Geodéziai számítások
|
|
- Oszkár Deák
- 9 évvel ezelőtt
- Látták:
Átírás
1 Geodézia I. Geodéziai számítások Pontkapcsolások Gyenes Róbert 1
2 Pontkapcsolások Általános fogalom (1D, 2D, 3D, 1+2D) Egy vagy több ismeretlen pont helymeghatározó adatainak a meghatározása az ismert pontok helymeghatározó adatai, valamint az ismert és a meghatározandó pontokon vagy pontokra végzett mérési eredmények felhasználásával Kétdimenziós helymeghatározásban Egy vagy több ismeretlen pont koordinátáinak a meghatározása az ismert pontok koordinátái, valamint az ismert és a meghatározandó pontokon végzett irány- és távolságmérések felhasználásával Fölös mérések kérdése 2
3 Pontkapcsolások osztályozása kétdimenziós helymeghatározás során Meghatározandó pontok száma szerint Egyetlen pont koordinátáinak a számítása Két pont koordinátáinak együttes (hierarchia nélküli) számítása (páros pontkapcsolás ma már nem alkalmazzuk. Irodalom: ld. Pl. Hansen-féle páros pontkapcsolás, Marek-féle feladat) Több pont koordinátáinak együttes számítása Több pont koordinátáinak a számítása hierarchia alapján 3
4 Egyetlen pont koordinátáinak a számítása Előmetszés Ívmetszés Új pont koordinátáinak a számítása két ismert koordinátájú pont, valamint az ismert pontokról az új pontra menő irányok tájékozott irányértékeinek a felhasználásával Új pont koordinátáinak a számítása két ismert koordinátájú pont, valamint az ismert pontok és az új pont közötti 4 vízszintes/vetületi távolság felhasználásával
5 Egyetlen pont koordinátáinak a számítása Ív-oldalmetszés vagy külpont számítása Ld. Geodézia II. 5
6 Egyetlen pont koordinátáinak a számítása Hátrametszés Ld. Geodézia II. 6
7 Pontkapcsolások osztályozása kétdimenziós helymeghatározás során Két pont koordinátáinak a számítása páros pontkapcsolás Hansen-féle feladat Ld. Szakirodalom 7
8 Több pont koordinátáinak együttes számítása - sokszögelés Ld. Geodézia II. 8
9 Pontkapcsolások osztályozása kétdimenziós helymeghatározás során Felhasznált mérések típusa szerint Csak iránymérésen alapuló helymeghatározás (előmetszés, hátrametszés, Hansen-féle feladat) Csak távmérésen alapuló helymeghatározás (ívmetszés) Irány- és távmérésen alapuló helymeghatározás (poláris pontszámítás, ívoldalmetszés, sokszögelés) 9
10 dott:, Mért/számított: δ, δ Számítandó: P (y P, x p ) δ δ (t ) P δ -δ δ -δ δ -δ t δ (t ) δ Előmetszés δ -δ Számítás menete y x P P y x + + ( t ) δ ( t ) cosδ Számítás pontból ( t ) y x P P ( t ) y x t + + t ( t ) δ ( t ) cosδ ( δ δ ) ( δ δ ) ( δ δ ) ( δ δ ) (1) (2) 10
11 Előmetszés De (1) ( δ δ ) δ cosδ cosδ δ (3) és δ y t y x (4) cosδ (5) t x ehelyettesítve (3)-at, (4)-et és (5)-öt (1)-be ( t ) t ( δ δ ) δ cosδ cosδ t ( δ δ ) ( δ δ ) δ t δ x t x cosδ ( δ δ ) y t y ( x x ) δ ( y y ) (6) ( δ δ ) cosδ 11
12 y x P P y x + + ( x x ) δ ( y y ) ( δ δ ) ( x x ) δ ( y y ) ( δ δ ) Előmetszés Végeredményképpen (6)-ot (2)-be helyettesítve: cosδ cosδ δ cosδ lgoritmus : és pontok cseréje az indexekben További algoritmusok, amelyek levezethetők: - iránytangenses megoldás két egyenes metszéspontjaként -hátránya: tan(90)? tan(270)? -Lehetséges megoldás numerikusan: tan( ), stb. -De hátrány, hogy: tan( ) Következtetés geodéziai számításokban lehetőleg ne használjuk a tangens és cotangens szögfüggvényeket: 1. Numerikus problémák miatt 2. Számítási ellenőrzések miatt : -1 (), cos() Hibaterjedés miatt 12
13 Ívmetszés dott:, Mért/számított: t, t Számítandó: P (y P, x p ) Levezetett irányszög (δ ) δ α t t Számítás menete t α arccos 2 + t 2 t ( δ ) δ + α y x P P y x + t + t 2 cos t t 2 ( δ ) ( δ ) t Számítás pontból hasonlóan 13
14 z ívmetszés egyértelműsége + 14
15 Külpont koordinátáinak a számítása 1. Tájékozás számítása tájékozó irányok központosítása alapján z K 2. δ δ z + l ± 180 KE T KE K EK 1 T 2 l EK K z K 3. Külpont számítása polárisan a központból 0 0 r l EK E T 4 T 3 módszer előnye: 1. Nem szükséges az új pontokra vonatkozó méréseket központosítani 2. távolság ismerete nem feltétel a tájékozott irányérték számításához 15
16 Előmetszés Pontkapcsolások fölös mérések biztosítása és a legkedvezőbb alakzat kérdése X Ívmetszés! 16
17 Koordinátageometriai feladatok megoldása pontkapcsolások alkalmazásával Két egyenes metszéspontja előmetszés alkalmazása Számítás menete 1. Irányszögek számítása koordinátákból pl. δ C, δ D 2. Előmetszés összefüggéseinek alkalmazása P D C 17
18 Koordinátageometriai feladatok megoldása pontkapcsolások alkalmazásával Két kör metszéspontja ívmetszés alkalmazása (analitikus geometria: másodfokú egyenlet megoldása) O 2 O 1 18
19 Koordinátageometriai feladatok megoldása pontkapcsolások alkalmazásával Ívmetszés alkalmazása részletmérés: kiegészítő mérések 26.11?
20 Kitűzési és számítási vázlatok értelmezése számítás jellemzői -Hierarchikusan történik -1001? 1002? -Fölös mérések figyelembevétele -Először: 1001, majd Végleges tájékozás Iránymérések száma 16 Távmérések száma 4 További információk: lappontmeghatározás, Kiegyenlítő számítások III. félév 20
Geodézia 6. A vízszintes mérések alapműveletei
Geodézia 6. A vízszintes mérések alapműveletei Tarsoly, Péter, Nyugat-magyarországi Egyetem Geoinformatikai Kar Tóth, Zoltán, Nyugat-Magyarországi Egyetem Geoinformatikai Kar Geodézia 6.: A vízszintes
Geodézia terepgyakorlat számítási feladatok ismertetése 1.
A Geodézia terepgyakorlaton Sukorón mért geodéziai hálózat új pontjainak koordináta-számításáról Geodézia terepgyakorlat számítási feladatok ismertetése 1. Dr. Busics György 1 Témák Cél, feladat Iránymérési
Geodéziai számítások
Geodéziai számítások 2. ontkapcsolások számítása 2.. ontkapcsolásokról általában Nagyobb területek felmérése során a részletpontok meghatározásának összhangját alappontok létesítésével biztosítjuk. z ország
Matematikai geodéziai számítások 7.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 7. MGS7 modul Súlyozott számtani közép számítása és záróhibák elosztása SZÉKESFEHÉRVÁR 2010 Jelen
Bevezetés a geodéziába
Bevezetés a geodéziába 1 Geodézia Definíció: a földmérés a Föld alakjának és méreteinek, a Föld fizikai felszínén, ill. a felszín alatt lévő természetes és mesterséges alakzatok geometriai méreteinek és
4. VIZSZINTES ALAPPONTOK MEGHATÁROZÁSA
4. VIZSZINTES LPPONTOK MEGHTÁROZÁS 111 lappontok telepítésének célja, hogy a létesítendő építmények, ipartelepek, vonalas létesítmények geodéziai munkálatainak elvégzéséhez tervezés, kivitelezés, ellenőrzés
Poláris részletmérés mérőállomással
Poláris részletmérés mérőállomással Farkas Róbert NyME-GEO Álláspont létesítése, részletmérés Ismert alapponton egy tájékozó irány esetében T z T dott (Y,X ), T(Y T,X T ) l T Mért P l T, l P Számítandó
Matematikai geodéziai számítások 9.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 9 MGS9 modul Szabad álláspont kiegyenlítése SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői
Matematikai geodéziai számítások 9.
Matematikai geodéziai számítások 9 Szabad álláspont kiegyenlítése Dr Bácsatyai, László Created by XMLmind XSL-FO Converter Matematikai geodéziai számítások 9: Szabad álláspont kiegyenlítése Dr Bácsatyai,
Geodézia I. Gyenes Róbert
Geodézia I. Gyenes Róbert 1 Bemutatkozás Tanulmányok 1988-1993: Varga Márton Kertészeti és Földmérési Szakközépiskola 1993-1996: Erdészeti és Faipari Egyetem Földmérési és Földrendezői Főiskolai Kar 2003-2005:
Mozgásvizsgálatok. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán
Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Célja: Várható elmozdulások előrejelzése (erőhatások alatt, Siógemenci árvízkapu) Már bekövetkezett mozgások okainak vizsgálata (Pl. kulcsi löszpart) Laboratóriumi
Mivel a földrészleteket a térképen ábrázoljuk és a térkép adataival tartjuk nyilván, a területet is a térkép síkjára vonatkoztatjuk.
Poláris mérés A geodézia alapvető feladata, hogy segítségével olyan méréseket és számításokat végezhessünk, hogy környezetünk sík térképen méretarányosan kicsinyítetten ábrázolható legyen. Mivel a földrészleteket
Teodolit és a mérőállomás bemutatása
Teodolit és a mérőállomás bemutatása Teodolit története Benjamin Cole, prominens londoni borda-kör feltaláló készítette el a kezdetleges teodolitot 1740 és 1750 között, amelyen a hercegi címer is látható.
Vízszintes kitűzések. 1-3. gyakorlat: Vízszintes kitűzések
Vízszintes kitűzések A vízszintes kitűzések végrehajtása során általában nem találkozunk bonyolult számítási feladatokkal. A kitűzési munka nehézségeit elsősorban a kedvezőtlen munkakörülmények okozzák,
FÖLDMÉRÉS ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA
FÖLDMÉRÉS ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA I. RÉSZLETES A földmérés ismeretek ágazati szakmai érettségi vizsga részletes érettségi vizsgakövetelményei a XXXV. Földmérés ágazat szakképesítésének
TÉRINFORMATIKA GEODÉZIAI ALAPJAI Környezetmérnöki BSc alapszak
TÉRINFORMATIKA GEODÉZIAI ALAPJAI Környezetmérnöki BSc alapszak 2018/19. tanév 1. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet 2
3. óra: Digitális térkép készítése mérőállomással. II.
3. óra: Digitális térkép készítése mérőállomással. II. 3. óra: Digitális térkép készítése mérőállomással. II. Sokkia Set 4C mérőállomás (műszerismertető) akkumulátor memória kártya kétoldali, ikonfunkciós
TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS
TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve GEODÉZIA I. 1.2 Azonosító (tantárgykód) BMEEOAFAT41 1.3 A tantárgy jellege kontaktórás tanegység 1.4 Óraszámok típus előadás (elmélet)
FÖLDMÉRÉSI ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNYEK A) KOMPETENCIÁK. 1. Szakmai nyelvhasználat
FÖLDMÉRÉSI ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNYEK A földmérési ismeretek ágazati szakmai érettségi vizsgatárgy részletes érettségi vizsgakövetelményei a XXXV.
A földmérési alaptérkép tartalmának felmérése poláris részletméréssel
Horváth Lajos A földmérési alaptérkép tartalmának felmérése poláris részletméréssel A követelménymodul megnevezése: Alappontsűrítés és terepi adatgyűjtés feladatai A követelménymodul száma: 2246-06 A tartalomelem
FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Földmérés ismeretek középszint 1711 ÉRETTSÉGI VIZSGA 2017. május 17. FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Útmutató a vizsgázók teljesítményének
Geodézia mérőgyakorlat 2015 Építészmérnöki szak Városliget
Geodézia mérőgyakorlat 2015 Építészmérnöki szak Városliget Építészeknél 4 csoport dolgozik egyszerre. Hétfő Kedd Szerda Csütörtök Péntek 1. csoport Szintezés Felmérés Homlokzat Kitűzés Feldolgozások 2
Geodézia gyakorlat II.
Építőmérnöki Kar Budapesti Műszaki Egyetem Általános Geodézia tanszék Geodézia gyakorlat II. Összeállította: Bodó Tibor T A R T A L O M J E G Y Z É K 1. PONTMEGHATÁROZÁS ÉS ALAPPONTSŰRÍTÉS...2 1.1. Irányszög
Szögfüggvények értékei megoldás
Szögfüggvények értékei megoldás 1. Számítsd ki az alábbi szögfüggvények értékeit! (a) cos 585 (f) cos ( 00 ) (k) sin ( 50 ) (p) sin (u) cos 11 (b) cos 00 (g) cos 90 (l) sin 510 (q) sin 8 (v) cos 9 (c)
Matematika tanmenet 10. évfolyam 2018/2019
Matematika tanmenet 10. évfolyam 2018/2019 Műveltségi terület: MATEMATIKA Iskola, osztályok: Vetési Albert Gimnázium, 10.A, 10.B, 10.C, 10.D Tantárgy: MATEMATIKA Heti óraszám: 3 óra Készítette: a matematika
Azonosító jel: ÉRETTSÉGI VIZSGA május 17. FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA május 17. 8:00. Időtartam: 60 perc
ÉRETTSÉGI VIZSGA 2017. május 17. FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2017. május 17. 8:00 I. Időtartam: 60 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Földmérés
MUNKAANYAG. Horváth Lajos. Terepfelmérés mérőállomással. A követelménymodul megnevezése: Alappontsűrítés és terepi adatgyűjtés feladatai
Horváth Lajos Terepfelmérés mérőállomással A követelménymodul megnevezése: Alappontsűrítés és terepi adatgyűjtés feladatai A követelménymodul száma: 2246-06 A tartalomelem azonosító száma és célcsoportja:
ÉRETTSÉGI VIZSGA május 17. FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 17. 8:00. Időtartam: 180 perc
ÉRETTSÉGI VIZSGA 2017. május 17. FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2017. május 17. 8:00 Időtartam: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Földmérés
A vasbetonszerkezetes lakóépületek geodéziai munkái
A vasbetonszerkezetes lakóépületek geodéziai munkái SZAKDOLGOZAT SOMLÓ CSABA Geodéziai feladatok az építıipar területein Alapadatok beszerzése Alappontok Digitális földmérési nyilvántartási térkép Digitális
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
GeoEasy lépésről lépésre
GeoEasy lépésről lépésre GeoEasy V2.04 Geodéziai Feldolgozó Program (c)digikom Kft. 1997-2006 Ez az oktató anyag nem terjed ki a program használatának minden részletére, további információkat a súgóban
MUNKAANYAG. Horváth Lajos. Hossz- keresztszelvényezés. A követelménymodul megnevezése: Alappontsűrítés és terepi adatgyűjtés feladatai
Horváth Lajos Hossz- keresztszelvényezés A követelménymodul megnevezése: Alappontsűrítés és terepi adatgyűjtés feladatai A követelménymodul száma: 2246-06 A tartalomelem azonosító száma és célcsoportja:
FÖLDMÉRÉS ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNYEK KÖZÉPSZINTEN A) KOMPETENCIÁK
FÖLDMÉRÉS ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA RÉSZLETES ÉRETTSÉGI VIZSGA KÖZÉPSZINTEN A földmérés ismeretek ágazati szakmai érettségi vizsgatárgy részletes érettségi vizsgakövetelményei a XXXV.
GeoEasy lépésről lépésre
GeoEasy V2.5 GeoEasy lépésről lépésre Geodéziai Feldolgozó Program (c)digikom Kft. 1997-28 Ez az oktató anyag nem terjed ki a program használatának minden részletére, további információkat a súgóban találhat.
Kezelési útmutató. A TI-83 plus típusú grafikus számológépen futtatható PFgeo programhoz
1 Kezelési útmutató A TI-83 plus típusú grafikus számológépen futtatható PFgeo programhoz 2 Kezelési útmutató A TI-83 plus típusú grafikus számológépen futtatható PFgeo programhoz A PFgeo program általános
Matematikai geodéziai számítások 5.
Matematikai geodéziai számítások 5 Hibaterjedési feladatok Dr Bácsatyai László Matematikai geodéziai számítások 5: Hibaterjedési feladatok Dr Bácsatyai László Lektor: Dr Benedek Judit Ez a modul a TÁMOP
Geodéziai mérések feldolgozását támogató programok fejlesztése a GEO-ban
Geodéziai mérések feldolgozását támogató programok fejlesztése a GEO-ban Gyenes Róbert, NYME GEO Geodézia Tanszék, Kulcsár Attila, NYME GEO Térinformatika Tanszék 1. Bevezetés Karunkon a hároméves nappali
GeoEasy lépésről lépésre
GeoEasy lépésről lépésre GeoEasy V2.05+ Geodéziai Feldolgozó Program (c)digikom Kft. 1997-2010 Ez az oktató anyag nem terjed ki a program használatának minden részletére, további információkat a súgóban
Hálózat kiegyenlítés dr. Siki Zoltán
Hálózat kiegyenlítés dr. Siki Zoltán siki.zoltan@epito.bme.hu 2017-09-26 MMK-GGT Továbbképzési tananyag 2016-2017 1 Legkisebb négyzetek módszere Közvetítő egyenletek, kapcsolat az ismeretlenek és a mérési
FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ 1 / 6 feladatlap Elméleti szöveges feladatok 1. Egészítse ki az alábbi szöveget a Glonassz GNSS alaprendszerrel
Matematikai geodéziai számítások 5.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 5 MGS5 modul Hibaterjedési feladatok SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról
megoldásai a Trimble 5503 DR
Autópálya építés s kitűzésének speciális megoldásai a Trimble 5503 DR mérőállomás s segíts tségével Zeke Balázs Győző 2006 Magyarország úthálózata Autópálya 522 km Autóú óút t 130 km Csomóponti ágak 205
Diplomamunkám felépítése
Üregek távolhatása gránitos kőzetkörnyezetben Tóth Szilvia Konzulensek: Dr. Török Ákos, BME Építőanyagok és Mérnökgeológia Tanszék Poromb Péter, Mott MacDonald Magyarország Kft. Diplomamunkám felépítése
Matematikai geodéziai számítások 8.
Matematikai geodéziai számítások 8 Szintezési hálózat kiegyenlítése Dr Bácsatyai, László Matematikai geodéziai számítások 8: Szintezési hálózat kiegyenlítése Dr Bácsatyai, László Lektor: Dr Benedek, Judit
ZÁRÓVIZSGA KÉRDÉSEK 2015. Földmérő és földrendező mérnök alapszak (BSc) Nappali és Levelező tagozat
Óbudai Egyetem Alba Regia Műszaki Kar GEOINFORMATIKAI INTÉZET SZÉKESFEHÉRVÁR ZÁRÓVIZSGA KÉRDÉSEK 2015. Földmérő és földrendező mérnök alapszak (BSc) Nappali és Levelező tagozat Jelölések: G geoinformatikai
Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:
Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: 7. Függvények: - függvények fogalma, megadása, ábrázolás koordináta- rendszerben - az elsőfokú függvény, lineáris függvény - a másodfokú függvény
FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Földmérés ismeretek középszint 1911 ÉRETTSÉGI VIZSGA 2019. május 15. FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Útmutató a vizsgázók teljesítményének
ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ Elméleti szöveges feladatok 1. Sorolja fel a geodéziai célra szolgáló vetítéskor használható alapfelületeket
Gyakran Ismétlődő Kérdések
Gyakran Ismétlődő Kérdések GeoEasy V2.05 Geodéziai Feldolgozó Program DigiKom Kft. 1997-2008 Hány pontot és mérést tud kezelni a GeoEasy? A mérési jegyzőkönyvben több sort szeretnék látni, lehet változtatni
Számítási feladatok a Számítógépi geometria órához
Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát
GeoCalc 3 Bemutatása
3 Bemutatása Gyenes Róbert & Kulcsár Attila 1 A 3 egy geodéziai programcsomag, ami a terepen felmért, manuálisan és/vagy adatrögzítővel tárolt adatok feldolgozására szolgál. Adatrögzítő A modul a felmérési
Telekommunikációs adótorony-antennák beállításával kapcsolatos geodéziai munkák 1
Telekommunikációs adótorony-antennák beállításával kapcsolatos geodéziai munkák 1 Fehér Balázs földmérőmérnök Geostars Bt. Bevezető A telekommunikáció egyre inkább mindennapi életünk részévé válik. A mai
9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
Koordináta-geometria II.
Koordináta-geometria II. DEFINÍCIÓ: (Alakzat egyenlete) A síkon adott egy derékszögű koordináta rendszer. A síkban levő alakzat egyenlete olyan f (x, y) = 0 egyenlet, amelyet azoknak és csak azoknak a
GBN304G Alkalmazott kartográfia II. gyakorlat
GBN304G Alkalmazott kartográfia II. gyakorlat TEREPI FELMÉRÉSI FELADATOK Unger János unger@geo.u @geo.u-szeged.hu www.sci.u-szeged.hu/eghajlattan szeged.hu/eghajlattan Földtudományi BSc (Geográfus, Földrajz
Nyugat-magyarországi Egyetem Geoinformatikai Kara. Mélykúti Gábor. Topográfia 7. TOP7 modul. Topográfiai felmérési technológiák I.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Mélykúti Gábor Topográfia 7. TOP7 modul Topográfiai felmérési technológiák I. SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999.
Tanmenet a évf. fakultációs csoport MATEMATIKA tantárgyának tanításához
ciklus óra óra anyaga, tartalma 1 1. Év eleji szervezési feladatok, bemutatkozás Hatvány, gyök, logaritmus (40 óra) 2. Ismétlés: hatványozás 3. Ismétlés: gyökvonás 4. Értelmezési tartomány vizsgálata 2
Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program
Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z
1. gyakorlat: Feladat kiadás, terepbejárás
1. gyakorlat: Feladat kiadás, terepbejárás 1. gyakorlat: Feladat kiadás, terepbejárás A gyakorlathoz szükséges felszerelés csapatonként: - 2 db 50 m-es mérőszalag - kalapács, hilti szög A gyakorlat tartalma:
Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai
Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív
FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Földmérés ismeretek középszint 1721 ÉRETTSÉGI VIZSGA 2018. május 16. FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Útmutató a vizsgázók teljesítményének
Matematikai geodéziai számítások 8.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 8 MGS8 modul Szintezési hálózat kiegyenlítése SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői
2018/2019. Matematika 10.K
Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép, függvénytáblázat 2 órás, 4 jegyet ér 2019. május 27-31. héten Aki hiányzik, a következő héten írja meg, e nélkül
Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7
A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat
Matematikai geodéziai számítások 10.
Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László
Koordináta-geometria feladatok (emelt szint)
Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik
Vektorok és koordinátageometria
Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,
1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)
1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)
47/2010. (IV. 27.) FVM rendelet
47/2010. (IV. 27.) FVM rendelet a globális műholdas helymeghatározó rendszerek alkalmazásával végzett pontmeghatározások végrehajtásáról, dokumentálásáról, ellenőrzéséről, vizsgálatáról és átvételéről
FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Földmérés ismeretek emelt szint 1712 ÉRETTSÉGI VIZSGA 2019. május 15. FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Útmutató a vizsgázók
Egyenesek MATEMATIKA 11. évfolyam középszint
TÁMOP-3.1.4-08/2-2009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Egyenesek MATEMATIKA 11. évfolyam középszint Készítette: Nagy András Vasvár, 2010.
Óra A tanítási óra anyaga Ismeretek, kulcsfogalmak/fogalmak 1. Év eleji szervezési feladatok 2.
MATEMATIKA ÉRETTSÉGI ELŐKÉSZTŐ 11. évfolyam Óra A tanítási óra anyaga Ismeretek, 1. Év eleji szervezési feladatok 2. A hatványozásról tanultak ismétlése, feladatok az n- edik gyök fogalmára, azonosságaira
SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM
SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM A vizsga szerkezete: A vizsga írásbeli és szóbeli vizsgarészből áll. 1.) Írásbeli vizsga Időtartama: 45 perc Elérhető pontszám: 65 pont Feladattípusok:
TANMENET. a matematika tantárgy tanításához 11.E osztályok számára
Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához 11.E osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján Használatos
A Föld alakja TRANSZFORMÁCIÓ. Magyarországon még használatban lévő vetületi rendszerek. Miért kell transzformálni? Főbb transzformációs lehetőségek
TRANSZFORMÁCIÓ A Föld alakja -A föld alakja: geoid (az a felület, amelyen a nehézségi gyorsulás értéke állandó) szabálytalan alak, kezelése nehéz -A geoidot ellipszoiddal közelítjük -A földfelszíni pontokat
A félnapos gyakorlatok részletes ismertetése B15. gyakorlat
A félnapos gyakorlatok részletes ismertetése B15. gyakorlat Címe: Útív kitűzés. Inflexiós-átmenetiíves ellenívek kitűzési méretei számítása. Rövid címe: Tengelyvonal számítása Helyszíne: Tárgya: Iroda
Ipari mérőrendszerek. Mérnökgeodézia II. Ágfalvi Mihály Tóth Zoltán
Ipari mérőrendszerek Mérnökgeodézia II. Ágfalvi Mihály Tóth Zoltán Történeti áttekintés '80 Geodéziai elvű módszerek gépészeti alkalmazások (Werner 1987) Metrológia Gépészeti mérőeszközök: Kis mérési tartományban
I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor:
I. Vektorok 1. Vektorok összege Általánosan: Az ábra alapján Adott: a(4; 1) és b(; 3) a + b (4 + ; 1 + 3) = (6; ) a(a 1 ; a ) és b(b 1 ; b ) a + b(a 1 + b 1 ; a + b ). Vektorok különbsége Általánosan:
Megoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2.
1. Egy 33-as létszámú zenetagozatos osztályban hegedülni és zongorázni tanulnak a diákok. Minden diák játszik legalább egy hangszeren. Azok száma, akik mindkét hangszeren játszanak, akik csak hegedülnek,
NT Matematika 11. (Heuréka) Tanmenetjavaslat
NT-17302 Matematika 11. (Heuréka) Tanmenetjavaslat A Dr. Gerőcs László Számadó László Matematika 11. tankönyv a Heuréka-sorozat harmadik tagja. Ebben a segédanyagban ehhez a könyvhöz a tizenegyedikes tananyag
TARTALOM. Előszó 9 HALMAZOK
TARTALOM Előszó 9 HALMAZOK Halmazokkal kapcsolatos fogalmak, részhalmazok 10 Műveletek halmazokkal 11 Számhalmazok 12 Nevezetes ponthalmazok 13 Összeszámlálás, komplementer-szabály 14 Összeszámlálás, összeadási
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel
Élesmenetű csavar egyensúlya másként
Élesmenetű csavar egyensúlya másként A szakirodalom ld pl: [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ] tanulmányozása során feltűnt, hogy ~ leginkább a laposmenetű csavar erőjátékának vizsgálatát közlik, annak egyensúlyi
Nagyméretarányú térképezés 14.
Nagyméretarányú térképezés 14. Kitűzések Dr. Vincze, László Nagyméretarányú térképezés 14.: Kitűzések Dr. Vincze, László Lektor: Dr. Hankó, András Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1.
Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás). Feladat. Írjuk fel az f() = függvény 0 = pontbeli érintőjének egyenletét! Az érintő egyenlete y
Koordináta-geometria. Fogalom. Jelölés. Tulajdonságok, definíciók
Koordináta-geometria Fogalom Ezen a helyen találkozik össze a számtan és a mértan. Körök, egyenesek, háromszögek és más egyéb alakzatok, de nem szerkesztenünk kell, vagy méricskélni, hanem számolni, viszont
NYUGAT-MAGYARORSZÁGI EGYETEM GEOINFORMATIKAI KAR. Dr. Busics György GEODÉZIAI HÁLÓZATOK
NYUGAT-MAGYARORSZÁGI EGYETEM GEOINFORMATIKAI KAR Dr. Busics György GEODÉZIAI HÁLÓZATOK Ez a pdf fájl csak a jegyzet tartalomjegyzékét, bevezető és első fejezetét tartalmazza. A nyomtatott jegyzet a Geoinformatikai
Gyenes Róbert, Tarsoly Péter
Geodézia I. Gyenes Róbert, Tarsoly Péter 1 Tanulmányok Bemutatkozás 1999-2002: Erdészeti és Faipari Egyetem Földmérési és Földrendezıi Fıiskolai Kar, földmérı mérnök 2005-2007: Nyugat-Magyarországi Egyetem
A FIR-ek alkotóelemei: < hardver (bemeneti, kimeneti eszközök és a számítógép), < szoftver (ARC/INFO, ArcView, MapInfo), < adatok, < felhasználók.
Leíró adatok vagy attribútumok: az egyes objektumok sajátságait, tulajdonságait írják le számítógépek számára feldolgozható módon. A FIR- ek által megválaszolható kérdések: < 1. Mi van egy adott helyen?
Geometria II gyakorlatok
Geometria II gyakorlatok Kovács Zoltán Copyright c 2011 Last Revision Date: 2012. május 8. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát technikával készült, a megjelenés
M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24
OKTATÁSI MINISZTÉRIUM M/D/13 Dolgozók gimnáziuma Dolgozók szakközépiskolája Szakmunkások szakközépiskolája intenzív tagozat) 003. május ) Határozza meg a következő egyenlet racionális gyökét! 1 3 4 + 5
Az osztályozóvizsgák követelményrendszere 9. évfolyam
Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és
Geodéziai hálózatok 1.
Geodéziai hálózatok 1. A geodéziai pont és a geodéziai hálózat fogalma Dr. Busics, György Geodéziai hálózatok 1.: A geodéziai pont és a geodéziai hálózat fogalma Dr. Busics, György Lektor: Dr. Németh,
Matematika tanmenet 11. évfolyam (középszintű csoport)
Matematika tanmenet 11. évfolyam (középszintű csoport) Műveltségi terület: MATEMATIKA Iskola, osztályok: Vetési Albert Gimnázium, 11.A, 11.B, 11.D (alap) Tantárgy: MATEMATIKA Heti óraszám: 4 óra Készítették:
Ellipszis átszelése. 1. ábra
1 Ellipszis átszelése Adott egy a és b féltengely - adatokkal bíró ellipszis, melyet a befoglaló téglalapjának bal alsó sarkában csuklósan rögzítettnek képzelünk. Az ellipszist e C csukló körül forgatva
Koordinátageometriai gyakorló feladatok I ( vektorok )
Koordinátageometriai gyakorló feladatok I ( vektorok./ Határozd meg az AB szakasznak azt a pontját, amely a szakaszt : ha A ( ; és a B ( ; 8!./ Adott az A ( 3 ; 5 és a ( ; 6 B pont. Számítsd ki az AB vektor
Robotok inverz geometriája
Robotok inverz geometriája. A gyakorlat célja Inverz geometriai feladatot megvalósító függvények implementálása. A megvalósított függvénycsomag tesztelése egy kétszabadságfokú kar előírt végberendezés
Mély és magasépítési feladatok geodéziai munkái
Mély és magasépítési feladatok geodéziai munkái Ágfalvi: Mérnökgeodézia 7. modul M2 tervezési segédlet: 6. Kitűzések (5. modul), 7. Kivitelezett állapotot ellenőrző mérések Detrekői-Ódor: Ipari geodézia