Optika kérdéssor. 2010/11 tanév. Milyen kapcsolatban van a fényvisszaverődés törvénye a Fermat elvvel?
|
|
- Rudolf Szilágyi
- 9 évvel ezelőtt
- Látták:
Átírás
1 Optika kérdéssor 2010/11 tanév Mit mond ki a Fermat elv? Mit mond ki a fényvisszaverődés törvénye? Milyen kapcsolatban van a fényvisszaverődés törvénye a Fermat elvvel? Mit mond ki a fénytörés törvénye? Mi az abszolút törésmutató? Mi a relatív törésmutató? Milyen kapcsolat van két anyag relatív törésmutatója és az abszolút törésmutatók között? Optikailag ritkább közegből sűrűbb közegbe haladó fénynek hogyan változik meg a terjedési sebessége? Optikailag ritkább közegből sűrűbb közegbe haladó fény esetén a beesési merőleges felé vagy attól távolodva törik meg a fény? Optikailag sűrűbb közegből ritkább közegbe haladó fény esetén a beesési merőleges felé vagy attól távolodva törik meg a fény? Igaz-e, hogy ritkább közegből sűrűbb közegbe haladó fénysugár esetén a törési szög mindig kisebb a beesési szögnél? Mi a Brewster szög? Mi az oka, hogy egy tiszta vizű tó felülről nézve sekélyebbnek látszik? Egy tóban úszó halat nézünk. Valójában lejjebb, feljebb, vagy ugyanolyan mélyen van a hal, mint ahogy látjuk? Miért? Mi a teljes visszaverődés? Optikailag ritkább közegből sűrűbb közegbe haladva létrejöhet-e teljes visszaverődés? Miért? Optikailag sűrűbb közegből ritkább közegbe haladva létrejöhet-e teljes visszaverődés? Miért? Hogyan határozható meg a teljes visszaverődés határszöge? Írj két olyan eszközt, ahol a teljes visszaverődést használják ki! Hogyan működik a refraktométer? Mire használható a refraktométer?
2 Csapdába eshet-e egy üveggömb belsejében a teljes visszaverődés miatt egy kívülről bevitt fénysugár? Mit jelent az, hogy egy üvegszál egymódusú? Mit jelent az, hogy egy üvegszál lépcsős indexű? Mit jelent az, hogy egy üvegszál lépcsős multimódusú? Mekkora a jellemző átmérője az üvegszál magjának? Mi a képfordító prizma? Említsd meg az optikai kábeles jeltovábbítás néhány előnyét a hagyományos kábelekkel szemben! Mondj legalább két alkalmazást üvegszálakra! Hogyan változik meg egy fénysugár haladási iránya, miközben plánparalell lemezen halad át? Hogyan változik meg egy fénysugár haladási egyenese, miközben plánparalell lemezen halad át? Mennyivel térül el oldalirányba egy fénysugár egy plánparallel lemezen való áthaladás során? Egy ablaküvegen keresztül fényképezünk. Elméletileg befolyásolja-e a fényképezőgép távolság beállítását az üveg vastagsága? Torzítja-e az ablaküveg a rajta keresztül nézett testeket? A prizma mely adataitól függ, hogy mennyire téríti el a rajta áthaladó fénysugarakat? Igaz-e az, hogy a prizma mindig a "vastagabb" oldala felé téríti el a fénysugarakat? Mit értünk a prizma törőszöge alatt? Vázold a fény áthaladását egy prizmán! Milyen adatoktól és hogyan függ a vékony lencsék fókusztávolsága? Mit értünk dioptria alatt? Egy 10 cm vagy egy 20 cm fókusztávolságú lencsének nagyobb a dioptriája? Lehet-e egy homorú-domború lencse gyűjtőlencse? Indokold is a válaszodat! Egy levegő buborék vízben gyűjtő vagy szórólencseként viselkedik? Egy üveglencsét levegőből vízbe teszünk. Megváltozik-e emiatt a fókusztávolsága? Mit mond ki a lencsetörvény vékony lencsékre? Hogyan határozható meg a nagyítás a leképezési törvény adataiból? Vázold fel egy gyűjtőlencse esetén a jellegzetes sugármeneteket!
3 Vékony gyűjtőlencse esetén mekkora tárgytávolság esetén lesz virtuális a kép? Vékony gyűjtőlencse esetén mekkora tárgytávolság esetén lesz nagyított a kép? Vékony gyűjtőlencse esetén mekkora tárgytávolság esetén lesz fordított állású a kép? Vázold fel egy szórólencse esetén a jellegzetes sugármeneteket! Vékony szórólencse esetén lehet-e egy tárgyról valódi képet kapni? Mit jelent, ha a lencsetörvényből a képtávolságra negatív érték jön ki? A domború tükör leképezése a gyűjtő vagy a szórólencse leképezésének felel meg? Az autó visszapillantó tükrében valódi vagy látszólagos képet látunk? Adj legalább két példát a domború tükör alkalmazására! Milyen kapcsolatban van egy kis nyílásszögű gömbtükör fókusztávolsága a gömb sugarával? Milyen feltétel esetén lesz egy homorú tükör képe valódi? Vázold fel egy domború gömbtükör esetén a jellegzetes sugármeneteket! Vázold fel egy homorú gömbtükör esetén a jellegzetes sugármeneteket! Milyen esetben szokás gömbtükör helyett parabola tükröt használni (alkalmazási példa is jó)? Sorolj fel háromféle képhibát a lencsék képalkotásánál! Mit jelent a szférikus aberráció? Mit jelent az asztigmatizmus (tengelyen kívüliség)? Mit jelent a kóma (üstököshiba)? Mit jelent a képdomborúság? Mit jelent a disztorzió? Mit jelent a kromatikus aberráció? Miből áll és miért jó az akromát lencse? Miből áll és miért jó az apokromát lencse? Milyen módszerekkel korrigálhatók a lencsehibák? Hogyan határozható meg két, szorosan egymás mellett lévő vékonylencséből álló optikai rendszer dioptriája a lencsék dioptriáinak ismeretében? Hogyan határozható meg két, d távolságra lévő vékonylencséből álló optikai rendszer dioptriája a lencsék dioptriáinak és a d távolságnak az ismeretében?
4 Mit jelent az, hogy paraxiális közelítésben használható a mátrixoptika a fénysugarak menetének követésére? Az optikai tengellyel bezáróan milyen szögtartományban használható a mátrixoptikai leírás? A mátrixoptikában mik a fénysugarat leíró vektor koordinátái? Hogyan adható meg az a mátrix, ami a fénysugár t távolságra való elmozdulását írja le? Írd fel a vékonylencsén áthaladó fénysugárra a lencsét leíró mátrixot! Írd fel egy gömbtükörről visszaverődő fénysugárra a tükröt leíró mátrixot! Mit értünk fősíkok alatt a vastag lencsék esetén? Írd fel a tárgyoldali/képoldali fősík helyének meghatározására szolgáló összefüggést! Hogyan határozható meg egy vastag lencse fókusztávolsága? Írd fel a leképezési törvényt vastag lencsék esetén! Vázold fel a jellegzetes sugármeneteket vastag gyűjtőlencse esetén! Vázold fel a jellegzetes sugármeneteket vastag szórólencse esetén! Vázold fel egy egyszerű nagyító képalkotását! Hogyan határozható meg egy nagyító nagyítása? Mi a különbség a Kepler és a Galilei távcső között? Mik a Newton-féle távcső főbb összetevői? Miért jobb a csillagászatban a Newton-féle távcső, mint a Galilei távcső? Milyen célt szolgál a prizmás távcsőben a prizma? Vázold fel a mikroszkóp képalkotását! Valódi vagy virtuális képet látunk a mikroszkópban? Közelítőleg mekkora nagyítás érhető el egy fénymikroszkóppal? Hogyan függ a mikroszkóp feloldási határa a fény hullámhosszától? Miért ad sokkal jobb felbontást az elektronmikroszkóp a fénymikroszkópnál? Egyenes vagy fordított állású kép keletkezik a fényképezőgép érzékelőjén? Milyen célt szolgál a fényképezőgépen a blende? Milyen változást okoz a fényképen az expozíciós idő megváltoztatása? Milyen technikai megoldással hoznak létre különböző színeket a projektoroknál?
5 Mit jelent az, hogy a fény elektromágneses hullám? Transzverzális vagy longitudinális hullám a fény? Mit ad meg a Poynting vektor? Mekkora a látható fény hullámhossztartománya? Hogyan határozható meg a hullámhosszból a frekvencia? Nagyságrendileg mekkora a fény terjedési sebessége vákuumban? Hogyan mérte meg Römer a fénysebességet? Ismertesd a Fizeau féle fénysebesség mérés lényegét! Ismertess egy lehetséges (kivitelezhető) módszert a fény terjedési sebességének meghatározására! Ismertesd a fénysebesség mérés történetét két példán keresztül! Mi a polarizáció? Mi történik a polarizációs szűrőn áthaladó természetes fénnyel? Mekkora egy polarizációs szűrőn átjutó fény intenzitása (a szűrő előtti intenzitáshoz képest)? (Miért?) Mekkora a keresztezett polarizációs szűrőkön átjutó fény intenzitása? Polarizációs szűrőre a polarizációs síkjával α szöget bezáró polarizációs síkú fény esik I 0 intenzitással. Mekkora lesz a szűrőn átjutó fény intenzitása? Egy napszemüvegeket árusító üzletben hogyan dönthető el egy adott típusú szemüvegről, hogy polarizációs szűrővel, vagy festett üveggel készült-e? Hogyan kapcsolódik a Brewster szög a polarizációhoz? Miért használnak a fényképészek polarizációs szűrőt? Említs a polarizációra három technikai alkalmazást! Hogyan működik az LCD kijelző? A természetben hol találkozunk a polarizációval? Hogyan megy át a fény kettőstörő anyagon? Milyen elven működik a polarizációs feszültségvizsgálat (magyarázd el az átlátszó műanyag vonalzó esetén!)? Mit jelent a diszperzió? Hogyan működik a prizmás spektrométer? Milyen hullámjelenségen alapul a szivárvány?
6 Miért látunk színes foltokat a CD/DVD adathordozó oldalán? A fényinterferencia feltételének ismeretében becsüld meg egy szappanhártya vastagságát, amikor színes foltokat láthatunk rajta! Hogyan működik az antireflexiós réteg? Mi a feltétele, hogy két azonos hullámhosszúságú, azonos fázisú fénysugár erősítse/kioltsa egymást? Miért nem láthatunk interferenciát, ha két izzólámpát egymás közelében felkapcsolunk? Miért lehet lézerrel sokkal egyszerűbben interferenciát létrehozni, mint izzószálas lámpával? Hogyan mérted meg a lézerfény hullámhosszát? Mit jelent az additív színrendszer (példa)? Mik az additív színrendszer alapszínei? Mit jelent a szubsztraktív színrendszer? Mik a szubsztraktív színrendszer alapszínei? Mik a komplementer színek (említs példát)? Mitől függ egy tárgy színe visszavert fényben? Milyen színűnek látunk egy kékeszöld testet egy csak piros színt átengedő szűrőn át? A képernyő színképzése additív vagy szubsztraktív színkeverés? Ismertesd az emberi szem optikailag fontosabb részeit! Hogyan változtatja az emberi szem a fókusztávolságát? Miért 25 cm a tisztánlátás távolsága? Milyen funkciót töltenek be a szemben a csapok? Milyen funkciót töltenek be a szemben a pálcikák? Mit jelent a rövidlátás és hogyan orvosolható? Mit jelent a távollátás és hogyan orvosolható? Mi a vakfolt? Mit jelent, hogy az izzó gázoknak vonalas a színképe? Mi az atomi fénykibocsátás mechanizmusa? Hogyan gerjesztik az elektronokat az izzószálas lámpa esetén? Hogyan gerjesztik az elektronokat fénycső esetén?
7 Miért lenne logikusabb az izzólámpát világítótest helyett fűtőtestnek hívni? Mi a spektroszkópia? Mikor használnak abszorpciós illetve emissziós spektrumot? Mit mond ki a Wien-féle eltolódási törvény? Miért nem azonos hatású egy izzólámpa fénye a napfénnyel? Vázold fel egy fekete test sugárzási eloszlás függvényét (Planck törvény)! Mennyiben különbözik a neoncső/kompakt fénycső fénye a napfénytől? Mi a LED? Mennyiben speciális fényforrás a lézer? Mit jelent a koherens fény kifejezés? Mit jelent az, hogy a lézer fénye monokromatikus? Mit jelent az inverz populáció? Mi a spontán és indukált emisszió közötti különbség? Miért kell tükörrezonátor a lézerbe? Miért használható jól vágásra a nagy energiájú CO 2 lézer fénye? A szemműtéteknél miért kék színű lézert használnak? Miben különbözik a hologram a normál fényképtől? Minek a mértékegysége a lumen? Mi a különbség egy fényforrásból kisugárzott teljesítmény és a fényáram között? 555 nm-es hullámhosszúságú fény esetén 1 watt teljesítmény hány lumennek felel meg? 300 nm-es hullámhosszúságú fény esetén 1 watt teljesítmény hány lumennek felel meg? Mi a láthatósági függvény? A láthatósági függvény értéke milyen hullámhosszokon különbözik 0-tól? Nagyságrendileg hány lumen fényáramú egy háztartási fényforrás (izzólámpa/fénycső)? Milyen fizikai mennyiségnek a mértékegysége a kandela? Milyen kapcsolat van a lumen és a kandela között? Mi a megvilágítás mértékegysége?
8 Nagyságrendileg hányszor nagyobb a nyári napfény esetén egy adott felületen a megvilágítás, mint a mesterséges megvilágítás a szobában? Mit értünk a fényforrások fényhasznosítása alatt (mi a mértékegysége)? Miért javítja a fénycsövek fényhasznosítását a fényporozás? Mutass be egy szubjektív fotometriai eljárást (Ritchie/Bunsen)! Hogyan függ a záróirányban bekötött fotocella árama a megvilágító fény intenzitásától? Hogyan működik a félvezető fotocella (napelem)? Miért kell szűrő a fotométerben alkalmazott fotodiódára? Mi a képi adatfeldolgozás során a szegmentálás? Hogyan használható fel egy kép hisztogrammja méret meghatározásra? Mi a térlátásunk alapja? A piros-kék szemüvegben miért látunk térbeli képeket? Hogyan működik a 3D mozi? Hogyan működik a 3D tv?
Optika kérdéssor 2013/14 tanév
Optika kérdéssor 2013/14 tanév Mit mond ki a Fermat elv? Mit mond ki a fényvisszaverődés törvénye? Milyen kapcsolatban van a fényvisszaverődés törvénye a Fermat elvvel? Mit mond ki a fénytörés törvénye?
Optika kérdéssor 2016/17 tanév
Optika kérdéssor 2016/17 tanév 1. Mit mond ki a Fermat elv? 2. Mit mond ki a fényvisszaverődés törvénye? 3. Milyen kapcsolatban van a fényvisszaverődés törvénye a Fermat elvvel? 4. Mit mond ki a fénytörés
OPTIKA. Ma sok mindenre fény derül! /Geometriai optika alapjai/ Dr. Seres István
Ma sok mindenre fény derül! / alapjai/ Dr. Seres István Legkisebb idő Fermat elve A fény a legrövidebb idejű pályán mozog. I. következmény: A fény a homogén közegben egyenes vonalban terjed t s c minimális,
FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot?
FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot? 3. Mit nevezünk fényforrásnak? 4. Mi a legjelentősebb
Fény, mint elektromágneses hullám, geometriai optika
Fény, mint elektromágneses hullám, geometriai optika Az elektromágneses hullámok egyik fajtája a szemünk által látható fény. Látható fény (400 nm 800 nm) (vörös ibolyakék) A látható fehér fény a különböző
OPTIKA. Vékony lencsék képalkotása. Dr. Seres István
OPTIKA Vékony lencsék képalkotása Dr. Seres István Vékonylencse fókusztávolsága D 1 f (n 1) 1 R 1 1 R 2 Ha f > 0, gyűjtőlencse R > 0, ha domború felület R < 0, ha homorú felület n a relatív törésmutató
Történeti áttekintés
A fény Történeti áttekintés Arkhimédész tükrök segítségével gyújtotta fel a római hajókat. A fény hullámtermészetét Cristian Huygens holland fizikus alapozta meg a 17. században. A fénysebességet először
OPTIKA. Vékony lencsék, gömbtükrök. Dr. Seres István
OPTIKA Vékony lencsék, gömbtükrök Dr. Seres István Geometriai optika 3. Vékony lencsék Kettős gömbelület (vékonylencse) énytörése R 1 és R 2 sugarú gömbelületek között n relatív törésmutatójú közeg o 2
OPTIKA. Gömbtükrök képalkotása, leképezési hibák. Dr. Seres István
OPTIKA Gömbtükrök képalkotása, Dr. Seres István Tükrök http://www.mozaik.info.hu/mozaweb/feny/fy_ft11.htm Seres István 2 http://fft.szie.hu Gömbtükrök Domború tükör képalkotása Jellegzetes sugármenetek
A fény útjába kerülő akadályok és rések mérete. Sokkal nagyobb. összemérhető. A fény hullámhoszánál. A fény hullámhoszával
Optika Fénytan A fény útjába kerülő akadályok és rések mérete Sokkal nagyobb összemérhető A fény hullámhoszánál. A fény hullámhoszával Elektromágneses spektrum Az elektromágneses hullámokat a keltés módja,
A fény visszaverődése
I. Bevezető - A fény tulajdonságai kölcsönhatásokra képes egyenes vonalban terjed terjedési sebessége függ a közeg anyagától (vákuumban 300.000 km/s; gyémántban 150.000 km/s) hullám tulajdonságai vannak
Digitális tananyag a fizika tanításához
Digitális tananyag a fizika tanításához A lencsék fogalma, fajtái Az optikai lencsék a legegyszerűbb fénytörésen alapuló leképezési eszközök. Fajtái: a domború és a homorú lencse. optikai középpont optikai
A látás és látásjavítás fizikai alapjai. Optikai eszközök az orvoslásban.
A látás és látásjavítás fizikai alapjai. Optikai eszközök az orvoslásban. Orvosi fizika és statisztika Varjú Katalin 202. október 5. Vizsgára készüléshez ajánlott: Damjanovich Fidy Szöllősi: Orvosi biofizika
d) A gömbtükör csak domború tükröző felület lehet.
Optika tesztek 1. Melyik állítás nem helyes? a) A Hold másodlagos fényforrás. b) A foszforeszkáló jel másodlagos fényforrás. c) A gyertya lángja elsődleges fényforrás. d) A szentjánosbogár megfelelő potrohszelvénye
GEOMETRIAI OPTIKA I.
Elméleti háttér GEOMETRIAI OPTIKA I. Törésmutató meghatározása a törési törvény alapján Snellius-Descartes törvény Az új közeg határához érkező fény egy része behatol az új közegbe, és eközben általában
A geometriai optika. Fizika május 25. Rezgések és hullámok. Fizika 11. (Rezgések és hullámok) A geometriai optika május 25.
A geometriai optika Fizika 11. Rezgések és hullámok 2019. május 25. Fizika 11. (Rezgések és hullámok) A geometriai optika 2019. május 25. 1 / 22 Tartalomjegyzék 1 A fénysebesség meghatározása Olaf Römer
100 kérdés Optikából (a vizsgára való felkészülés segítésére)
1 100 kérdés Optikából (a vizsgára való felkészülés segítésére) _ 1. Ismertesse a Rayleigh kritériumot? 2. Ismertesse egy objektív felbontóképességének definícióját? 3. Hogyan kell egy CCD detektort és
Optika gyakorlat 5. Gyakorló feladatok
Optika gyakorlat 5. Gyakorló feladatok. példa: Leképezés - Fruzsika játszik Fruzsika több nagy darab ívelt üveget tart maga elé. Határozd meg, hogy milyen típusú objektívek (gyűjtő/szóró) ezek, és milyen
Geometriai Optika (sugároptika)
Geometriai Optika (sugároptika) - Egyszerû optikai eszközök, ahogy már ismerjük õket - Mi van ha egymás után tesszük: leképezések egymásutánja (bonyolult) - Gyakorlatilag fontos eset: paraxiális közelítés
Optika az orvoslásban
Optika az orvoslásban Makra Péter Orvosi Fizikai és Orvosi Informatikai Intézet 2018. november 19. Makra Péter (SZTE DMI) Optika az orvoslásban 2018. november 19. 1 99 Tartalom 1 Bevezetés 2 Visszaverődés
OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István
OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt
Optikai alapmérések. Mivel több mérésről van szó, egyesével írom le és értékelem ki őket. 1. Törésmutató meghatározása a törési törvény alapján
Optikai alapmérések Mérést végezte: Enyingi Vera Atala Mérőtárs neve: Fábián Gábor (7. mérőpár) Mérés időpontja: 2010. október 15. (12:00-14:00) Jegyzőkönyv leadásának időpontja: 2010. október 22. A mérés
OPTIKA-FÉNYTAN. A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző.
OPTIKA-FÉNYTAN A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző. A fény sebessége: vákuumban közelítőleg: c km 300000
OPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István
OPTIKA Diszperzió, interferencia Dr. Seres István : A fény elektromágneses hullám A fehér fény összetevői: Seres István 2 http://fft.szie.hu : A fény elektromágneses hullám: Diszperzió: Különböző hullámhosszúságú
OPTIKA. Optikai rendszerek. Dr. Seres István
OPTIKA Dr. Seres István Nagyító képalkotása Látszólagos, egyenes állású nagyított kép Nagyítás: k = - 25 cm (tisztánlátás) 1 f N 1 t k t 1 0,25 0,25 1 t 1 t 0,25 f 0,25 Seres István 2 http://fft.szie.hu
OPTIKA-FÉNYTAN. A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző.
OPTIKA-FÉNYTAN A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző. A fény sebessége: vákuumban közelítőleg: c km 300000
2. Miért hunyorognak a csillagok? Melyik az egyetlen helyes válasz? a. A Föld légkörének változó törésmutatója miatt Hideg-meleg levegő
1. Milyen képet látunk a karácsonyfán lévı üveggömbökben? a. Egyenes állású, kicsinyített képet. mert c. Egyenes állású, nagyított képet. domborótükör d. Fordított állású, nagyított képet. b. Fordított
OPTIKA. Hullámoptika. Dr. Seres István
Dr. Seres István : A fény elektromágneses hullám S S E H Seres István 2 http://fft.szie.hu Elektromágneses spektrum Elnevezés Hullámhossz Frekvencia Váltóáram > 3000 km < 100 Hz Hangfrekvenciás váltóáram
Fény. , c 2. ) arányával. Ez az arány a két anyagra jellemző adat, a két anyag egymáshoz képesti törésmutatója (n 2;1
Fény A fény a mechanikai hullámokhoz hasonlóan rendelkezik a hullámok tulajdonságaival, ezért ahhoz hasonlóan két anyag határán visszaverődik és megtörik: Fény visszaverődése Egy másik anyag határára érve
OPTIKA. Lencse rendszerek. Dr. Seres István
OPTIKA Lencse rendszerek Dr. Seres István Nagyító képalkotása Látszólagos, egyenes állású nagyított kép Nagyítás: k = - 25 cm (tisztánlátás) 1 f N 1 t k t 1 0,25 0,25 t 1 t 1 f 0,25 0,25 f 0,25 f 1 0,25
OPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István
OPTIKA Diszperzió, interferencia Dr. Seres István : A fény elektromágneses hullám A fehér fény összetevői: Seres István 2 http://fft.szie.hu : A fény elektromágneses hullám: Diszperzió: Különböző hullámhosszúságú
B5. OPTIKAI ESZKÖZÖK, TÜKRÖK, LENCSÉK KÉPALKOTÁSA, OBJEKTÍVEK TÜKRÖK JELLEMZŐI, LENCSEHIBÁK. Optikai eszközök tükrök: sík gömb
B5. OPTIKAI ESZKÖZÖK, TÜKRÖK, LENCSÉK KÉPALKOTÁSA, OBJEKTÍVEK JELLEMZŐI, LENCSEHIBÁK Optikai eszközök tükrök: sík gömb lencsék: gyűjtő szóró plánparalell (síkpárhuzamos) üveglemez prizma diszperziós (felbontja
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú
Jegyzeteim 1. lap Fotó elmélet 2015. október 9. 14:42 Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú Kardinális elemek A lencse képalkotását meghatározó geometriai elemek,
5.1. ábra. Ábra a 36A-2 feladathoz
5. Gyakorlat 36A-2 Ahogyan a 5. ábrán látható, egy fénysugár 5 o beesési szöggel esik síktükörre és a 3 m távolságban levő skálára verődik vissza. Milyen messzire mozdul el a fényfolt, ha a tükröt 2 o
A kísérlet célkitűzései: A fénytani lencsék megismerése, tulajdonságainak kísérleti vizsgálata és felhasználási lehetőségeinek áttekintése.
A kísérlet célkitűzései: A fénytani lencsék megismerése, tulajdonságainak kísérleti vizsgálata és felhasználási lehetőségeinek áttekintése. Eszközszükséglet: Optika I. tanulói készlet főzőpohár, üvegkád,
Kristályok optikai tulajdonságai. Debrecen, december 06.
Kristályok optikai tulajdonságai Debrecen, 2018. december 06. A kristályok fizikai tulajdonságai Anizotrópia - kristályos anyagokban az egyes irányokban az eltérő rácspontsűrűség miatt a fizikai tulajdonságaik
2. OPTIKA. A tér egy pontján akárhány fénysugár áthaladhat egymás zavarása nélkül.
2. OPTIKA Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert vagy ők maguk fénysugarakat bocsátanak ki (fényforrások), vagy a fényforrások megvilágítják őket. A tárgyakat
Kérdések a Fizika II. vizsgához 2014/1015 tanév
Kérdések a Fizika II. vizsgához 2014/1015 tanév 1. Mi a dörzselektromosság lényege? 2. Hogyan működik az elektroszkóp? 3. Hol használjuk ki a csúcshatást? 4. Mi az elektromos szél? 5. Mire használható
Optika fejezet felosztása
Optika Optika fejezet felosztása Optika Geometriai optika vagy sugároptika Fizikai optika vagy hullámoptika Geometriai optika A közeg abszolút törésmutatója: c: a fény terjedési sebessége vákuumban, v:
A NAPFÉNY ÉS A HŐ I. A FÉNY TULAJDONSÁGAINAK MEGFIGYELÉSE. Dátum:
I. A FÉNY TULAJDONSÁGAINAK MEGFIGYELÉSE A NAPFÉNY ÉS A HŐ 1. A meleg éghajlatú tengerparti országokban való kirándulásaitok során bizonyára láttatok a házak udvarán fekete tartályokat kifolyónyílással
Az elektromágneses sugárzás kölcsönhatása az anyaggal
Az elektromágneses sugárzás kölcsönhatása az anyaggal Radiometriai alapfogalmak Kisugárzott felületi teljesítmény Besugárzott felületi teljesítmény A fény kölcsönhatása az anyaggal 1. M ΔP W ΔA m 2 E be
A teljes elektromágneses színkép áttekintése
Az elektromágneses spektrum. Geometriai optika: visszaverődés, törés, diszperzió. Lencsék és tükrök képalkotása (nevezetes sugarak, leképezési törvény) A teljes elektromágneses színkép áttekintése Az elektromágneses
Optika Gröller BMF Kandó MTI
Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Optika Gröller BMF Kandó MTI Az elektromágneses spektrum Az anyag és a fény kölcsönhatása
c v A sebesség vákumbanihoz képesti csökkenését egy viszonyszámmal, a törémutatóval fejezzük ki. c v
Optikai alapogalmak A ény tulajdonságai A ény elektromágneses rezgés. Kettős, hullám-, illetve részecsketermészete van, ezért bizonyos jelenségeket hullámtani, másokat pedig kvantummechanikai tárgyalással
Megoldás: feladat adataival végeredménynek 0,46 cm-t kapunk.
37 B-5 Fénynyaláb sík üveglapra 40 -os szöget bezáró irányból érkezik. Az üveg 1,5 cm vastag és törésmutatója. Az üveglap másik oldalán megjelenő fénynyaláb párhuzamos a beeső fénynyalábbal, de oldalirányban
A fény mint elektromágneses hullám és mint fényrészecske
A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá
25. Képalkotás. f = 20 cm. 30 cm x =? Képalkotás
25. Képalkotás 1. Ha egy gyujtolencse fókusztávolsága f és a tárgy távolsága a lencsétol t, akkor t és f viszonyától függ, hogy milyen kép keletkezik. Jellemezd a keletkezo képet a) t > 2 f, b) f < t
Geometriai optika. Alapfogalmak. Alaptörvények
Alapfogalmak A geometriai optika a fénysugár fogalmára épül, mely homogén közegben egyenes vonalban terjed, két közeg határán visszaverődik és/vagy megtörik. Alapfogalmak: 1. Fényforrás: az a test, amely
f r homorú tükör gyűjtőlencse O F C F f
0. A fény visszaveődése és töése göbült hatáfelületeken, gömbtükö és optikai lencse. ptikai leképezés kis nyílásszögű gömbtükökkel, és vékony lencsékkel. A fő sugámenetek ismetetése. A nagyító, a mikoszkóp
KÉRDÉSEK A FIZIKA II. TANTÁRGYHOZ 2013-2014 tanév 2. félév
KÉRDÉSEK A FIZIKA II. TANTÁRGYHOZ 2013-2014 tanév 2. félév Létezik-e legkisebb elektromos töltés? SI alapegység-e a coulomb? Hol van a nulla elektromos potenciálú hely? Mi a kapcsolat a vákuum permittivitás
Elektromágneses hullámok, fény
Elektromágneses hullámok, fény Az elektromos térerősség és mágneses térerősség erőssége váltakozik és terjed tovább a térben. Ezt nevezzük elektromágneses (EM) hullámnak. Az EM hullám légüres térben is
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya
Fotó elmélet 2015. szeptember 28. 15:03 Fény tulajdonságai a látható fény. 3 fő tulajdonsága 3 fizikai mennyiség Intenzitás Frekvencia polarizáció A látható fények amiket mi is látunk Ibolya 380-425 Kék
OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS
OPTIKA Geometriai optika Snellius Descartes-törvény A fényhullám a geometriai optika szempontjából párhuzamos fénysugarakból áll. A vákuumban haladó fénysugár a geometriai egyenes fizikai megfelelője.
ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek
ELEKTROMÁGNESES REZGÉSEK a 11. B-nek Elektromos Kondenzátor: töltés tárolására szolgáló eszköz (szó szerint összesűrít) Kapacitás (C): hány töltés fér el rajta 1 V-on A homogén elektromos mező energiát
24. Fénytörés. Alapfeladatok
24. Fénytörés Snellius - Descartes-törvény 1. Alapfeladatok Üvegbe érkezo 760 nm hullámhosszú fénysugár beesési szöge 60 o, törési szöge 30 o. Mekkora a hullámhossza az üvegben? 2. Valamely fény hullámhossza
Rövid ismertető. Modern mikroszkópiai módszerek. A mikroszkóp. A mikroszkóp. Az optikai mikroszkópia áttekintése
Rövid ismertető Modern mikroszkópiai módszerek Nyitrai Miklós 2010. március 16. A mikroszkópok csoportosítása Alapok, ismeretek A működési elvek Speciális módszerek A mikroszkópia története ld. Pdf. Minél
TÁVKÖZLÉSI ISMERETEK FÉNYVEZETŐS GYAKORLAT. Szakirodalomból szerkesztette: Varga József
TÁVKÖZLÉSI ISMERETEK FÉNYVEZETŐS GYAKORLAT Szakirodalomból szerkesztette: Varga József 1 2. A FÉNY A külvilágról elsősorban úgy veszünk tudomást, hogy látjuk a környező tárgyakat, azok mozgását, a természet
Optika Fizika 11. Szaktanári segédlet
Optika Fizika 11. Szaktanári segédlet Készítette: Rapavi Róbert Lektorálta: Gavlikné Kis Anita Kiskunhalas, 2014. december 31. 2 Tartalomjegyzék 1. óra 3. oldal A geometriai optika alapjai; egyszerű optikai
Csillagászati észlelés gyakorlat I. 3. óra: Távcsövek és távcsőhibák
Csillagászati észlelés gyakorlat I. 3. óra: Távcsövek és távcsőhibák Hajdu Tamás & Sztakovics János & Perger Krisztina Bőgner Rebeka & Császár Anna 2018. március 8. 1. Távcsőtípusok 3 fő típust különböztetünk
Leképezési hibák Leképezési hibák típusai
Leképezési hibák A képalkotás leírásánál eddig paraxiális közelítést alkalmaztunk, azaz az optikai tengelyhez közeli, azzal kis szöget bezáró sugarakra korlátoztuk a vizsgálatot A gyakorlatban szükség
ELEKTROMOSSÁG ÉS MÁGNESESSÉG
ELEKTROMOSSÁG ÉS MÁGNESESSÉG A) változat Név:... osztály:... 1. Milyen töltésű a proton? 2. Egészítsd ki a következő mondatot! Az azonos elektromos töltések... egymást. 3. A PVC-rudat megdörzsöltük egy
3. OPTIKA I. A tér egy pontján akárhány fénysugár áthaladhat egymás zavarása nélkül.
3. OPTIKA I. Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert vagy ők maguk fénysugarakat bocsátanak ki (fényforrások), vagy a fényforrások megvilágítják őket. A tárgyakat
Gyakorló feladatok Fizikai optikából
Kedves Hallgató! Gyakorló feladatok Fizikai optikából 2008. január 10. Ebben a dokumentumban olyan elméleti kérdéseket és számolós feladatokat talá, melyekhez hasonlókat fogok a vizsga írásbeli részén
6Előadás 6. Fénytörés közeghatáron
6Előadás 6. Fénytörés közeghatáron Fénytörés esetén a Snellius-Descartes törvény adja meg a beeső- ésa megtört sugár közti összefüggést, mely a következő: sinα n = 2 sin β n 1 Ahol α és β a beesési ill.
A diákok végezzenek optikai méréseket, amelyek alapján a tárgytávolság, a képtávolság és a fókusztávolság közötti összefüggés igazolható.
Az optikai paddal végzett megfigyelések és mérések célkitűzése: A tanulók ismerjék meg a domború lencsét és tanulmányozzák képalkotását, lássanak példát valódi képre, szerezzenek tapasztalatot arról, mely
Kérdések a Fizika II. tantárgyhoz 2012-2013 tanév 2. félév
Kérdések a Fizika II. tantárgyhoz 2012-2013 tanév 2. félév Létezik-e legkisebb elektromos töltés? SI alapegység-e a coulomb? Hol van a nulla elektromos potenciálú hely? Mi a kapcsolat a vákuum permittivitás
Geometriai optika (Vázlat)
Geometriai optika (Vázlat). A geometriai optika tárgya 2. Geometriai optikában használatos alapfogalmak a) Fényforrások és csoportosításuk b) Fénysugár c) Árnyék, félárnyék 3. A fény terjedési sebességének
Elektromágneses rezgések, elektromágneses hullámok Hasonlóan a mechanikai hullámokhoz, ahol rezgés hoz létre hullámot (pl. gitárhúr rezgése levegőben
Elektromágneses rezgések, elektromágneses hullámok Hasonlóan a mechanikai hullámokhoz, ahol rezgés hoz létre hullámot (pl. gitárhúr rezgése levegőben terjedő hanghullámot), az elektromágneses hullámokat
Optika gyakorlat Példa: Leképezés hengerlencsén keresztül. 1. ábra. Hengerlencse. P 1 = n l n R = P 2. = 2 P 1 (n l n) 2. n l.
Optika gyakorlat 5. Mátrix optika eladatok: hengerlencse, rezonátor, nagyító, nyalábtágító, távcsövek. Példa: Leképezés hengerlencsén keresztül Adott egy R 2 cm görbületi sugarú,, 7 törésmutatójú gömblencse,
Kidolgozott minta feladatok optikából
Kidolgozott minta feladatok optikából 1. Egy asztalon elhelyezünk két síktükröt egymásra és az asztalra is merőleges helyzetben. Az egyik tükörre az asztal lapjával párhuzamosan lézerfényt bocsátunk úgy,
OPTIKA, HŐTAN. 12. Geometriai optika
OPTIKA, HŐTAN 12. Geometriai optika Bevezetés A fényjelenségek, a fény terjedésének törvényeivel a fénytan (optika) foglalkozik. Már az ókorban ismert volt a fénysugár fogalma (Eukleidész), a fény egyenes
Optika. Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29.
Optika Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. Bevezetés A fény és az elektromágneses spektrum A színek keletkezése A fény sebessége A fényhullámok interferenciája A fény polarizációja
A szem optikája. I. Célkitűzés: II. Elméleti összefoglalás: A. Optikai lencsék
A szem optikája I. Célkitűzés: Ismertetjük a geometriai optika alapjait, a lencsék képalkotási tulajdonságait. Meghatározzuk szemüveglencsék törőerősségét. Az orvosi gyakorlatban optikai lencsékkel a mikroszkópos
Bevezető fizika (VBK) zh2 tesztkérdések
Mi a nyomás mértékegysége? NY) kg m 2 /s 2 TY) kg m 2 /s GY) kg/(m s 2 ) LY) kg/(m 2 s 2 ) Mi a fajhő mértékegysége? NY) kg m 2 /(K s 2 ) GY) J/K TY) kg m/(k s 2 ) LY) m 2 /(K s 2 ) Mi a lineáris hőtágulási
OPT TIKA. Hullámoptika. Dr. Seres István
OPT TIKA Dr. Seres István : A fény elektromágneses hullám r S S = r E r H Seres István 2 http://fft.szie.hu Elektromágneses spektrum c = λf Elnevezés Hullámhossz Frekvencia Váltóáram > 3000 km < 100 Hz
Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.
és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán
Készítette: Bagosi Róbert Krisztián Szak: Informatika tanár Tagozat: Levelező Évfolyam: 3 EHA: BARMAAT.SZE H-s azonosító: h478916
Készítette: Bagosi Róbert Krisztián Szak: Informatika tanár Tagozat: Levelező Évfolyam: 3 EHA: BARMAAT.SZE H-s azonosító: h478916 OPTIKAI SZÁLAK Napjainkban a távközlés és a számítástechnika elképzelhetetlen
Geometriai és hullámoptika. Utolsó módosítás: május 10..
Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)
Fizikai példatár 1. Optika feladatgyűjtemény Csordásné Marton, Melinda
Fizikai példatár 1. Optika feladatgyűjtemény Csordásné Marton, Melinda Fizikai példatár 1.: Optika feladatgyűjtemény Csordásné Marton, Melinda Lektor: Mihályi, Gyula Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027
Legyen a rések távolsága d, az üveglemez vastagsága w! Az üveglemez behelyezése
6. Gyakorlat 38B-1 Kettős rést 600 nm hullámhosszúságú fénnyel világitunk meg és ezzel egy ernyőn interferenciát hozunk létre. Ezután igen vékony flintüvegből (n = 1,65) készült lemezt helyezünk csak az
Modern mikroszkópiai módszerek 1 2011 2012
MIKROSZKÓPIA AZ ORVOS GYÓGYSZERÉSZ GYAKORLATBAN - DIAGOSZTIKA -TERÁPIA például: szemészet nőgyógyászat szövettan bakteriológia patológia gyógyszerek fejlesztése, tesztelése Modern mikroszkópiai módszerek
Váltakozó áram. A töltések (elektronok) a vezetővel periodikusan ismétlődő rezgő mozgást végeznek
Váltakozó áram. A töltések (elektronok) a vezetővel periodikusan ismétlődő rezgő mozgást végeznek U(t)= Umax sin (Ѡt) I(t)= Imax sin (Ѡt) Ѡ= körfrekvencia f= frekvencia. T= periódusidő U eff, I eff= effektív
Abszorpciós spektroszkópia
Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses
Összeállította: Juhász Tibor 1
A távcsövek típusai Refraktorok és reflektorok Lencsés távcső (refraktor) Galilei, 1609 A TÁVCSŐ objektív Kepler, 1611 Tükrös távcső (reflektor) objektív Newton, 1668 refraktor reflektor (i) Legnagyobb
OPTIKA. Fotometria. Dr. Seres István
OPTIKA Dr. Seres István Segédmennyiségek: Síkszög: ívhossz/sugár Kör középponti szöge: 2 (radián) Térszög: terület/sugár a négyzeten sr A 2 r (szteradián = sr) i r Gömb középponti térszöge: 4 (szteradián)
Fényvezető szálak és optikai kábelek
Fényvezető szálak és optikai kábelek Fizikai alapok A fénytávközlés alapvető passzív elemei. Ötlet: 1880-as években Alexander Graham Bell. Optikai szálak felhasználásának kezdete: 1960- as évek. Áttörés
A LÁTÁS BIOFIZIKÁJA AZ EMBERI SZEM GEOMETRIAI OPTIKÁJA. A szem törőközegei. D szem = 63 dioptria, D kornea = 40, D lencse = 15+
A LÁTÁS BIOFIZIKÁJA A SZÍNLÁTÁS ELMÉLETE ELEKTRORETINOGRAM Két kérdés: Sötétben minden tehén fekete Lehet-e teniszt játszani sötétben kivilágított hálóval, vonalakkal, ütőkkel és labdával? A szem törőközegei
Kérdések és törvények a Fizika II. vizsgához 2016/17 tanév
Kérdések és törvények a Fizika II. vizsgához 2016/17 tanév 1. Mi a dörzselektromosság lényege? 2. Hogyan működik az elektroszkóp? 3. Hol használjuk ki a csúcshatást? 4. Mi az elektromos szél? 5. Mire használható
7. Előadás. A vékony lencse közelítésben a lencse d vastagsága jóval kisebb, mint a tárgy és képtávolságok.
7. Előadás Lencsék, lencsehibák A vékony lencse A vékony lencse közelítésben a lencse d vastagsága jóval kisebb, mint a tárgy és képtávolságok. A vékony lencse fókusztávolságára á á vonatkozó összefüggés:
Optikai eszközök modellezése. 1. feladat Egyszerű nagyító (lupe)
A kísérlet célkitűzései: Az optikai tanulói készlet segítségével tanulmányozható az egyszerű optikai eszközök felépítése, képalkotása. Eszközszükséglet: Optika I. tanulói készlet Balesetvédelmi figyelmeztetés
OPTIKA. Fotometria. Dr. Seres István
OPTIKA Dr. Seres István Segédmennyiségek: Síkszög: ívhossz/sugár i r Kör középponti szöge: 2 (radián) Térszög: terület/sugár a négyzeten A sr (szteradián = sr) 2 r Gömb középponti térszöge: 4 (szteradián)
FIZIKA ZÁRÓVIZSGA 2015
FIZIKA ZÁRÓVIZSGA 2015 TESZT A következő feladatokban a három vagy négy megadott válasz közül pontosan egy helyes. Írd be az általad helyesnek vélt válasz betűjelét a táblázat megfelelő cellájába! Indokolni
Optika gyakorlat 1. Fermat-elv, fénytörés, reflexió sík és görbült határfelületen
Optika gyakorlat 1. Fermat-elv, fénytörés, reflexió sík és görbült határfelületen Kivonat Geometriai optika: közelítés, amely a fényterjedést, közeghatáron való áthaladást geometriai alakzatok görbék segítségével
Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető
Optika gyakorlat. Geometriai optika: planparalel lemez, prizma, hullámvezető. példa: Fényterjedés planparalel lemezen keresztül A plánparalel lemezen történő fényterjedés hatására a fénysugár újta távolsággal
Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez
A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási
Abszorpciós fotometria
A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség
Értékelési útmutató az emelt szint írásbeli feladatsorhoz
Értékelési útmutató az emelt szint írásbeli feladatsorhoz 1. C 1 pont 2. B 1 pont 3. D 1 pont 4. B 1 pont 5. C 1 pont 6. A 1 pont 7. B 1 pont 8. D 1 pont 9. A 1 pont 10. B 1 pont 11. B 1 pont 12. B 1 pont
Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése
Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. március 19. (hétfő délelőtti csoport) 1. Mikroszkóp vizsgálata 1.1. A mérés