozitív is, negatív is: negatív: sem
Elemi matematika szakkör
Elemi matematika szakkör Kolozsvár, 2015. október 5. 1.1. Feladat. Egy pozitív egész számot K tulajdonságúnak nevezünk, ha számjegyei nullától különböznek és nincs két azonos számjegye. Határozd meg az
Informatikai tehetséggondozás:
Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: isszalépéses kiválogatás TÁMOP-4.2.3.-12/1/KON isszalépéses kiválogatás 1. Az összes lehetséges sorrend Sokszor előfordul feladatként,
2018, Diszkrét matematika
Diszkrét matematika 3. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: természetes
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7
A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat
Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,
// KURZUS: Matematika II. MODUL: Valószínűség-számítás 16. lecke: Kombinatorika (alapfeladatok) Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, 3.1.
Analízis előadás és gyakorlat vázlat
Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)
Algoritmizálás, adatmodellezés tanítása 1. előadás
Algoritmizálás, adatmodellezés 1. előadás Az algoritmus fogalma végrehajtható (van hozzá végre-hajtó) lépésenként hajtható végre a lépések maguk is algoritmusok pontosan definiált, adott végre-hajtási
5. Rekurzió és iteráció (Rekurzív programok átírása nemrekurzívvá)
5. Rekurzió és iteráció (Rekurzív programok átírása nemrekurzívvá) Az elõzõekben megbarátkoztunk a rekurzióval, mint egy problémamegoldási stratégiával, sõt megvizsgáltunk néhány programozási nyelvet a
Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0
Irodalom ezek egyrészt el- A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: hangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László: Bevezetés a lineáris algebrába, Polygon
æ A GYAKORLAT (* feladatok nem kötelezőek)
æ A3 6-7. GYAKORLAT (* feladatok nem kötelezőek) 1. Az 1,2,4,5,7 számkártyák mindegyikének felhasználásával hány különböző 5- jegyű szám készíthető? 2. A 0,2,4,5,7 számkártyák mindegyikének felhasználásával
Oszthatósági problémák
Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,
Pásztor Attila. Algoritmizálás és programozás tankönyv az emeltszintű érettségihez
Pásztor Attila Algoritmizálás és programozás tankönyv az emeltszintű érettségihez 9. ÖSSZETETT FELADATOK...111 9.1. ELEMI ALGORITMUSOK ÖSSZEÉPÍTÉSE...111 9.2. ÖSSZEFOGLALÁS...118 9.3. GYAKORLÓ FELADATOK...118
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
Bevezető feldatok. Elágazás és összegzés tétele
Bevezető feldatok 1. Szövegértés és algoritmikus gondolkodás Kátai Zoltán https://people.inf.elte.hu/szlavi/infodidact15/manuscripts/kz.pdf Elágazás és összegzés tétele Táblázatkezelési feladatok Feladatok
Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit
Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.
Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz
2018/2019 ősz Elérhetőségek Előadó: (safaro@math.bme.hu) Fogadóóra: hétfő 9-10 (H épület 3. emelet 310-es ajtó) A pontos tárgykövetelmények a www.math.bme.hu/~safaro/kalkulus oldalon találhatóak. A mátrix
Makay Géza, makayg@math.u-szeged.hu, SZTE, Bolyai Intézet
Makay Géza, makayg@math.u-szeged.hu, SZTE, Bolyai Intézet A SUDOKU szabályai, története A Sudoku egy cellából álló rács. A rács kilenc kisebb, -as blokkra oszlik, amelyben elszórva néhány -től -ig terjedő
Algoritmusok és adatszerkezetek gyakorlat 03 Oszd meg és uralkodj. Nagy
Algoritmusok és adatszerkezetek gyakorlat 03 Oszd meg és uralkodj Divide & Conquer (,,Oszd meg és uralkodj ) paradigma Divide: Osszuk fel az adott problémát kisebb problémákra. Conquer: Oldjuk meg a kisebb
24. tétel. Kombinatorika. A grá fok.
2009/2010 1 Huszk@ Jenő 24. tétel. Kombinatorika. A grá fok. 1.Kombinatorika A kombinatorika a véges halmazokkal foglalkozik. Olyan problémákat vizsgál, amelyek függetlenek a halmazok elemeinek mibenlététől.
Kombinatorika - kidolgozott típuspéldák
Kombinatorika - kidolgozott típuspéldák az összes dolgot sorba rakjuk minden dolog különböző ismétlés nélküli permutáció Hányféleképpen lehet sorba rakni n különböző dolgot? P=1 2... (n-1) n=n! például:
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozat fogalma Definíció: Számsorozaton olyan függvényt értünk, amelynek értelmezési tartománya a pozitív egész
11. Sorozatok. I. Nulladik ZH-ban láttuk:
11. Sorozatok I. Nulladik ZH-ban láttuk: 1. Egy számtani sorozat harmadik eleme 15, a nyolcadik eleme 30. Mely n természetes számra igaz, hogy a sorozat első n elemének összege 6? A szokásos jelöléseket
Matematika tanmenet 11. évfolyam (középszintű csoport)
Matematika tanmenet 11. évfolyam (középszintű csoport) Műveltségi terület: MATEMATIKA Iskola, osztályok: Vetési Albert Gimnázium, 11.A, 11.B, 11.D (alap) Tantárgy: MATEMATIKA Heti óraszám: 4 óra Készítették:
Kombinatorika jegyzet és feladatgyűjtemény
Kombinatorika jegyzet és feladatgyűjtemény Király Balázs, Tóth László Pécsi Tudományegyetem 2011 2 Lektor: Kátai Imre egyetemi tanár, az MTA rendes tagja Tartalomjegyzék Előszó 5 I. Jegyzet 7 I.1. Permutációk,
4. Sorozatok. 2. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 100 =
4. Sorozatok Megjegyzés: A szakirodalomban használt a sorozat tagjáról, máskor eleméről beszélni. Az alábbiakban mindkét kifejezést használtuk megtartva a feladatok eredeti fogalmazását. I. Feladatok.
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.
Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:
2015, Diszkrét matematika
Diszkrét matematika 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015, őszi félév Miről volt szó az elmúlt előadáson? Számtartományok:
Hogyan folytatnád? Gellért-hegy, Kékes. /Kilimandzsáró,, Mount Everest,Mount Blanc/ Háromszögszámok
SOROZATOK Alapok Hogyan folytatnád? Gellért-hegy, Kékes. /Kilimandzsáró,, Mount Everest,Mount Blanc/ Háromszögszámok. 1, 1, 2, 3, 5,. 1,4,7,10,.. 1, 2,4,8,16,32,.(Sakktábla és búza története) 1, ½,1/3,
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Matematikai játékok és az aranymetszés
Dr. Katz Sándor Bonyhádi Petőfi Sándor Evangélikus Gimnázium Matematikai játékok és az aranymetszés Az előadásban és ebben az írásos ismertetőben is néhány matematikai játékot kívánok bemutatni. Köztük
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100
ARANYMETSZÉS. - érettségi dolgozat védése analízis és algebrából - Készítette: Szénási Eszter Mentor: Dr. Péics Hajnalka június 11.
ARANYMETSZÉS - érettségi dolgozat védése analízis és algebrából - Készítette: Szénási Eszter Mentor: Dr. Péics Hajnalka 2014. június 11. Zenta TARTALMI ÁTTEKINTÉS Az aranymetszés fogalma eredete és előfordulása
Szittyai István december 8. SZTE Bolyai Intézet. Szittyai István (NLG, Hmvh) Partíciók , Bolyai, Szeged 1 / 24
Hányféleképpen válthatom föl a pénzemet? Szittyai István Németh László Gimnázium, Hódmezővásárhely 2012. december 8. SZTE Bolyai Intézet Szittyai István (NLG, Hmvh) Partíciók 2012.12.08, Bolyai, Szeged
1. Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 14 B ) 20 C ) 21 D ) 24
. Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 4 B ) 20 C ) 2 D ) 24 2. Mennyi az alábbi művelet eredménye? 2 + 2 =? 5 6 A ) B ) C ) D ) 0. Egy könyvszekrénynek három polca
1. Feladatsor. I. rész
. feladatsor. Feladatsor I. rész. Mely x valós számokra lesz ebben a sorrendben a cos x, a sinx és a tg x egy mértani sorozat három egymást követő tagja?... (). Egy rombusz egyik átlója 0 cm, beírható
Feladatok és megoldások az 1. sorozat Építőkari Matematika A3
Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;
REKURZIÓ. Rekurzív: önmagát ismétlő valami (tevékenység, adatszerkezet stb.) Rekurzív függvény: függvény, amely meghívja saját magát.
1. A REKURZIÓ FOGALMA REKURZIÓ Rekurzív: önmagát ismétlő valami (tevékenység, adatszerkezet stb.) Rekurzív függvény: függvény, amely meghívja saját magát. 1.1 Bevezető példák: 1.1.1 Faktoriális Nemrekurzív
V.7. NÉPSZÁMLÁLÁS. A feladatsor jellemzői
V.7. NÉPSZÁMLÁLÁS Tárgy, téma A feladatsor jellemzői Eponenciális egyenletek felírása és megoldása szöveges feladatok alapján. Szöveges feladatok alapján modellt alkotunk, amely alkalmas eponenciálisan
Feladatok és megoldások a 8. hétre Építőkari Matematika A3
Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet
Formális nyelvek és automaták
Formális nyelvek és automaták Nagy Sára gyakorlatai alapján Készítette: Nagy Krisztián 2. gyakorlat Ismétlés: Megjegyzés: Az ismétlés egy része nem szerepel a dokumentumban, mivel lényegében a teljes 1.
INFORMATIKA javítókulcs 2016
INFORMATIKA javítókulcs 2016 ELMÉLETI TÉTEL: Járd körbe a tömb fogalmát (Pascal vagy C/C++): definíció, egy-, két-, több-dimenziós tömbök, kezdőértékadás definíciókor, tömb típusú paraméterek átadása alprogramoknak.
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.
Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:
7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?
7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika
1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.
Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel
Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak
Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,
Polinomok, Lagrange interpoláció
Közelítő és szimbolikus számítások 8. gyakorlat Polinomok, Lagrange interpoláció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján 1. Polinomok
Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával)
Adatszerkezetek I. 7. előadás (Horváth Gyula anyagai felhasználásával) Bináris fa A fa (bináris fa) rekurzív adatszerkezet: BinFa:= Fa := ÜresFa Rekord(Elem,BinFa,BinFa) ÜresFa Rekord(Elem,Fák) 2/37 Bináris
Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...
Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (
Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória
Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 00/009-es tanév első (iskolai) forduló haladók II.
Gazdasági matematika II. vizsgadolgozat megoldása A csoport
Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége
Kombinatorika avagy hányféleképp? Piros, fehér zöld színekből hány ország számára tudunk különböző zászlókat készíteni?
Kombinatorika avagy hányféleképp? Piros, fehér zöld színekből hány ország számára tudunk különböző zászlókat készíteni? Kombinatorika avagy hányféleképp? Zsuzsi babájának négyféle színes blúza és kétféle
Érdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel)
Kombi/2 Egy bizonyos bulin n lány és n fiú vesz részt. Minden fiú pontosan a darab lányt és minden lány pontosan b darab fiút kedvel. Milyen (a,b) számpárok esetén létezik biztosan olyan fiúlány pár, akik
TANMENET. a matematika tantárgy tanításához 11.E osztályok számára
Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához 11.E osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján Használatos
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
Matematika szintfelmérő dolgozat a 2018 nyarán felvettek részére augusztus
Matematika szintfelmérő dolgozat a 018 nyarán felvettek részére 018. augusztus 1. (8 pont) Oldjuk meg a következő egyenletet a valós számok halmazán: 6 4 x 13 6 x + 6 9 x = 0 6 ( ) x 4 13 9 6 4 x 13 6
Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb
Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb 2004_02/4 Tegyél * jelet a táblázat megfelelő rovataiba! Biztosan Lehet hogy, de nem biztos Lehetetlen a) b) c) Négy egymást követő természetes
Informatikai tehetséggondozás:
Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Visszalépéses maximumkiválasztás TÁMOP-4.2.3.-12/1/KONV 1. Munkásfelvétel: N állás N jelentkező Egy vállalkozás N különböző állásra
Országos Középiskolai Tanulmányi Verseny 2009/2010 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny / Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása. Oldja meg a valós számok legbővebb részhalmazán a egyenlőtlenséget!
Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.
2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az
X. PANGEA Matematika Verseny II. forduló 10. évfolyam. 1. Az b matematikai műveletet a következőképpen értelmezzük:
1. Az a @ b matematikai műveletet a következőképpen értelmezzük: @ a a b b, feltéve, hogy a 0. a Melyik állítás igaz a P és Q mennyiségekre? P = ((2 @ 1) @ (1 @ 2)) Q = ((7 @ 8) @ (8 @ 7)) A) P > Q B)