Szivattyú kavitációs vizsgálata mérés
|
|
- Elek Gulyás
- 6 évvel ezelőtt
- Látták:
Átírás
1 1. Bevezetés Szivattyú kavitációs vizsgálata Folyadékot szállító csővezeték rendszerekben számos helyen felléphet a kavitáció jelensége, mely során a helyi nyomás a folyadék telített gőznyomásáig csökken, ekkor gőz képződik. Csővezeték rendszerek esetén, jellemzően szivattyúknál, elzáró- és szabályozó szerelvényeknél fordul elő kavitáció, mely több szempontból is káros lehet. Egyrészt zaj- és rezgéshatásokkal a környezetet terheli, így rontva a komfortérzetet, másrészt fizikai roncsolást okoz a berendezésben. A mai modern könnyűszerkezetes épületekben a rezgések nagyon könnyen szétterjedhetnek és más gépet, berendezést is károsíthatnak. A kavitáció során keletkezett káros rezgések magát a kibocsátó gépet is roncsolják, üzemét negatívan befolyásolják. Kavitáció szempontjából igen kritikusak egy rendszerben a szivattyúk, amelyek szívó oldalán figyelhető meg a roncsolódás.. A kavitáció kialakulása Ha a szállított folyadékban (ez leggyakrabban víz) az áramlás folyamán az abszolút nyomás a helyi telített gőznyomás alá csökken (szivattyú esetében tipikusan a járókerékbe belépésnél), a folyadék homogenitása megszűnik, és a fal mikro repedéseiben, apró lebegő szemcsék felületén gőz tartalmú buborékok keletkeznek, azaz a folyadék helyileg forrni kezd. Ezt a jelenséget nevezik kavitációnak, ami a szivattyúk jó működésének fizikai határa. A kavitáció jelentős rezgés és zaj forrása lehet, sőt az áramlástechnikai jellemzők is megváltozhatnak, a jelenség fokozódása során a berendezés károsodása sem kerülhető el. 1. ábra. Szivattyú járókerekén kavitáció okozta erózió Utolsó frissítés: :05, Hegedűs Ferenc 1
2 Fizikai kavitációról akkor beszélünk, ha a megjelenő buborékok egyedinek, különállóknak tekinthetők. Az áramlást határoló falak mikro repedéseit, a folyadékban lévő szilárd szemcséket, vagy folyadékból kivált gázbuborékokat kavitációs magoknak nevezzük. A gyakorlatban használt szivattyús rendszereknél mindig megtalálhatók nagy számban a kavitációs magok. A berendezések áramlástechnikai paramétereiben a keletkező néhány tíz-, vagy százmikronos nagyságú gőzbuborékok nem okoznak változást. Amennyiben a buborékok egyesülnek, és összefüggő, jól megfigyelhető zónát alkotnak, akkor a jelenséget technikai kavitációnak nevezik. A kavitációs zóna az áramlást határoló szilárd felületen képződik, majd onnan leválik, de a falon újra képzőik. A szivattyú hidraulikai jellemzőiben (szállítómagasság, térfogatáram, stb.) a technikai kavitáció megjelenése már komoly megváltozást idéz elő. A szuperkavitációs állapot akkor következik be, amikor a technikai kavitáció során tovább csökken az áramlási tér nyomása. Ekkor már nemcsak egy-egy pontban keletkeznek gőzbuborékok, hanem nagyobb, összefüggő tartományban. A fizikai, vagy technikai kavitáció során keletkezett buborékokat az áramlás továbbsodorja, és egy nagyobb helyi nyomású térben, a gőzzel telt üregekben kondenzáció lép fel, azaz a kavitációs magok összeroppannak, feltöltődnek folyadékkal. Ez gerjeszt jól mérhető rezgéseket a berendezésen, sőt bizonyos nagyságot elérve füllel is jól hallható sercegő, ropogó hangot hallat. Ha az üreg összeomlása a berendezés határoló falainak közelében történik, a periodikus mechanikai hatások a szilárd falat veszik igénybe, amelyeknek következménye lehet az 1. ábrán látható erózió. Ha a szivattyú járókerék előtt a kavitációs buborékzóna a teljes keresztmetszetet kitölti, a folyadék oszlop megszakad, a szivattyú elejti a folyadékot, megszűnik a közeg szállítása. A folyadéknak a szívócső felől, a járókerék belépő élénél van a legkisebb nyomása. Itt léphet fel először a kavitáció. Az 1. ábrán jól látható, hol volt a járókerék belépő éle, ugyanis az erózió azt roncsolta meg. 3. Szívóképesség, jelleggörbék Felmerül a kérdés, hogyan kerülhető el a gőzbuborék képződés okozta gond? Ehhez az előadáson megismerjük a berendezésben rendelkezésre álló NPSHa (available), illetve a szivattyú által a szállítandó térfogatáramnál rendelkezésre bocsátandó NPSHr (required) szívómagasságot. A definíció az alábbi: NPSH a p 0 p g t H sg e s h ' s Q, (1) g itt a szívóoldalon a vízfelszín feletti nyomást p0-lal, a szállított közeg hőmérsékletéhez tartozó telített gőz nyomását pg(t)-vel, a szívóoldali vízszint mélységét a szivattyú szívócsonkjának középpontjától Hsg-vel, a szívócsonk középpontjának és a szivattyú forgástengelyébe eső referenciapontnak a szintkülönbségét es-sel jelöltük. (Ez esetünkben zérus, es = 0.) Végül h s(q) jelöli a szívócső veszteségmagasságát az összes benne lévő szerelvény veszteségmagasságával egyetemben. A technikai kavitáció mentes üzem határán éppen teljesül az NPSHa = NPSHr egyenlőség. Az alábbi egyenlőtlenség betartásával elkerülhetők az üzemi problémák: NPSH r NPSH a. () Utolsó frissítés: :05, Hegedűs Ferenc
3 Nagy nyomású kazán-tápszivattyúknál az irányadó NPSHa érték mintegy 1,5 -szerese az NPSHr értéknek, kivédve a tranziens üzemállapotokból és az üzemzavarokból adódó eltéréseket. Azért van szükség ezekre a biztonsági tartalékokra, mert a fizikai és technikai kavitációnak nincs éles határa. Míg az előbbi jelenség normál üzemben is előfordul (mivel a folyadék nem tökéletesen tiszta), enyhe erózió felléphet, de a hidraulikai jellemzőkben ez nem jelentkezik. A technikai kavitáció már észrevehető hatásfok csökkenéssel és jelentős roncsoló hatással jár, a két forma közötti átmenet folyamatos. Ha elvégezzük a szivattyú jelleggörbe mérését, azt tapasztaljuk, hogy növelve a térfogatáramot, a jelleggörbe egy pontnál letörik, azaz a a. ábra szaggatott jelleggörbétől elválik. Az elválási pontban kezd kialakulni a technikai kavitáció. Egy-egy állandó térfogatáramnál elvégezhető a leszívási mérés, azaz annak vizsgálata, hogy az adott térfogatáramnál mekkora a szivattyú NPSHr értéke. Kiindulásként tartsuk a szivattyú Q térfogatáramát állandó értéken. Az NPSHa értéke az (1) egyenlet szerint a szívóoldali paraméterek (pl. beépített fojtás) segítségével változtatható. Ahhoz, hogy a rendszerben Q=állandó fennmaradjon, a nyomóoldalon is be kell avatkozni. Ha a szívóoldalon nő a geodetikus szállítómagasság (Hsg), vagy a szívóoldali ellenállás (h s), illetve a szívótér nyomása csökken (p0), akkor a nyomóoldali szabályozó szerelvényt nyitni kell, hogy a rendszer jelleggörbéje ne változzék. Ha az (1) képlet szerint az NPSHa értéket csökkentjük, és minden ilyen új számértéknél megmérjük a szivattyú H szállítómagasságát (pl. manométer segítségével), akkor egy kritikus NPSHa értéknél a H szállítómagasság jelentősen csökken, azaz a görbe letörik. Ezt szemlélteti a b. ábra. A letörési értéknél lesz az adott Q=állandó értékhez tartózó NPSHr érték.. ábra. a, Jelleggörbe és b, leszívási görbe A b. ábrán látható NPSH a H diagram A pontjában jelenik meg a kavitációra utaló enyhe ropogó hang. A B pontban a lapátok belépő éleinél megjelenik a buborékzóna. A lapátok eróziós roncsolódása az egyre növekvő zaj mellett a C pontban indul meg. Látható, hogy a szivattyú jelleggörbéjén még semmilyen változást nem tapasztalunk, de a berendezés már károsodni kezd. A D pont jelenti azt a határt, ami után csökkentve az NPSHa értéket megindul a jelleggörbe esése (baloldali diagram). Az E pont jelenti a tűrhető kavitációs üzemet, noha jelentős letörés tapasztalható (3-5%). Az F pont környezetében a járókerék környezetében buborékfelhő áramlik. A szivattyú újra elcsendesedik, szállítómagassága leesik, hatásfoka romlik, bár teljesítményfelvétele is jelentősen lecsökken. Az eróziós roncsoló hatás is megszűnik. A szivattyú üzemelése nem megbízható, ugyanis bármikor elejtheti a folyadékot. Utolsó frissítés: :05, Hegedűs Ferenc 3
4 A b. ábra mutatja, hogy az NPSHa függvényében mikor következik be jelentős változás a szállítómagasságban. A letörés után (pl. F pont) már nem igaz a () egyenletben megfogalmazott feltétel, azaz a rendszer kavitál. Ki kell jelölni egy kritikus ΔH szállítómagasság csökkenést, ami nagyobb, mint a mérési hibakorlát. Ez a ΔH érték a szállítómagasság mintegy -3%-a szokott lenni. Több Q = állandó feltételű mérést elvégezve a szivattyúra megkapjuk az NPSHr Q függvénykapcsolatot, ami éppen olyan fontos üzemi jellemző, mint a H Q jelleggörbe. A folyadékok gáztartalma kedvező is lehet a kavitáció okozta rezgésekre, erózióra. Néhány térfogat-százalékos folyadékból kivált, illetve külső térből bevezetett gáz csökkenti a kavitációs zóna összeroppanásakor keletkező zajt, káros rezgéseket, roncsoló hatást. Ezt a megoldást azonban nem minden technológiai folyamatnál engedhetjük meg (pl. fűtéshálózat, vegyi folyamatok). A közegben jelen lévő gáz adott tömegáram mellett a keverék kisebb sűrűsége miatt növeli a térfogatáramot. Az átáramló térfogatáram többlet a berendezés eredő ellenállását ( levegő) rezgéscsökkentő hatásáról nem kell lemondani, ugyanis közvetlenül a szivattyú szívócsonk előtt bevezetve az NPSHa esése elkerülhető, a hatásfok azonban a többlettérfogatáram miatt csökken. h ) növeli, ami az (1) egyenlet szerint az NPSHa értéket csökkenti. A gáz (leggyakrabban s A kavitáció, az általa okozott rezgés alapján is detektálható. Ennek a módszernek az az előnye is megvan, hogy a kismértékű fizikai kavitáció is detektálható, ellentétben a hidraulikai paraméterekből történő detektálással, ami csak a technikai kavitációt mutatja ki. A vizsgálatot mindkét esetben állandó térfogatáram mellett, a szívócső ellenállásának növelésével ezzel az NPSHa csökkentésével kell elvégezni. A 3. ábra mutatja be az u.n. leszívási (szállítómagasság változása az NPSHa függvényében) görbét és a szivattyú csigaházán mérhető gyorsulásszint változását. Látható, hogy a zajszint vagy rezgésszint (ng) már jóval a szállítómagasság letörése előtt megemelkedik, mely fizikai kavitáció kis buborékok megjelenésére és összeroppanására, azaz igen erős eróziós hatású kavitáció jelenlétére utal. Ez azonban a hidraulikai paraméterekben még nem jelentkezik. 3. ábra. A leszívási görbe és a rezgésszintek kapcsolata Utolsó frissítés: :05, Hegedűs Ferenc 4
5 4. Mérőberendezés A 4. ábrán bemutatott mérőállomás egyfokozatú, plexi előlapos szivattyúra épült, és így lehetővé válik a szivattyúban kialakuló kavitációs áramlás vizuális megfigyelése. Az S jelű szivattyú a ST szívóoldali tartályból szívja a vizet a T1 és T3 tolózárakon keresztül, mely a szívócső ellenállásának növelésére alkalmas. A szívó és nyomóoldali nyomást klasszikus műszerekkel (higanyos manométerrel) mérjük, a vízhozam mérésekhez az MP mérőperemet építettük be. A plexi előlapon keresztül stroboszkóp Str lámpával világítjuk meg a hengeres lapátokkal készített nyitott járókereket. A stroboszkóp felvillanási frekvenciáját a fordulatszámmal azonos értékre beállítva a járókerék lapátok állni látszanak, és a lapát felületén kialakuló kavitáció szemmel jól érzékelhető. 4. ábra. A vizsgált berendezés A szivattyú H szállítómagassága és a Q térfogatárama az ábra jelöléseinek megfelelő Δhn és Δhmp értékekből az alábbiak szerint határozható meg: H d pmp d Q (D,d,Q) (D,d,Q) 4 4 viz g h Hg viz mp Hg v Q l s1 ls ln 1 1 hn z z1 ln v g d s1as1 d s As d n An An As viz (3) (4) A szivattyú SC szívócsöve szűk, és a T1 és T3 tolózárakkal együtt olyan szívóoldali ellenállást jelentenek, hogy a jelleggörbe nagy térfogatáramokhoz tartozó részén már kavitáció alakul ki és a jelleggörbe itt letörik (5. ábra). Utolsó frissítés: :05, Hegedűs Ferenc 5
6 A mérés során a szivattyú NPSHr(Q) jelleggörbéjének pontjait kívánjuk meghatározni leszívási görbe mérés alapján. A H(Q) jelleggörbe egy olyan pontjából indulunk ki, ahol a vizuális megfigyelések sem mutatnak buborék-keletkezést. A térfogatáram állandó értékének megőrzése érdekében zárunk a T1 (majd T3) tolózáron és nyitunk a T és T4 tolózáron. A H szállítómagasság változását az NSPHa függvényében ábrázoljuk. (6. ábra) Az NPSHa értékét a következő összefüggéssel határoztuk meg a mért hsb, hsj értékekből: NPSH a p0 pg 1 sj sb sj 1 g g d A d A A A v Hg Q l s1 ls 1 h h h z z v s1 s1 s s s1 s (5) A szivattyú adott Q térfogatáramhoz tartozó NPSHr értékét az a pont adja meg, ahol a szállítómagasság kb. 3% esést mutat (6. ábra B pont). A kavitáció kialakulását egy ilyen, a szívócső ellenállását folyamatosan változtató méréssorozat esetén a plexi előlapos berendezésen vizuálisan is követni tudjuk. 5. ábra. Szivattyú jelleggörbe 6. ábra. Leszívási görbe 7. ábra. A kavitációs zóna fotói a 6. ábra A, B, C, D pontjaiban Utolsó frissítés: :05, Hegedűs Ferenc 6
7 5. Mérés menete A mérés során egy a mérést vezető oktató által megadott térfogatáram melletti leszívási görbe felvétele a cél. A mérőberendezés ellenőrzése után az oktató a lent leírtaknak megfelelően elvégzi a mérés indítását. A mérést teljesen nyitott szívóoldali T1 és T3 tolózárállástól indítjuk, a segédszivattyú nyomócsonkján levő T és T4 tolózár segítségével beállítva a kívánt térfogatáramot. (Ennek részleteit lásd: leírás végén olvasható technikai információk). Az adott, mérőperemre kötött manométer kitérésből a beépített mérőperem paramétereinek ismeretében a (3) képletből meghatározható a térfogatáram az alábbi összefüggéssel, melyet a 8. ábra grafikonján is megadunk: Q m mm 0. (6) 5 h h mp A mérést teljesen nyitott szívóoldali T1 tolózárállástól indítjuk, a segédszivattyú nyomócsonkján levő T és T4 tolózárak segítségével beállítva a kívánt térfogatáramot. A mérés során a szívóoldali tolózárat zárjuk, a nyomóoldali tolózárat meg nyitjuk a térfogatáram állandó értéken tartása érdekében. A T1 tolózár zárt állása után T3 zárásával fojtatjuk. Minden mérési pontban leolvassuk a manométer kitéréseket és vizuálisan megfigyeljük a látható áramképet. A kavitáció megjelenésétől kezdve megmérjük a buborékkal teli kavitációs zóna hosszát a lapátozásban. A mérést addig ismételjük, amíg a szállítómagasság drasztikusan le nem törik. Előtte a szívóoldali nyomáskülönbség a légköri nyomás közelébe kerül, innen a szívóoldali motoros zár rövid esetleg kézzel történő állításával tudjuk a letörő szakaszt is felvenni. A leolvasott értékek alapján kiszámoljuk a H szállítómagasság és az NPSHa értékét az alábbi összefüggésekkel ezek a (4) és (5) egyenletből adódnak a megfelelő értékek behelyettesítésével: 3 m = h Q h H m n mm (7) 3 mm Qm 13.6 hsj NPSH h a m = hsb mm - hsj mm (8) A mérési adatokat az alábbi alakú táblázatba jegyezzük fel, ahol a fenti képletekkel ki tudjuk számolni a H és NPSHa értékeit is: Ssz 1.. n [1/min] h mp [mm] h n [mm] h sb [mm] h sj [mm] Megfigyelés zónahossz [mm] Q [m 3 /h] H [m] NPSH a [m] A számolt adatokból felvesszük az adott térfogatáramhoz tartozó leszívási görbét, melyen jelöljük a becsült zóna hosszakat is. Utolsó frissítés: :05, Hegedűs Ferenc 7
8 6. Mérési eredmények feldolgozás 8. ábra. Mérőperem beállítása adott térfogatáramokhoz A tanszéki honlapon, a tárgy adatlapján az alaki és a tartalmi követelmények (mérési eredmények feldolgozása, hibaszámítás, stb.) egyaránt megtalálhatók. 6. Felkészülés a mérésre 1. A mérés eredmények feljegyzéséhez szükséges táblázat elkészítése.. Milliméterpapírt kell hozni az ellenőrző diagram elkészítéséhez. 3. Ismerni kell a mérési tájékoztatót. A tájékoztató ismeretét a mérés kezdetekor ellenőrizzük. 7. A berendezés további műszaki adatai A motor típusa: EFK41K4 (Bláthy Ottó Villamosgépgyár) A motor gyártási száma: A szivattyú típusa: BMS 5/48 (Diósgyőri Gépgyár) A szivattyú gyártási száma: 701/ Felkészülést ellenőrző kérdések 1. Ismertesse a kavitáció jelenségét, kialakulását!. Mi a fizikai, technikai és szuperkavitáció közötti különbség! 3. Írja fel a tanult NPSHa definícióját és magyarázza a tagokat! 4. Rajzolja le jellegre helyesen a leszívási jelleggörbét és ismertesse a fontosabb szakaszait! 5. Ismertesse a leszívási jelleggörbe mérésének menetét! 6. A leszívási jelleggörbe ismeretében milyen kritériumot tud felállítani az NPSHa értékére? Válaszát indokolja! 7. Ismertesse a mérés célját és a meghatározandó mennyiségeket! 8. Vázolja és ismertesse a mérőberendezést! Utolsó frissítés: :05, Hegedűs Ferenc 8
9 9. Mérési feladatok 1) Számolja ki a szivattyú hasznos teljesítményét kavitációmentes üzem esetén és hasonlítsa össze a) a technikai kavitációs üzem hasznos teljesítményével! b) a szuperkavitációs üzem hasznos teljesítményével! ) Válasszon villanymotort (fordulatszám mérése szükséges, a motort fordulatszámát frekvenciaváltóval szabályozzuk), ha a szivattyú hatásfoka a) 85%! b) 75%! 3) Számolja ki a szívócsonkban az abszolút nyomás értékét és hasonlítsa össze az adott környezeti hőmérséklethez tartozó telítési gőznyomás értékével a) technikai kavitációs üzem esetére! b) szuperkavitációs üzem esetére! 10. Irodalom [1] Dr Fűzy Olivér: Áramlástechnikai gépek és rendszerek, Tankönyvkiadó, Budapest, 1991 [] Józsa István: Örvényszivattyúk, Info prod kiadó Kft., 003 [3] Dr. Garbai László: Hidraulikai számítrások az épületgépészetben és az energetikában, fejezet, Akadémiai Kiadó, Budapest, 007. Utolsó frissítés: :05, Hegedűs Ferenc 9
10 Technikai információk: Indítás előtt ellenőrizendő (az oktató végzi el): tartály vízszintje (lepje el jócskán a szívóoldali T3 bypass-t) nyomóoldali tolózárak (T és T4) zárt állapota szívóoldali tolózár (T1) legalább félig nyitott állapota (ellenőrző ablak a motoron) számítógép melletti kapcsolószekrény kapcsolója RS állásban van Ha a motoros tolózár (T1) nem mozog (a gombok lenyomására a számítógép melletti lilakapocsdoboz lámpás kapcsológombjának egyike sem villog), akkor valószínűleg a fali dugalj van kihúzva. Indítás menete (oktató végzi el): 1. szivattyú S indítása a bejárat melletti kapcsolószekrényről. (A nagy dobozos manométer kb. 1,8 bart mutasson). SS segédszivattyú indítása frekvenciaváltóval (szekrény áram alá helyezése, majd a zöld gomb a frekvenciaváltón) 3. S nyomócsonkján lévő T és T4 tolózár nyitása, a mérőperemhez kötött manométer szintjének figyelése mellett 4. Stroboszkóp (Str) fali biztosítékainak felkapcsolása, majd a stroboszkóp bekapcsolása Javasolt mérési tartomány /min környékén, m3/h szállítás mellett. Ha indításnál a nagy dobozos manométeren figyeljük a zárási nyomást, akkor ezekhez a fordulatszámokhoz kb. 1,8- bar tartozik, a térfogatáram pedig Hgmm kitérésnek felel meg a mérőperem (MP) manométerén. Mérés folyamata: térfogatáram beállítás az SS szivattyú nyomóoldali T és T4 (finombeállítás) tolózárjával fojtás beállítása a motoros (T1) tolózárral, amíg meg nem indul a technikai kavitáció, azután fojtás a bypass tolózárral (T3) A mérés folyamán figyelni kell: az első mért pont után a következőt csak akkor érdemes felvenni, ha a motoros tolózárral már annyit zártunk, hogy változott a szívómagasság a gömbcsap használatával kiengedjük a vizet a tartályból, ami egyrészt változtatja a szívómagasságot, másrészt levegőt szívhat a rendszer ha a segédszivattyú (SS) manométere sokáig mutat 0 bar alatti értéket, akkor a tömszelencéi beéghetnek. Ha valamelyik füstölni kezdene, akkor a nyomóoldali tolózárakat (T és T4) zárjuk el, így biztosítva elegendő csurgalékvizet a tömszelencék visszahűtéséhez! Leállítás: mint az indítás, csak fordítva Utolsó frissítés: :05, Hegedűs Ferenc 10
Szívóképesség mérés: Szivattyú kavitációs vizsgálata (Kav)
Szívóképesség mérés: Szivattyú kavitációs vizsgálata (Kav) 1. Bevezetés Folyadékot szállító csővezeték rendszerekben számos helyen felléphet a kavitáció jelensége, mely során a helyi nyomás a folyadék
ÖRVÉNYSZIVATTYÚ JELLEGGÖRBÉINEK MÉRÉSE
1. A mérés célja ÖRVÉNYSZIVATTYÚ JELLEGGÖRBÉINEK MÉRÉSE KÜLÖNBÖZŐ FORDULATSZÁMOKON (AFFINITÁSI TÖRVÉNYEK) A mérés célja egy egyfokozatú örvényszivattyú jelleggörbéinek felvétele különböző fordulatszámokon,
ÖRVÉNYSZIVATTYÚ MÉRÉSE A berendezés
ÖRVÉNYSZIVATTYÚ MÉRÉSE A berendezés 1. A mérés célja A mérés célja egy egyfokozatú örvényszivattyú jelleggörbéinek felvétele. Az örvényszivattyú jellemzői a Q térfogatáram, a H szállítómagasság, a Pö bevezetett
ÖRVÉNYSZIVATTYÚ MÉRÉSE A berendezés
1. A mérés célja ÖRVÉNYSZIVATTYÚ MÉRÉSE A berendezés A mérés célja egy egyfokozatú örvényszivattyú jelleggörbéinek felvétele. Az örvényszivattyú jellemzői a Q térfogatáram, a H szállítómagasság, a Pö bevezetett
0,00 0,01 0,02 0,03 0,04 0,05 0,06 Q
1. Az ábrában látható kapcsolási vázlat szerinti berendezés két üzemállapotban működhet. A maximális vízszint esetében a T jelű tolózár nyitott helyzetben van, míg a minimális vízszint esetén az automatikus
Örvényszivattyú A feladat
Örvényszivattyú A feladat 1. Adott n fordulatszám mellett határozza meg a gép jellemző fordulatszámát az optimális üzemi pont mérésből becsült értéke alapján: a) n = 1700/min b) n = 1800/min c) n = 1900/min
TÉRFOGATÁRAM MÉRÉSE. Mérési feladatok
Készítette:....kurzus Dátum:...év...hó...nap TÉRFOGATÁRAM MÉRÉSE Mérési feladatok 1. Csővezetékben áramló levegő térfogatáramának mérése mérőperemmel 2. Csővezetékben áramló levegő térfogatáramának mérése
Ventilátor (Ve) [ ] 4 ahol Q: a térfogatáram [ m3. Nyomásszám:
Ventilátor (Ve) 1. Definiálja a következő dimenziótlan számokat és írja fel a képletekben szereplő mennyiségeket: φ (mennyiségi szám), Ψ (nyomásszám), σ (fordulatszám tényező), δ (átmérő tényező)! Mennyiségi
NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS. Mérési feladatok
Hidrodinamikai Rendszerek Tanszék Készítette:... kurzus Elfogadva: Dátum:...év...hó...nap NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS Mérési feladatok 1. Csővezetékben áramló levegő nyomásveszteségének mérése U-csöves
Szivattyú-csővezeték rendszer rezgésfelügyelete. Dr. Hegedűs Ferenc
Szivattyú-csővezeték rendszer rezgésfelügyelete Dr. Hegedűs Ferenc (fhegedus@hds.bme.hu) 1. Feladat ismertetése Rezgésfelügyeleti módszer kidolgozása szivattyúk nyomásjelére alapozva Mérési környezetben
1. feladat Összesen 17 pont
1. feladat Összesen 17 pont Két tartály közötti folyadékszállítást végzünk. Az ábrán egy centrifugál szivattyú- és egy csővezetéki (terhelési) jelleggörbe látható. A jelleggörbe alapján válaszoljon az
VENTILÁTOROK KIVÁLASZTÁSA. Szempontok
VENTILÁTOROK KIVÁLASZTÁSA Szempontok Légtechnikai üzemi követelmények: pl. p ö, (p st ), q V katalógus Ergonómiai követelmények: pl. közvetlen vagy ékszíjhajtás katalógus Egyéb üzemeltetési követelmények:
Vízóra minıségellenırzés H4
Vízóra minıségellenırzés H4 1. A vízórák A háztartási vízfogyasztásmérık tulajdonképpen kis turbinák: a mérın átáramló víz egy lapátozással ellátott kereket forgat meg. A kerék által megtett fordulatok
Vegyipari géptan 3. Hidrodinamikai Rendszerek Tanszék. 1111, Budapest, Műegyetem rkp. 3. D ép. 3. em Tel: 463 16 80 Fax: 463 30 91 www.hds.bme.
egyiari gétan 3. Hidrodinamikai Rendszerek Tanszék, Budaest, Műegyetem rk. 3. D é. 3. em Tel: 463 6 80 Fax: 463 30 9 www.hds.bme.hu Légszállító géek. entilátorok. Centrifugál ventilátor. Axiális ventilátor.
1. feladat Összesen 25 pont
1. feladat Összesen 25 pont Centrifugál szivattyúval folyadékot szállítunk az 1 jelű, légköri nyomású tartályból a 2 jelű, ugyancsak légköri nyomású tartályba. A folyadék sűrűsége 1000 kg/m 3. A nehézségi
Gravi-szell huzatfokozó jelleggörbe mérése
Gravi-szell huzatfokozó jelleggörbe mérése Jelen dokumentáció a CS&K Duna Kft. kizárólagos tulajdonát képezi, részben vagy egészben történő engedély nélküli másolása, felhasználása TILOS! 1. A huzatfokozó
DÍZELMOTOR KEVERÉKKÉPZŐ RENDSZERÉNEK VIZSGÁLATA
DÍZELMOTOR KEVERÉKKÉPZŐ RENDSZERÉNEK VIZSGÁLATA Laboratóriumi gyakorlati jegyzet Készítette: Szabó Bálint 2008. február 18. A mérés célja: Soros adagoló karakterisztikájának felvétele adagoló-vizsgáló
(2006. október) Megoldás:
1. Állandó hőmérsékleten vízgőzt nyomunk össze. Egy adott ponton az edény alján víz kezd összegyűlni. A gőz nyomását az alábbi táblázat mutatja a térfogat függvényében. a)ábrázolja nyomás-térfogat grafikonon
1. feladat Összesen 21 pont
1. feladat Összesen 21 pont A) Egészítse ki az alábbi, B feladatrészben látható rajzra vonatkozó mondatokat! Az ábrán egy működésű szivattyú látható. Az betűk a szivattyú nyomócsonkjait, a betűk pedig
Modellkísérlet szivattyús tározós erőmű hatásfokának meghatározására
Budapesti Műszaki és Gazdaságtudományi Egyetem Nukleáris Technikai Intézet Hallgatói laboratóriumi gyakorlat Modellkísérlet szivattyús tározós erőmű hatásfokának meghatározására Mintajegyzőkönyv Készítette:
Ventilátorok. Átáramlás iránya a forgástengelyhez képest: radiális axiális félaxiális keresztáramú. Jelölése: Nyomásviszony:
Ventilátorok Jellemzők: Gáz munkaközeg Munkagép: Teljesítmény-bevitel árán kisebb nyomású térből (szívótér) nagyobb nyomású térbe (nyomótér) szállítanak közeget. Működési elv: Euler-elv (áramlástechnikai
Vegyipari Géptan labor munkafüzet
Budapesti Műszaki Egyetem Hidrodinamikai Rendszerek Tanszék Vegyipari Géptan labor munkafüzet Készítette: Angyal István Epacher Péter Klemm Csaba Lukenics Jánosné Nagy Bence Szabó Mihály Szabó Júlia (ábrák)
Lemezeshőcserélő mérés
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR Épületgépészeti és Gépészeti Eljárástechnika Tanszék Lemezeshőcserélő mérés Hallgatói mérési segédlet Budapest, 2014 1. A hőcserélők típusai
1. feladat Összesen 5 pont. 2. feladat Összesen 19 pont
1. feladat Összesen 5 pont Válassza ki, hogy az alábbi táblázatban olvasható állításokhoz mely szivattyúcsővezetéki jelleggörbék rendelhetők (A D)! Írja a jelleggörbe betűjelét az állítások utáni üres
2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető
. Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék
Fűtési rendszerek hidraulikai méretezése. Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék
Fűtési rendszerek hidraulikai méretezése Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék Hidraulikai méretezés lépései 1. A hálózat kialakítása, alaprajzok, függőleges
ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VEGYIPAR ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
VEGYIPAR ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ 1. feladat 8 pont A mérőműszerek felépítése A mérőműszer mely részére vonatkozik az alábbi állítás? Írja
2. mérés Áramlási veszteségek mérése
. mérés Áramlási veszteségek mérése A mérésről készült rövid videó az itt látható QR-kód segítségével: vagy az alábbi linken érhető el: http://www.uni-miskolc.hu/gepelemek/tantargyaink/00b_gepeszmernoki_alapismeretek/.meres.mp4
Vízgyűrűs vákuumszivattyú (Vi)
Vízgyűrűs vákuumszivattyú (Vi) 1. Melyek a vákuumszivattyúk leggyakrabban alkalmazott jelleggörbéi? Ismertessen hármat! Az izotermikus teljesítmény a relatív vákuum függvényében: P izot = f 1 ( p ) A térfogatáram
1.5. VENTILÁTOR MÉRÉS
1.5. VENTILÁTOR MÉRÉS 1.5.1 A mérés célja A mérés célja egy ventilátorból és a vele összeépített háromfázisú aszinkron motorból álló gépcsoport üzemi jelleggörbéinek felvétele. Ez a következő függvénykapcsolatok
Szívókönyökök veszteségeinek és sebességprofiljainak vizsgálata CFD szimuláció segítségével
GANZ ENGINEERING ÉS ENERGETIKAI GÉPGYÁRTÓ KFT. Szívókönyökök veszteségeinek és sebességprofiljainak vizsgálata CFD szimuláció segítségével Készítette: Bogár Péter Háznagy Gergely Egyed Csaba Zombor Csaba
Térfogatáram mérési módszerek 1.: Mérőperem - Sebességeloszlás (Pr)
Térfogatáram mérési módszerek 1.: Mérőperem - Sebességeloszlás (Pr) 1. Folyadékáram mérése torlócsővel (Prandtl-csővel) Torlócsővel csak egyfázisú folyadék vagy gáz áramlása mérhető. A folyadék vagy gáz
Adatlap: Wilo-Yonos MAXO-D 40/0,5-8
Adatlap: Wilo-Yonos MAXO-D 40/0,5-8 Jelleggörbék Engedélyezett szállított közegek (más közegek ajánlatkérésre) Fűtővíz (a VDI 2035 szerint) Víz-glikol keverékek (max. 1:1; 20 % aránytól kezdve a szállítási
A VAQ légmennyiség szabályozók 15 méretben készülnek. Igény esetén a VAQ hangcsillapított kivitelben is kapható. Lásd a következő oldalon.
légmennyiség szabályozó állítómotorral Alkalmazási terület A légmennyiségszabályozókat a légcsatorna-hálózatban átáramló légmennyiség pontos beállítására és a beállított érték állandó szinten tartására
Tájékoztató. Használható segédeszköz: számológép. Értékelési skála:
A 29/2016. (VIII. 26.) NGM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 582 01 Épületgépész technikus Tájékoztató A vizsgázó az első lapra írja fel a
Segédlet az ADCA szabályzó szelepekhez
Segédlet az ADCA szabályzó szelepekhez Gőz, kondenzszerelvények és berendezések A SZELEP MÉRETEZÉSE A szelepek méretezése a Kv érték számítása alapján történik. A Kv érték azt a vízmennyiséget jelenti
ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VEGYIPAR ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA MINTAFELADATOK
VEGYIPAR ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA MINTAFELADATOK 1. feladat 12 pont Anyagszállítás 1. Az ábrán egy egyszeres működésű dugattyús szivattyú látható. Nevezze meg a szivattyú számokkal jelölt
Szabványos és nem szabványos beépített oltórendszerek, elméletgyakorlat
Szabványos és nem szabványos beépített oltórendszerek, elméletgyakorlat Szikra Csaba tudományos munkatárs BME Építészmérnöki Kar Épületenergetikai és Épületgépészeti Tanszék szikra@egt.bme.hu 2012. Sprinkler
VIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola
A versenyző kódja:... VIDÉKFEJLESZTÉSI MINISZTÉRIUM Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola Budapest, Thököly út 48-54. XV. KÖRNYEZETVÉDELMI ÉS VÍZÜGYI
(L) Lamellás szivattyú mérése
(L) Lamellás szivattyú mérése A mérésre való felkészülés sorá a Hidraulikus tápegység mérésleírás Hidrosztatikus hajtásokról c részét is kérjük elsajátítai 1 A mérés célja, a beredezés ismertetése 11 A
Adatlap: Wilo-Yonos PICO 25/
Adatlap: Wilo-Yonos PICO 25/1-4-130 Jelleggörbék Δp-c (állandó) Engedélyezett szállított közegek (más közegek ajánlatkérésre) Fűtővíz (a VDI 2035 szerint) Víz-glikol keverékek (max. 1:1; 20 % aránytól
54 582 01 0000 00 00 Épületgépész technikus Épületgépész technikus
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/
DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/ ÖSSZEÁLLÍTOTTA: DEÁK KRISZTIÁN 2013 Az SPM BearingChecker
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Épületgépészeti és Gépészeti Eljárástechnika Tanszék HALLGATÓI SEGÉDLET
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Épületgépészeti és Gépészeti Eljárástechnika Tanszék HALLGATÓI SEGÉDLET Keverő ellenállás tényezőjének meghatározása Készítette: Hégely László, átdolgozta
Tüzivíz- és sprinklerszivattyú katalógus 2011.
Tüzivíz- és sprinklerszivattyú katalógus 2011. Tervezési szempontok Szivattyú-jelleggörbe A sprinkler szivattyúk kiválasztásánál figyelembe kell venni, hogy a szivattyú térfogatárama, csak a jelleggörbének
Nyomástartóedény-gépész Kőolaj- és vegyipari géprendszer üzemeltetője
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
Folyamatirányítás. Számítási gyakorlatok. Gyakorlaton megoldandó feladatok. Készítette: Dr. Farkas Tivadar
Folyamatirányítás Számítási gyakorlatok Gyakorlaton megoldandó feladatok Készítette: Dr. Farkas Tivadar 2010 I.-II. RENDŰ TAGOK 1. feladat Egy tökéletesen kevert, nyitott tartályban folyamatosan meleg
Szabványos és nem szabványos beépített oltórendszerek, elméletgyakorlat
Szabványos és nem szabványos beépített oltórendszerek, elméletgyakorlat Szikra Csaba tudományos munkatárs BME Építészmérnöki Kar Épületenergetikai és Épületgépészeti Tanszék szikra@egt.bme.hu 2012. Sprinkler
Vegyipari géptan 2. Hidrodinamikai Rendszerek Tanszék. 1111, Budapest, Műegyetem rkp. 3. D ép. 3. em Tel: 463 16 80 Fax: 463 30 91 www.hds.bme.
Vegyiari gétan 2. Hidrodinamikai Rendszerek Tanszék 1111, Budaest, Műegyetem rk. 3. D é. 3. em Tel: 463 16 80 Fax: 463 30 91 www.hds.bme.hu Csoortosítás 2. Működési elv alaján Centrifugálgéek (örvénygéek)
Mérnöki alapok I. (BMEGEVGAKM2) Példatár
Mérnöki alapok I. (BMEGEVGAKM2) Érvényes: 2016. tavaszi félévtől Kidolgozta: Dr. Lukenics Zsuzsa Ellenőrizte: Till Sára A példatárral kapcsolatos megjegyzésekkel, kérdésekkel fordulhatnak Till Sárához
M12 RADIÁLIS VENTILÁTOR VIZSGÁLATA
M1. MÉRÉSI SEGÉDLET ÁRAMLÁSTAN TANSZÉK M1 RADIÁLIS VENTILÁTOR VIZSGÁLATA 1. A mérés aktualitása, mérés célja A mérés célja egy radiális entilátor jellemzőinek, agyis a q szállított térfogatáram függényében
Nyomástartóedény-gépész Kőolaj- és vegyipari géprendszer üzemeltetője
É 063-06/1/13 A 10/007 (II. 7.) SzMM rendelettel módosított 1/006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján.
1.1 Hasonlítsa össze a valós ill. ideális folyadékokat legfontosabb sajátosságaik alapján!
Kérem, þ jellel jelölje be képzését! AKM VBK Környezetmérnök BSc AT0 Ipari termék- és formatervező BSc AM0 Mechatronikus BSc AM Mechatronikus BSc ÁRAMLÁSTAN. FAKULTATÍV ZH 203.04.04. KF8 Név:. NEPTUN kód:
VIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola
IDÉKFEJLESZTÉSI MINISZTÉRIUM Petrik Lajos Két Tanítási Nyelvű egyipari, Környezetvédelmi és Informatikai Szakközépiskola Budapest, Thököly út 8-. X. KÖRNYEZETÉDELMI ÉS ÍZÜGYI ORSZÁGOS SZAKMAI TANULMÁNYI
Áramlástechnikai gépek
Feladatgyűjtemény az Áramlástechnikai gépek tárgyhoz Dr. Kullmann László Dr. Hős Csaba Dr. Váradi Sándor Budapest, 0. január. Tartalom:. Gázok sűrítése, kompresszorok munkafolyamatai.... Euler-turbinaegyenlet,
3. Gyakorlat Áramlástani feladatok és megoldásuk
3 Gyakorlat Áramlástani feladatok és megoldásuk 681 Feladat Adja meg Kelvin és Fahrenheit fokban a T = + 73 = 318 K o K T C, T = 9 5 + 3 = 113Fo F T C 68 Feladat Adja meg Kelvin és Celsius fokban a ( T
Hidrodinamikus kavitáción alapuló víztisztítási módszer vizsgálata
Hidrodinamikus kavitáción alapuló víztisztítási módszer vizsgálata Készítette: Nagy Dániel Témavezető: Dr. Csizmadia Péter BME Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék Dr. Dulovics Dezső Junior
Modern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
Sugárszivattyú H 1. h 3. sugárszivattyú. Q 3 h 2. A sugárszivattyú hatásfoka a hasznos és a bevezetett hidraulikai teljesítmény hányadosa..
Suárszivattyú suárszivattyúk működési elve ey nay eneriájú rimer folyadéksuár és ey kis eneriájú szekunder folyadéksuár imulzusseréje az ún. keverőtérben. rimer és szekunderköze lehet azonos vay eltérő
Pneumatikus szabályozócsappantyú Típus 3335/3278 Pneumatikus szabályozócsappantyú Típus Bélelt szabályozócsappantyú Típus 3335
Pneumatikus szabályozócsappantyú Típus 3335/3278 Pneumatikus szabályozócsappantyú Típus 3335-1 Bélelt szabályozócsappantyú Típus 3335 Alkalmazás Bélelt szabályozócsappantyúk technológiai alkalmazásra és
Szerelvények. Épületgépészeti kivitelezési ismeretek B.Sc. Épületgépészeti képzés, 5. félév szeptember 26.
Szerelvények Épületgépészeti kivitelezési ismeretek B.Sc. Épületgépészeti képzés, 5. félév 2013. szeptember 26. Szerelvények (fűtéstechnika, vízellátás, gázellátás) záró- és szabályozó szerelvények biztonsági
MINIMUMTESZT. Az A ramla stechnikai ge pek (A GT) c. tanta rgy vizsgaminimum ke rde sei
MINIMUMTESZT. Az A ramla stechnikai ge pek (A GT) c. tanta rgy vizsgaminimum ke rde sei A minimumteszt célja a vizsgára való alkalmasság felmérése. Minden vizsgához kapcsolódik egy minimumteszt, melyen
fojtószelep-szinkron teszter
fojtószelep-szinkron teszter Általános ismertető A SYNCTOOL fojtószelep-szinkron teszter több hengeres, hengerenkénti fojtószelepes motorok fojtószelep-szinkronjának beállításához nélkülözhetetlen digitális
Áramlástan feladatgyűjtemény. 3. gyakorlat Hidrosztatika, kontinuitás
Áramlástan feladatgyűjtemény Az energetikai mérnöki BSc és gépészmérnöki BSc képzések Áramlástan című tárgyához 3. gyakorlat Hidrosztatika, kontinuitás Összeállította: Lukács Eszter Dr. Istók Balázs Dr.
Általános környezetvédelmi technikusi feladatok
Moduláris szakmai vizsgára felkészítés környezetvédelmi területre Általános környezetvédelmi technikusi feladatok II/14. évfolyam melléklet A TISZK rendszer továbbfejlesztése Petrik TISZK TÁMOP-2.2.3-07/1-2F-2008-0011
ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VEGYIPAR ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
VEGYIPAR ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ 1. feladat 12 pont Anyagszállítás 1. Az ábrán egy egyszeres működésű dugattyús szivattyú látható. Nevezze
www.hds.bme.hu (HI) HIDRAULIKUS TÁPEGYSÉG
(HI) HIDRAULIKUS TÁPEGYSÉG 1. Hidrosztatikus hajtásokról 1.1. Bevezetés Az áramlástechnikai gépek túlnyomó többségét működési elv szerint az alábbi két csoportba sorolhatjuk: örvénygépek (pl. szivattyúk,
1. Hidrosztatikus hajtásokról
(HI) HIDRAULIKUS TÁPEGYSÉG 1. Hidrosztatikus hajtásokról 1.1. Bevezetés Az áramlástechnikai gépek túlnyomó többségét működési elv szerint az alábbi két csoportba sorolhatjuk: örvénygépek (pl. szivattyúk,
Típussorozat 3331 Pneumatikus szabályozócsappantyú Típus 3331/3278 Szabályozócsappantyú Típus 3331
Típussorozat 3331 Pneumatikus szabályozócsappantyú Típus 3331/3278 Szabályozócsappantyú Típus 3331 Alkalmazás Szabályozócsappantyú magas követelményû technológiai alkalmazásokra és csõszereléshez. Folyadékokra,
Áramlástechnikai mérések
Áramlástehnikai mérések Mérés Prandtl- ső segítségével. Előző tanulmányaikból ismert: A kontinuitás elve: A A Ahol: - a közeg sebessége az. pontban - a közeg sebessége a. pontban A, A - keresztmetszetek
Mérnöki alapok 8. előadás
Mérnöki alapok 8. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1
1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy
A II. kategória Fizika OKTV mérési feladatainak megoldása
Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett
BME Hidrodinamikai Rendszerek Tanszék
BME Hidrodinamikai Rendszerek Tanszék 3J. MÉRÉS NYOMÁSMÉRÉS 1. A mérés célja A nyomásmérő eszközök áttekintése. Nyomásmérés U- csöves és Bourdon csöves manométerrel. Adott mérőberendezés csővezetékének
54 582 06 0010 54 01 Épületgépész technikus Épületgépészeti technikus
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2011. (VII. 18.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
MUNKAANYAG. Szabó László. Áramlástani szivattyúk. A követelménymodul megnevezése:
Szabó László Áramlástani szivattyúk A követelménymodul megnevezése: Kőolaj- és vegyipari géprendszer üzemeltetője és vegyipari technikus feladatok A követelménymodul száma: 047-06 A tartalomelem azonosító
ROTAMÉTER VIZSGÁLATA. 1. Bevezetés
ROTMÉTER VIZSGÁLT. Bevezetés 0.0. 4. rotaméter az áramlási mennyiségmérők egyik ajtája. rotamétert egyaránt lehet áramló olyadékok és gázok térogatáramának mérésére használni, mégpedig kis (labor) méretektől
5. MÉRÉS NYOMÁSMÉRÉS
5. MÉRÉS NYOMÁSMÉRÉS 1. A mérés célja A nyomásmérő eszközök áttekintése. Nyomásmérés U-csöves és Bourdon csöves manométerrel. Adott mérőberendezés csővezetékének két helyén uralkodó abszolút és relatív
PONTSZÁM:S50p / p = 0. Név:. NEPTUN kód: ÜLŐHELY sorszám
Kérem, þ jellel jelölje be képzését! AKM1 VBK Környezetmérnök BSc AT01 Ipari termék- és formatervező BSc AM01 Mechatronikus BSc AM11 Mechatronikus BSc ÁRAMLÁSTAN 2. FAK.ZH - 2013.0.16. 18:1-19:4 KF81 Név:.
PELTON TURBINA MÉRÉSE
PELTON TURBINA MÉRÉSE 1. A mérés célja A mérés célja egy, a gyógyszer- és vegyiparban energia visszanyerés céljára használatos saválló jelleggörbéinek felvétele. A turbina jellemzői: Q víznyelés, esés,
Beszabályozó szelep - Csökkentett Kv értékkel
Beszabályozó szelepek STAD-R Beszabályozó szelep - Csökkentett Kv értékkel Nyomástartás & Vízminőség Beszabályozás & Szabályozás Hőmérséklet-szabályozás ENGINEERING ADVANTAGE A STAD-R beszabályozó szelep
Hőszivattyúk - kompresszor technológiák Január 25. Lurdy Ház
Hőszivattyúk - kompresszor technológiák 2017. Január 25. Lurdy Ház Tartalom Hőszivattyú felhasználások Fűtős kompresszor típusok Elérhető kompresszor típusok áttekintése kompresszor hatásfoka Minél kisebb
Zaj- és rezgés. Törvényszerűségek
Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,
Ellenáramú hőcserélő
Ellenáramú hőcserélő Elméleti összefoglalás, emlékeztető A hőcserélő alapvető működésével és az egyszerűsített számolásokkal a Vegyipari műveletek. tárgy keretében ismerkedtek meg. A mérés elvégzéséhez
Danfoss Kft. Távhőtechnikai, Ipari és HVAC Divízió
Szelepkiválasztás szempontjai Danfoss Elektronikus Akadémia Drexler Péter Danfoss Kft. Távhőtechnikai, Ipari és HVAC Divízió 1139 Budapest, Váci út. 91. Tel.: (+36) 1 450 2531/102 Fax: (+36) 1 450 2539
STAD-R. Beszabályozó szelepek DN 15-25, csökkentett Kv értékkel
STAD-R Beszabályozó szelepek DN 15-25, csökkentett Kv értékkel IMI TA / Beszabályozó szelepek / STAD-R STAD-R A STAD-R beszabályozó szelep felújítások esetén pontos hidraulikai működést tesz lehetővé rendkívül
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban
Diesel motormelegítő, előmelegítők.
A motor mindenképpen megszenvedi a hidegindítást, még akkor is, ha viszonylag könnyen beindul. A leggyakoribb probléma az, hogy az öregedő motor, ha kompresszióját némileg már elvesztette, akkor melegen
Mérnöki alapok 8. előadás
Mérnöki alapok 8. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK
9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti
Mérnöki alapok 11. előadás
Mérnöki alapok 11. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334.
A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell
A mérés A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell törekedni, minél közelebb kerülni a mérés során a valós mennyiség megismeréséhez. Mérési
F. F, <I> F,, F, <I> F,, F, <J> F F, <I> F,,
F,=A4>, ahol A arányossági tényező: A= 0.06 ~, oszt as cl> a műszer kitérése. A F, = f(f,,) függvénykapcsolatot felrajzolva (a mérőpontok közé egyenes huzható) az egyenes iránytaogense a mozgó surlódási
TBV-CM. Kombinált fogyasztói szabályozó és beszabályozó szelepek Készülék beszabályozó szelep folyamatos (modulációs) szabályozással
TBV-CM Kombinált fogyasztói szabályozó és beszabályozó szelepek Készülék beszabályozó szelep folyamatos (modulációs) szabályozással IMI TA / Szabályozó szelepek / TBV-CM TBV-CM A TBV-CM szelep a fűtési
Adatlap: Stratos 25/1-8
Adatlap: Stratos 25/1-8 Hidraulikai adatok Max. térfogatáram Max. szállítómagasság Energiahatékonysági index (EEI) Termékadatok 8.8 m³/h 8.00 m 0.20 Motoradatok Hálózati csatlakozás Bemenő áram P1 max
Cég név: Készítette: Telefon: Dátum:
Pozíció Darab Leírás 1 MQ3-4 A-O-A-BVBP Cikkszám: 964 Megjegyzés! A berendezés fényképe különböző. Komplett rendszer Az MQ egy komplett, minden az egyben rendszer, szivattyúval, meghajtómotorral, légüsttel,
Sorozat leírás: Wilo-Star-Z NOVA
Sorozat leírás: Wilo-Star-Z NOVA Ábra hasonló Kivitel Nedvestengelyű keringető szivattyú csavarzatos csatlakozással és blokkolási áramot álló szinkronmotor. Alkalmazás Ivóvíz-keringető rendszerek az iparban
Folyadékok és gázok áramlása
Folyadékok és gázok áramlása Hőkerék készítése házilag Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért
3 Ellenállás mérés az U és az I összehasonlítása alapján. 3.a mérés: Ellenállás mérése feszültségesések összehasonlítása alapján.
3 Ellenállás mérés az és az I összehasonlítása alapján 3.a mérés: Ellenállás mérése feszültségesések összehasonlítása alapján. A mérés célja: A feszültségesések összehasonlításával történő ellenállás mérési
Minta Írásbeli Záróvizsga és BSc felvételi kérdések Mechatronikai mérnök
Minta Írásbeli Záróvizsga és BSc felvételi kérdések Mechatronikai mérnök Debrecen, 2017. 01. 03-04. Név: Neptun kód: 1. Az ábrán egy hajtás fordulatszám-nyomaték jelleggörbéje látható. M(ω) a motor, az