B5. OPTIKAI ESZKÖZÖK, TÜKRÖK, LENCSÉK KÉPALKOTÁSA, OBJEKTÍVEK TÜKRÖK JELLEMZŐI, LENCSEHIBÁK. Optikai eszközök tükrök: sík gömb

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "B5. OPTIKAI ESZKÖZÖK, TÜKRÖK, LENCSÉK KÉPALKOTÁSA, OBJEKTÍVEK TÜKRÖK JELLEMZŐI, LENCSEHIBÁK. Optikai eszközök tükrök: sík gömb"

Átírás

1 B5. OPTIKAI ESZKÖZÖK, TÜKRÖK, LENCSÉK KÉPALKOTÁSA, OBJEKTÍVEK JELLEMZŐI, LENCSEHIBÁK Optikai eszközök tükrök: sík gömb lencsék: gyűjtő szóró plánparalell (síkpárhuzamos) üveglemez prizma diszperziós (felbontja a fényt spektrum) reflexiós (tükrözi, tereli a fényt) TÜKRÖK SÍKTÜKÖR: olyan sima, fényes felület, amely a ráeső fényt teljes mértékben (kb. 99%) visszaveri. Felszínen tükröző felület (optikai berendezésekben használják) Üveglap hátoldalán tükröző felület (pl. a mindennapokban használt tükör, üveglap van a tükröző felület előtt) A kép oldalfordított, egyenes állású, a képpel azonos méretű és virtuális (a felfogó ernyőn nem láttatható) lesz. GÖMBTÜKRÖK Gömbtükröknél a tükröző felület gömbfelszín része. Optikai, mérési célokra felületükön foncsorozott tükröket használnak. A gömbtükör lehet homorú: a gömbfelszín belső felülete tükröz domború: külső felülete tükröz 1

2 Homorú tükrök Homorú tükrök nevezetes sugármenetei Az optikai tengellyel párhuzamos sugarak a fókuszponton áthaladva verődnek vissza. A fókuszponton keresztül érkező fénysugarak az optikai tengellyel párhuzamosan verődnek vissza. Optikai középpontba érkező α beesési szögű fény β szögben verődik vissza: α=β. A geometriai középponton keresztül érkező sugár önmagában verődik vissza. fényszóró parabola-antenna 2

3 Homorú tükör képalkotása /f = fókusztávolság (mm)/ t (tárgytávolság) [mm] k (képtávolság) [mm] N (nagyítás mértéke) Kép jellemzői 1. t k f N 0 Pontszerű valódi kép 2. t>2f f<k<2f N<1 Fordított állású, kicsinyített, valódi 3. t=2f k=2f N=1 Fordított állású, azonos méretű, valódi 4. f<t<2f k>2f N>1 Fordított állású, nagyított, valódi 5. t=f Nincs képalkotás 6. t<f k<0 N >1 Egyenes állású, nagyított, látszólagos Nagyítás számítása: k K N t T N = 100% - azonos méret N>100% - nagyítás N<100% - kicsinyítés K kértméret N 100 [%] T valódiméret 2. t>2f f<k<2f N<1 Fordított állású, kicsinyített, valódi 3. t=2f k=2f N=1 Fordított állású, azonos méretű, valódi 3

4 4. f<t<2f k>2f N>1 Fordított állású, nagyított, valódi 5. t=f Nincs képalkotás 6. t<f k<0 N >1 Egyenes állású, nagyított, látszólagos 4

5 Domború tükrök (külső felszíne fényes) Domború tükör nevezetes sugármenetei Az optikai tengellyel párhuzamos sugarak úgy verődnek vissza, hogy a visszavert fénysugár meghosszabbítása a fókuszponton áthalad Az optikai tengellyel párhuzamosan verődnek vissza azok a sugarak, melyek meghosszabbítva a fókuszpontot érintik. Optikai középpontba érkező α beesési szögű fény β szögben verődik vissza: α=β. A meghosszabbításával a geometriai középponton keresztül érkező sugár önmagában verődik vissza. Domború tükör képalkotása t=változó k<0 N <1 Egyenes állású, kicsinyített, látszólagos kép Tükrök távolságtörvénye k t f t f k f ; k ; t f k t k t t f k f 5

6 LENCSÉK Olyan optikai eszközök, amelyek átlátszó anyagból készülnek, gömb ill. sík felületek határolják. Léteznek szóró és gyűjtőlencsék. Gyűjtőlencsék A gyűjtőlencsék az optikai tengellyel párhuzamosan érkező fénysugarakat úgy törik meg, hogy azok a fókuszpontban metszik egymást. Fősík szerkesztése: a fény kétszer törik meg: mikor belép, és amikor kilép a lencséből, a 2 töréspont összekötéséből lesz a fősík. h = fősík (fogalma: A lencsébe beeső és onnan kilépő sugarak irányvonalának metszéspontjai adják. 6

7 Szórólencsék A szórólencsék az optikai tengellyel párhuzamosan érkező fénysugarakat úgy törik meg, mintha azok a fókuszpontból indulnának ki. 7

8 Gyűjtőlencsék nevezetes sugármenetei A lencsére az optikai tengellyel párhuzamosan eső fénysugarak a gyűjtőlencse esetén a lencse után az optikai tengelyen metszik egymást. Ezt a pontot gyújtópontnak vagy fókuszpontnak nevezzük. Szórólencse esetén az optikai tengellyel párhuzamos sugarak széttartóvá válnak, mintha a lencse előtt, az optikai tengelyen levő pontból indultak volna ki. Ezt a pontot (a szórólencse fókuszpontját) úgy kapjuk meg, hogy a széttartó fénysugarakat a tárgy felöli oldal irányába meghosszabbítjuk. A fénysugár megfordíthatósága miatt igaz, hogy azok a fénysugarak, amelyek a lencse fókuszpontján átesnek a lencsére, az azon való áthaladás után az optikai tengellyel párhuzamosan haladnak tovább. Azok a fénysugarak, amelyek a lencse középpontján haladnak át, irányváltoztatás nélkül folytatják az útjukat. Gyűjtőlencsék képalkotása /f = fókusztávolság (mm)/ t (tárgytávolság) [mm] k (képtávolság) [mm] N (nagyítás mértéke) Kép jellemzői 1. t k f N 0 Pontszerű valódi kép 2. t>2f f<k<2f N<1 Fordított állású, kicsinyített, valódi 3. t=2f k=2f N=1 Fordított állású, azonos méretű, valódi 4. f<t<2f k>2f N>1 Fordított állású, nagyított, valódi 5. t=f Nincs képalkotás 6. t<f k<0 N >1 Egyenes állású, nagyított, látszólagos 2. t>2f f<k<2f N<1 Fordított állású, kicsinyített, valódi 8

9 3. t=2f k=2f N=1 Fordított állású, azonos méretű, valódi 4. f<t<2f k>2f N>1 Fordított állású, nagyított, valódi 5. t=f Nincs képalkotás 9

10 6. t<f k<0 N >1 Egyenes állású, nagyított, látszólagos 10

11 Szórólencsék nevezetes sugármenetei A lencse az optikai tengelyével párhozamos fénysugarakat a töréssel úgy teszi széttartóvá, mintha azok a fény beérkezésének oldaláról egy F pontból indultak volna ki. Ezt látszólagos fókuszpontnak nevezzük. Az f=of távolságot pedig látszólagos fókusztávolságnak hívjuk, amelyet a számításoknál negatív előjelűnek veszünk. A látszólagos fókuszpontba összetartó fénysugarakat a szórólencse a törés után az optikai tengellyel párhuzamossá teszi. Ha a lencse elég vékony, akkor az O optikai középpontjába bármilyen irányból érkező fénysugarak lényegében irányváltoztatás nélkül haladnak tovább. Általában a domború lencse gyűjtő-, a homorú szórólencseként viselkedik. Ha viszont a lencse anyagának törésmutatója kisebb, mint az azt körülvevő közeg törésmutatója, akkor a domború lencse szóró-, a homorú pedig gyűjtőlencse lesz. Szórólencse képalkotása t=változó k<0 N <1 Egyenes állású, kicsinyített, látszólagos kép Lencsék távolságtörvénye k t f t f k f ; k ; t f k t k t t f k f 11

12 PLÁNPARALELL (SÍKPÁRHUZAMOS) ÜVEGLEMEZ Sík és párhuzamos határfelülettel rendelkező, átlátszó anyagból készült tárgy. Tökéletes párhuzamos síkok alkotják. A fénysugár az üvegen áthaladva eltolódik, de a belépő és a kilépő fény irányvonala párhuzamos. Nem torzul a kép, csak eltolódik. i: beesési szög r: törési szög n 2,1 1 n 1,2 Felhasználása: optikai berendezések, műszerek, moziban a gépterem és a nézőterem között. PRIZMA Diszperziós prizma: Diszperziós, eloszlató, szóró: a fehér fényt alkotóira bontja, és szétszórja őket látszanak a szivárványszínek. Az ibolya ill. kék színek szóródnak, törnek a legnagyobb mértékben. A felfogó ernyőn sávokban jelennek meg a spektrum színei. Δ: törőszög (azok az oldalak határolják, amelyeken be ill. kilép a fény (törőlapok) Reflexiós prizma: fényterelésre használják, pl. pentaprizma. Pentaprizma: nem bontja színeire a fehér fényt, hanem tereli a fényt és megfordítja a képet. 12

13 OBJEKTÍVEK Foglalatban elhelyezett lencserendszerek. Szóró- és gyűjtőlencsék, különböző törésmutatójú üvegek alkotják. Céljuk a minél élesebb kép létrehozása. A lencsetagok száma szerinti csoportosítás: Egyszerű objektív (monokel) Egy lencsetagból áll, minden képalkotási hibával rendelkezik Összetett objektív: két vagy annál több tagból áll, az objektívbe beépített lencsetagok egymás képalkotási hibáit korrigálják. Felépítés szerinti csoportosítás Szimmetrikus objektív (nagylátószögű): a fényrekesz két oldalán azonos számú, formájú, méretű lencsék helyezkednek el. Félig szimmetrikus objektív: lencsetagok száma, alakja, elrendezése azonos, a mérete viszont különböző Aszimmetrikus objektív: pl. Petzval-féle arckép objektív Az objektívek további jellemzői fókusztávolság látószög F (fényerő) normál objektív F=d :1,4 teleobjektív f>d :4 nagylátószögű objektív f<d :1,2 zoom objektív 1:2 d: az objektív hasznos átmérője [mm] f: fókusztávolság [mm] 13

14 Látószög: az objektív által befogható tér két szélső pontjából kiinduló fénysugarak által bezárt szög. Normál objektív: a fókusztávolság megegyezik az objektív átmérőjével, látószöge közötti. Nagy látószögű objektív: a fókusztáv kisebb, mint az átmérő, látószöge nagyobb, mint 60 ( ), fényereje nagy. A képet torzítja, a közeli tárgyak irreálisan nagyok, a távoliak kicsik lesznek. Szélsőséges példa erre a halszemoptika Teleobjektív: A fókusztáv nagyobb, mint az átmérő. Fényereje kicsi, látószöge A térből csak nagyon kicsi részletet fog be, a távoli objektumokat közel hozza, nagyít. Zoom (gumi-, vario-) objektív: Fókusztávolsága változtatható: 35 mm 175 mm. Makroobjektív: jelentős nagyításra képes. Fényrekesz: objektívbe jutó fényt szabályozza. Hasznos átmérő: mikor a legtöbb fény jut be (totál nyitva van). Minél közelebb van a fényerő 1:1-hez, annál jobb, annál több fény jut be. Fényerő d F f F: fényerő f: fókusztávolság [mm] d: szabad (belépő) fényrekesz; a fényrekesz legnagyobb hasznos átmérője [mm] Minél nagyobb a fényerő szám, annál kisebb a fényrekesz átmérője. Blende értékek: 1; 1.4; 2; 2.8; 4; 5.6; 8; 11; 16; 22; 32; 45; 64; 90 A blende értékek alapján változó fényrekesz átmérő mindig felezi (vagy ellentétes irányú változásnál kétszeresére növeli) az objektíven áthaladó fény mennyiségét. Mélységélesség Távolságtartomány, amelyen belül a kép pontjai élesen képződnek le, előtte és utána életlen. A mélységélesség nő a fókusztávolság és a fényrekesz átmérőjének csökkenésével. Az objektívek fókusztávolságát összegezve állapítják meg, így kapják meg az eredő fókusztávolságot. A lencsetagok fókusztávolságának felhasználásával azok megfelelő képletbe rendezésével számíthatjuk az eredő fókusztávolságot. Mindegy, hány lencsetagból áll az objektív, annak egy fókusztávolsága van. 14

15 LENCSEHIBÁK Képalkotási hibák, melyek minden egyszerű objektívre (egy lencsetag) igazak. A lencsehibák javíthatóak, így nagyon jó képalkotású objektíveket tudnak készíteni. A korrekció történhet a fényrekesz átmérőjének csökkentésével, ill. gyűjtő- és szórólencsék objektívbe való együttes beépítésével. A lencsehibákat csoportosíthatjuk: geometriai vagy monokromatikus (egyszínű) hibák kromatikus (fehér fénnyel kapcsolatos) hiba Nyíláshiba Gömbi eltérés (szferikus aberráció). Az optikai tengellyel párhuzamosan érkező fénysugarak nem egy pontban metszik a tengelyt. Minél távolabb van a fénysugár az optikai tengelytől, annál közelebb metszi el azt. A rekesznyílás szűkítésével javítható. Egyszínű (monokromatikus) fénnyel történő leképezés esetén is előálló hiba, amelyet az okoz, hogy a lencse szélein áthaladó sugarak nagyobb eltérítést szenvednek, mint az optikai tengellyel kis szöget bezáró fénysugarak. Ezért ugyanarról a pontról a lencse szélein áthaladó sugarak a lencséhez közelebbi pontban alkotnak képet, míg a közepén áthaladók a lencsétől távolabb metszik egymást. Képtorzítás (disztorzió) A kép élességétől független, a kép alakjára vonatkozó leképezési hiba. Ha egy négyzetrácsos hálót képezünk le, két jellegzetes forma, hordó, ill. párna alakú torzítás alakulhat ki. Ezeknél a nagyítás a kép különböző részein nem egyforma Párna alakú Hordó alakú Javítható azzal, hogy a fényrekeszt a két lencsetag közé helyezve építik be. 15

16 Pontnélküliség (asztigmagtizmus) nem pontszerű leképezés A függőleges vagy vízszintes vonalak életlenségét okozza. Ugyanúgy, mint a tükör esetén, még ha keskeny fénynyaláb esik is a lencsére, ha az optikai tengellyel nagy szöget zár be, nem egyetlen pontba képeződik le, hanem két rövid, egymásra merőleges, éles vonallá húzódik össze. Az egyik vonal a lencséhez közelebb, a másik a lencsétől távolabb keletkezik. A két képvonalat a tárgypontból különböző irányban induló sugarak hozzák létre. Javítható különböző lencsetagokkal, amelyek alak és törésmutató tekintetében is különbözőek. Flintüveg (kemény, kevésbé karcolódó) ill. koronaüveg (lágyabb, kevésbé ellenálló) törésmutatója eltérő, ezeket építik be az objektívekbe. Anasztigmát objektívek: ezekben az objektívekben a képalkotási hiba már nem látható. Képdomborúság Javítható különböző lencsetagokkal (szóró- és gyűjtőlencsékkel) és rekeszeléssel Képgörbület (képmező elhajlás). Ha a lencse optikai tengelyére merőleges, nagy kiterjedésű sík tárgyat képezünk le, a róla keletkező képpontok nem egy síkban, hanem általában görbe felületen keletkeznek Nagy képek kivetítésekor ezért gyakran alkalmaznak a széleinél kissé hajlított vásznat. A képnek csak az a része látható a felfogó ernyőn élesen, amelyen átmegy a kép keletkezésének a síkja. A hiba javítható objektívbe épített gyűjtő és szórólencsékkel és rekeszeléssel. Kromatikus hiba színi eltérés (kromatikus aberráció) A fehér fénnyel történő leképezés során keletkezett kép különböző részei különbözőképpen elszíneződnek. Ennek az az oka, hogy a lencse törésmutatójának értéke függ a fény színétől is, aminek következtében a széleken áthaladó, tehát nagyobb mértékben eltérített fénysugarak jobban szóródnak (l. prizma, színszórás), mint amelyek a lencse közepén haladnak át. Így a kép belső része kékes, külső része vöröses elszíneződést mutat. A különböző hullámhosszúságú fénysugarak különbözőképpen törnek, máshol metszi az optikai tengelyt a kék ill. vörös sugár. Javítása különböző lencsetagokkal (gyűjtő- és szórólencsék) történik, a javított objektíveket akromát objektíveknek (kék, vörös színre javított) ill. apokromát objektíveknek (kék, zöld, vörös, vagyis minden színre javított) nevezzük. Ezek a sugarak egy pontban metszik az optikai tengelyt. Üstököshiba Az objektívre ferdén érkeznek a fénysugarak, és úgy törik a fény, hogy üstökösszerű csóva jön létre, képalkotás nélkül. A hiba javítható gyűjtő- és szórólencsékkel és rekeszeléssel. 16

OPTIKA. Gömbtükrök képalkotása, leképezési hibák. Dr. Seres István

OPTIKA. Gömbtükrök képalkotása, leképezési hibák. Dr. Seres István OPTIKA Gömbtükrök képalkotása, Dr. Seres István Tükrök http://www.mozaik.info.hu/mozaweb/feny/fy_ft11.htm Seres István 2 http://fft.szie.hu Gömbtükrök Domború tükör képalkotása Jellegzetes sugármenetek

Részletesebben

Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú

Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú Jegyzeteim 1. lap Fotó elmélet 2015. október 9. 14:42 Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú Kardinális elemek A lencse képalkotását meghatározó geometriai elemek,

Részletesebben

Történeti áttekintés

Történeti áttekintés A fény Történeti áttekintés Arkhimédész tükrök segítségével gyújtotta fel a római hajókat. A fény hullámtermészetét Cristian Huygens holland fizikus alapozta meg a 17. században. A fénysebességet először

Részletesebben

Digitális tananyag a fizika tanításához

Digitális tananyag a fizika tanításához Digitális tananyag a fizika tanításához A lencsék fogalma, fajtái Az optikai lencsék a legegyszerűbb fénytörésen alapuló leképezési eszközök. Fajtái: a domború és a homorú lencse. optikai középpont optikai

Részletesebben

OPTIKA. Vékony lencsék, gömbtükrök. Dr. Seres István

OPTIKA. Vékony lencsék, gömbtükrök. Dr. Seres István OPTIKA Vékony lencsék, gömbtükrök Dr. Seres István Geometriai optika 3. Vékony lencsék Kettős gömbelület (vékonylencse) énytörése R 1 és R 2 sugarú gömbelületek között n relatív törésmutatójú közeg o 2

Részletesebben

A fény visszaverődése

A fény visszaverődése I. Bevezető - A fény tulajdonságai kölcsönhatásokra képes egyenes vonalban terjed terjedési sebessége függ a közeg anyagától (vákuumban 300.000 km/s; gyémántban 150.000 km/s) hullám tulajdonságai vannak

Részletesebben

OPTIKA. Ma sok mindenre fény derül! /Geometriai optika alapjai/ Dr. Seres István

OPTIKA. Ma sok mindenre fény derül! /Geometriai optika alapjai/ Dr. Seres István Ma sok mindenre fény derül! / alapjai/ Dr. Seres István Legkisebb idő Fermat elve A fény a legrövidebb idejű pályán mozog. I. következmény: A fény a homogén közegben egyenes vonalban terjed t s c minimális,

Részletesebben

OPTIKA. Vékony lencsék képalkotása. Dr. Seres István

OPTIKA. Vékony lencsék képalkotása. Dr. Seres István OPTIKA Vékony lencsék képalkotása Dr. Seres István Vékonylencse fókusztávolsága D 1 f (n 1) 1 R 1 1 R 2 Ha f > 0, gyűjtőlencse R > 0, ha domború felület R < 0, ha homorú felület n a relatív törésmutató

Részletesebben

FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot?

FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot? FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot? 3. Mit nevezünk fényforrásnak? 4. Mi a legjelentősebb

Részletesebben

d) A gömbtükör csak domború tükröző felület lehet.

d) A gömbtükör csak domború tükröző felület lehet. Optika tesztek 1. Melyik állítás nem helyes? a) A Hold másodlagos fényforrás. b) A foszforeszkáló jel másodlagos fényforrás. c) A gyertya lángja elsődleges fényforrás. d) A szentjánosbogár megfelelő potrohszelvénye

Részletesebben

Fotó elmélet. Objektívek Megtalálhatók: Videókamera Diavetítőben Írásvetítőben Webkamera Szkenner És így tovább

Fotó elmélet. Objektívek Megtalálhatók: Videókamera Diavetítőben Írásvetítőben Webkamera Szkenner És így tovább Jegyzeteim 1. lap Fotó elmélet 2016. január 11. 14:43 Objektívek Megtalálhatók: Videókamera Diavetítőben Írásvetítőben Webkamera Szkenner És így tovább Egyszerű objektívek Gyűjtő és szóró lencsék Meniszkusz

Részletesebben

A fény útjába kerülő akadályok és rések mérete. Sokkal nagyobb. összemérhető. A fény hullámhoszánál. A fény hullámhoszával

A fény útjába kerülő akadályok és rések mérete. Sokkal nagyobb. összemérhető. A fény hullámhoszánál. A fény hullámhoszával Optika Fénytan A fény útjába kerülő akadályok és rések mérete Sokkal nagyobb összemérhető A fény hullámhoszánál. A fény hullámhoszával Elektromágneses spektrum Az elektromágneses hullámokat a keltés módja,

Részletesebben

Geometriai optika. Alapfogalmak. Alaptörvények

Geometriai optika. Alapfogalmak. Alaptörvények Alapfogalmak A geometriai optika a fénysugár fogalmára épül, mely homogén közegben egyenes vonalban terjed, két közeg határán visszaverődik és/vagy megtörik. Alapfogalmak: 1. Fényforrás: az a test, amely

Részletesebben

Optika gyakorlat 5. Gyakorló feladatok

Optika gyakorlat 5. Gyakorló feladatok Optika gyakorlat 5. Gyakorló feladatok. példa: Leképezés - Fruzsika játszik Fruzsika több nagy darab ívelt üveget tart maga elé. Határozd meg, hogy milyen típusú objektívek (gyűjtő/szóró) ezek, és milyen

Részletesebben

5.1. ábra. Ábra a 36A-2 feladathoz

5.1. ábra. Ábra a 36A-2 feladathoz 5. Gyakorlat 36A-2 Ahogyan a 5. ábrán látható, egy fénysugár 5 o beesési szöggel esik síktükörre és a 3 m távolságban levő skálára verődik vissza. Milyen messzire mozdul el a fényfolt, ha a tükröt 2 o

Részletesebben

A geometriai optika. Fizika május 25. Rezgések és hullámok. Fizika 11. (Rezgések és hullámok) A geometriai optika május 25.

A geometriai optika. Fizika május 25. Rezgések és hullámok. Fizika 11. (Rezgések és hullámok) A geometriai optika május 25. A geometriai optika Fizika 11. Rezgések és hullámok 2019. május 25. Fizika 11. (Rezgések és hullámok) A geometriai optika 2019. május 25. 1 / 22 Tartalomjegyzék 1 A fénysebesség meghatározása Olaf Römer

Részletesebben

Optikai alapmérések. Mivel több mérésről van szó, egyesével írom le és értékelem ki őket. 1. Törésmutató meghatározása a törési törvény alapján

Optikai alapmérések. Mivel több mérésről van szó, egyesével írom le és értékelem ki őket. 1. Törésmutató meghatározása a törési törvény alapján Optikai alapmérések Mérést végezte: Enyingi Vera Atala Mérőtárs neve: Fábián Gábor (7. mérőpár) Mérés időpontja: 2010. október 15. (12:00-14:00) Jegyzőkönyv leadásának időpontja: 2010. október 22. A mérés

Részletesebben

Optikai eszközök modellezése. 1. feladat Egyszerű nagyító (lupe)

Optikai eszközök modellezése. 1. feladat Egyszerű nagyító (lupe) A kísérlet célkitűzései: Az optikai tanulói készlet segítségével tanulmányozható az egyszerű optikai eszközök felépítése, képalkotása. Eszközszükséglet: Optika I. tanulói készlet Balesetvédelmi figyelmeztetés

Részletesebben

2. OPTIKA. A tér egy pontján akárhány fénysugár áthaladhat egymás zavarása nélkül.

2. OPTIKA. A tér egy pontján akárhány fénysugár áthaladhat egymás zavarása nélkül. 2. OPTIKA Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert vagy ők maguk fénysugarakat bocsátanak ki (fényforrások), vagy a fényforrások megvilágítják őket. A tárgyakat

Részletesebben

GEOMETRIAI OPTIKA I.

GEOMETRIAI OPTIKA I. Elméleti háttér GEOMETRIAI OPTIKA I. Törésmutató meghatározása a törési törvény alapján Snellius-Descartes törvény Az új közeg határához érkező fény egy része behatol az új közegbe, és eközben általában

Részletesebben

f r homorú tükör gyűjtőlencse O F C F f

f r homorú tükör gyűjtőlencse O F C F f 0. A fény visszaveődése és töése göbült hatáfelületeken, gömbtükö és optikai lencse. ptikai leképezés kis nyílásszögű gömbtükökkel, és vékony lencsékkel. A fő sugámenetek ismetetése. A nagyító, a mikoszkóp

Részletesebben

25. Képalkotás. f = 20 cm. 30 cm x =? Képalkotás

25. Képalkotás. f = 20 cm. 30 cm x =? Képalkotás 25. Képalkotás 1. Ha egy gyujtolencse fókusztávolsága f és a tárgy távolsága a lencsétol t, akkor t és f viszonyától függ, hogy milyen kép keletkezik. Jellemezd a keletkezo képet a) t > 2 f, b) f < t

Részletesebben

Fény, mint elektromágneses hullám, geometriai optika

Fény, mint elektromágneses hullám, geometriai optika Fény, mint elektromágneses hullám, geometriai optika Az elektromágneses hullámok egyik fajtája a szemünk által látható fény. Látható fény (400 nm 800 nm) (vörös ibolyakék) A látható fehér fény a különböző

Részletesebben

1. ábra Tükrös visszaverődés 2. ábra Szórt visszaverődés 3. ábra Gombostű kísérlet

1. ábra Tükrös visszaverődés 2. ábra Szórt visszaverődés 3. ábra Gombostű kísérlet A kísérlet célkitűzései: A fény visszaverődésének kísérleti vizsgálata, a fényvisszaverődés törvényének megismerése, síktükrök képalkotásának vizsgálata. Eszközszükséglet: szivacslap A/4 írólap vonalzó,

Részletesebben

OPTIKA-FÉNYTAN. A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző.

OPTIKA-FÉNYTAN. A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző. OPTIKA-FÉNYTAN A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző. A fény sebessége: vákuumban közelítőleg: c km 300000

Részletesebben

A kísérlet célkitűzései: A fénytani lencsék megismerése, tulajdonságainak kísérleti vizsgálata és felhasználási lehetőségeinek áttekintése.

A kísérlet célkitűzései: A fénytani lencsék megismerése, tulajdonságainak kísérleti vizsgálata és felhasználási lehetőségeinek áttekintése. A kísérlet célkitűzései: A fénytani lencsék megismerése, tulajdonságainak kísérleti vizsgálata és felhasználási lehetőségeinek áttekintése. Eszközszükséglet: Optika I. tanulói készlet főzőpohár, üvegkád,

Részletesebben

Leképezési hibák Leképezési hibák típusai

Leképezési hibák Leképezési hibák típusai Leképezési hibák A képalkotás leírásánál eddig paraxiális közelítést alkalmaztunk, azaz az optikai tengelyhez közeli, azzal kis szöget bezáró sugarakra korlátoztuk a vizsgálatot A gyakorlatban szükség

Részletesebben

A diákok végezzenek optikai méréseket, amelyek alapján a tárgytávolság, a képtávolság és a fókusztávolság közötti összefüggés igazolható.

A diákok végezzenek optikai méréseket, amelyek alapján a tárgytávolság, a képtávolság és a fókusztávolság közötti összefüggés igazolható. Az optikai paddal végzett megfigyelések és mérések célkitűzése: A tanulók ismerjék meg a domború lencsét és tanulmányozzák képalkotását, lássanak példát valódi képre, szerezzenek tapasztalatot arról, mely

Részletesebben

OPTIKA-FÉNYTAN. A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző.

OPTIKA-FÉNYTAN. A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző. OPTIKA-FÉNYTAN A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző. A fény sebessége: vákuumban közelítőleg: c km 300000

Részletesebben

2. Miért hunyorognak a csillagok? Melyik az egyetlen helyes válasz? a. A Föld légkörének változó törésmutatója miatt Hideg-meleg levegő

2. Miért hunyorognak a csillagok? Melyik az egyetlen helyes válasz? a. A Föld légkörének változó törésmutatója miatt Hideg-meleg levegő 1. Milyen képet látunk a karácsonyfán lévı üveggömbökben? a. Egyenes állású, kicsinyített képet. mert c. Egyenes állású, nagyított képet. domborótükör d. Fordított állású, nagyított képet. b. Fordított

Részletesebben

Geometriai Optika (sugároptika)

Geometriai Optika (sugároptika) Geometriai Optika (sugároptika) - Egyszerû optikai eszközök, ahogy már ismerjük õket - Mi van ha egymás után tesszük: leképezések egymásutánja (bonyolult) - Gyakorlatilag fontos eset: paraxiális közelítés

Részletesebben

Kidolgozott minta feladatok optikából

Kidolgozott minta feladatok optikából Kidolgozott minta feladatok optikából 1. Egy asztalon elhelyezünk két síktükröt egymásra és az asztalra is merőleges helyzetben. Az egyik tükörre az asztal lapjával párhuzamosan lézerfényt bocsátunk úgy,

Részletesebben

Csillagászati észlelés gyakorlat I. 3. óra: Távcsövek és távcsőhibák

Csillagászati észlelés gyakorlat I. 3. óra: Távcsövek és távcsőhibák Csillagászati észlelés gyakorlat I. 3. óra: Távcsövek és távcsőhibák Hajdu Tamás & Sztakovics János & Perger Krisztina Bőgner Rebeka & Császár Anna 2018. március 8. 1. Távcsőtípusok 3 fő típust különböztetünk

Részletesebben

A látás és látásjavítás fizikai alapjai. Optikai eszközök az orvoslásban.

A látás és látásjavítás fizikai alapjai. Optikai eszközök az orvoslásban. A látás és látásjavítás fizikai alapjai. Optikai eszközök az orvoslásban. Orvosi fizika és statisztika Varjú Katalin 202. október 5. Vizsgára készüléshez ajánlott: Damjanovich Fidy Szöllősi: Orvosi biofizika

Részletesebben

Optikai lencsék leképzési hibái

Optikai lencsék leképzési hibái Optikai lencsék leképzési hibái A fényképező objektívekben alkalmazott lencsék és lencserendszerek még a legjobb esetben sem lehetnek tökéletesen mentesek a lencsehibáktól. Itt nem a gyártás során fellépő

Részletesebben

Összeállította: Juhász Tibor 1

Összeállította: Juhász Tibor 1 A távcsövek típusai Refraktorok és reflektorok Lencsés távcső (refraktor) Galilei, 1609 A TÁVCSŐ objektív Kepler, 1611 Tükrös távcső (reflektor) objektív Newton, 1668 refraktor reflektor (i) Legnagyobb

Részletesebben

A szem optikája. I. Célkitűzés: II. Elméleti összefoglalás: A. Optikai lencsék

A szem optikája. I. Célkitűzés: II. Elméleti összefoglalás: A. Optikai lencsék A szem optikája I. Célkitűzés: Ismertetjük a geometriai optika alapjait, a lencsék képalkotási tulajdonságait. Meghatározzuk szemüveglencsék törőerősségét. Az orvosi gyakorlatban optikai lencsékkel a mikroszkópos

Részletesebben

Optika kérdéssor. 2010/11 tanév. Milyen kapcsolatban van a fényvisszaverődés törvénye a Fermat elvvel?

Optika kérdéssor. 2010/11 tanév. Milyen kapcsolatban van a fényvisszaverődés törvénye a Fermat elvvel? Optika kérdéssor 2010/11 tanév Mit mond ki a Fermat elv? Mit mond ki a fényvisszaverődés törvénye? Milyen kapcsolatban van a fényvisszaverődés törvénye a Fermat elvvel? Mit mond ki a fénytörés törvénye?

Részletesebben

OPTIKA, HŐTAN. 12. Geometriai optika

OPTIKA, HŐTAN. 12. Geometriai optika OPTIKA, HŐTAN 12. Geometriai optika Bevezetés A fényjelenségek, a fény terjedésének törvényeivel a fénytan (optika) foglalkozik. Már az ókorban ismert volt a fénysugár fogalma (Eukleidész), a fény egyenes

Részletesebben

Optika az orvoslásban

Optika az orvoslásban Optika az orvoslásban Makra Péter Orvosi Fizikai és Orvosi Informatikai Intézet 2018. november 19. Makra Péter (SZTE DMI) Optika az orvoslásban 2018. november 19. 1 99 Tartalom 1 Bevezetés 2 Visszaverődés

Részletesebben

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS OPTIKA Geometriai optika Snellius Descartes-törvény A fényhullám a geometriai optika szempontjából párhuzamos fénysugarakból áll. A vákuumban haladó fénysugár a geometriai egyenes fizikai megfelelője.

Részletesebben

a domború tükörrıl az optikai tengellyel párhuzamosan úgy verıdnek vissza, meghosszabbítása

a domború tükörrıl az optikai tengellyel párhuzamosan úgy verıdnek vissza, meghosszabbítása α. ömbtükök E gy gömböt síkkal elmetszve egy gömbsüveget kapunk (a sík a gömböt egy köben metsz). A gömbtükök gömbsüveg alakúak, lehetnek homoúak (konkávok) vagy domboúak (konvexek) annak megfelelıen,

Részletesebben

Optika Fizika 11. Szaktanári segédlet

Optika Fizika 11. Szaktanári segédlet Optika Fizika 11. Szaktanári segédlet Készítette: Rapavi Róbert Lektorálta: Gavlikné Kis Anita Kiskunhalas, 2014. december 31. 2 Tartalomjegyzék 1. óra 3. oldal A geometriai optika alapjai; egyszerű optikai

Részletesebben

A fény útjába kerülő akadályok és rések mérete. Sokkal nagyobb. összemérhető. A fény hullámhoszánál. A fény hullámhoszával

A fény útjába kerülő akadályok és rések mérete. Sokkal nagyobb. összemérhető. A fény hullámhoszánál. A fény hullámhoszával Optika Fénytan A fény útjába kerülő akadályok és rések mérete Sokkal nagyobb összemérhető A fény hullámhoszánál. A fény hullámhoszával rádióhullám infravörös látható ultraibolya röntgen gamma sugárzás

Részletesebben

100 kérdés Optikából (a vizsgára való felkészülés segítésére)

100 kérdés Optikából (a vizsgára való felkészülés segítésére) 1 100 kérdés Optikából (a vizsgára való felkészülés segítésére) _ 1. Ismertesse a Rayleigh kritériumot? 2. Ismertesse egy objektív felbontóképességének definícióját? 3. Hogyan kell egy CCD detektort és

Részletesebben

Geometriai optika (Vázlat)

Geometriai optika (Vázlat) Geometriai optika (Vázlat). A geometriai optika tárgya 2. Geometriai optikában használatos alapfogalmak a) Fényforrások és csoportosításuk b) Fénysugár c) Árnyék, félárnyék 3. A fény terjedési sebességének

Részletesebben

Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen. Fermat-elv

Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen. Fermat-elv Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen Kivonat Geometriai optika: közelítés, amely a fényterjedést, közeghatáron való áthaladást geometriai alakzatok görbék segítségével

Részletesebben

A teljes elektromágneses színkép áttekintése

A teljes elektromágneses színkép áttekintése Az elektromágneses spektrum. Geometriai optika: visszaverődés, törés, diszperzió. Lencsék és tükrök képalkotása (nevezetes sugarak, leképezési törvény) A teljes elektromágneses színkép áttekintése Az elektromágneses

Részletesebben

Optika. Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29.

Optika. Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. Optika Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. Bevezetés A fény és az elektromágneses spektrum A színek keletkezése A fény sebessége A fényhullámok interferenciája A fény polarizációja

Részletesebben

O 1.1 A fény egyenes irányú terjedése

O 1.1 A fény egyenes irányú terjedése O 1.1 A fény egyenes irányú terjedése 1 blende 1 és 2 rés 2 összekötő vezeték Előkészület: A kísérleti lámpát teljes egészében egy ív papírlapra helyezzük. A négyzetes fénynyílást széttartó fényként használjuk

Részletesebben

24. Fénytörés. Alapfeladatok

24. Fénytörés. Alapfeladatok 24. Fénytörés Snellius - Descartes-törvény 1. Alapfeladatok Üvegbe érkezo 760 nm hullámhosszú fénysugár beesési szöge 60 o, törési szöge 30 o. Mekkora a hullámhossza az üvegben? 2. Valamely fény hullámhossza

Részletesebben

Optika gyakorlat Példa: Leképezés hengerlencsén keresztül. 1. ábra. Hengerlencse. P 1 = n l n R = P 2. = 2 P 1 (n l n) 2. n l.

Optika gyakorlat Példa: Leképezés hengerlencsén keresztül. 1. ábra. Hengerlencse. P 1 = n l n R = P 2. = 2 P 1 (n l n) 2. n l. Optika gyakorlat 5. Mátrix optika eladatok: hengerlencse, rezonátor, nagyító, nyalábtágító, távcsövek. Példa: Leképezés hengerlencsén keresztül Adott egy R 2 cm görbületi sugarú,, 7 törésmutatójú gömblencse,

Részletesebben

Mechanika - Versenyfeladatok

Mechanika - Versenyfeladatok Mechanika - Versenyfeladatok 1. A mellékelt ábrán látható egy jobbmenetű csavar és egy villáskulcs. A kulcsra ható F erővektor nyomatékot fejt ki a csavar forgatása céljából. Az erő támadópontja és az

Részletesebben

6Előadás 6. Fénytörés közeghatáron

6Előadás 6. Fénytörés közeghatáron 6Előadás 6. Fénytörés közeghatáron Fénytörés esetén a Snellius-Descartes törvény adja meg a beeső- ésa megtört sugár közti összefüggést, mely a következő: sinα n = 2 sin β n 1 Ahol α és β a beesési ill.

Részletesebben

Megoldás: feladat adataival végeredménynek 0,46 cm-t kapunk.

Megoldás: feladat adataival végeredménynek 0,46 cm-t kapunk. 37 B-5 Fénynyaláb sík üveglapra 40 -os szöget bezáró irányból érkezik. Az üveg 1,5 cm vastag és törésmutatója. Az üveglap másik oldalán megjelenő fénynyaláb párhuzamos a beeső fénynyalábbal, de oldalirányban

Részletesebben

OPTIKA. Vékony lencsék. Dr. Seres István

OPTIKA. Vékony lencsék. Dr. Seres István OPTIKA Vékon lencsék Dr. Seres István Gömbfelület féntörése R sugarú gömbfelület mögött n relatív törésmutatójú közeg x d x

Részletesebben

A NAPFÉNY ÉS A HŐ I. A FÉNY TULAJDONSÁGAINAK MEGFIGYELÉSE. Dátum:

A NAPFÉNY ÉS A HŐ I. A FÉNY TULAJDONSÁGAINAK MEGFIGYELÉSE. Dátum: I. A FÉNY TULAJDONSÁGAINAK MEGFIGYELÉSE A NAPFÉNY ÉS A HŐ 1. A meleg éghajlatú tengerparti országokban való kirándulásaitok során bizonyára láttatok a házak udvarán fekete tartályokat kifolyónyílással

Részletesebben

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY SÍKIDOMOK Síkidom 1 síkidom az a térelem, amelynek valamennyi pontja ugyan abban a síkban helyezkedik el. A síkidomokat

Részletesebben

LÁTSZERÉSZ ÉS FOTÓCIKK-KERESKEDŐ

LÁTSZERÉSZ ÉS FOTÓCIKK-KERESKEDŐ LÁTSZERÉSZ ÉS FOTÓCIKK-KERESKEDŐ MESTERVIZSGÁRA FELKÉSZÍTŐ JEGYZET Budapest, 2014 Szerzők: Németh Roberta Váry Péter Lektorálta: Borók Rita Kiadja: Magyar Kereskedelmi és Iparkamara A tananyag kidolgozása

Részletesebben

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek ELEKTROMÁGNESES REZGÉSEK a 11. B-nek Elektromos Kondenzátor: töltés tárolására szolgáló eszköz (szó szerint összesűrít) Kapacitás (C): hány töltés fér el rajta 1 V-on A homogén elektromos mező energiát

Részletesebben

Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető

Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető Optika gyakorlat. Geometriai optika: planparalel lemez, prizma, hullámvezető. példa: Fényterjedés planparalel lemezen keresztül A plánparalel lemezen történő fényterjedés hatására a fénysugár újta távolsággal

Részletesebben

Rövid ismertető. Modern mikroszkópiai módszerek. A mikroszkóp. A mikroszkóp. Az optikai mikroszkópia áttekintése

Rövid ismertető. Modern mikroszkópiai módszerek. A mikroszkóp. A mikroszkóp. Az optikai mikroszkópia áttekintése Rövid ismertető Modern mikroszkópiai módszerek Nyitrai Miklós 2010. március 16. A mikroszkópok csoportosítása Alapok, ismeretek A működési elvek Speciális módszerek A mikroszkópia története ld. Pdf. Minél

Részletesebben

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. március 19. (hétfő délelőtti csoport) 1. Mikroszkóp vizsgálata 1.1. A mérés

Részletesebben

Csillagászati észlelés gyakorlat I. 3. óra: Távcsövek és távcs hibák

Csillagászati észlelés gyakorlat I. 3. óra: Távcsövek és távcs hibák Csillagászati észlelés gyakorlat I. 3. óra: Távcsövek és távcs hibák Hajdu Tamás & Sztakovics János & Perger Krisztina B gner Rebeka & Császár Anna Távcs típusok 3 f típust különböztetünk meg: Lencsés

Részletesebben

7. Előadás. A vékony lencse közelítésben a lencse d vastagsága jóval kisebb, mint a tárgy és képtávolságok.

7. Előadás. A vékony lencse közelítésben a lencse d vastagsága jóval kisebb, mint a tárgy és képtávolságok. 7. Előadás Lencsék, lencsehibák A vékony lencse A vékony lencse közelítésben a lencse d vastagsága jóval kisebb, mint a tárgy és képtávolságok. A vékony lencse fókusztávolságára á á vonatkozó összefüggés:

Részletesebben

OPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István

OPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István OPTIKA Diszperzió, interferencia Dr. Seres István : A fény elektromágneses hullám A fehér fény összetevői: Seres István 2 http://fft.szie.hu : A fény elektromágneses hullám: Diszperzió: Különböző hullámhosszúságú

Részletesebben

ELEKTROMOSSÁG ÉS MÁGNESESSÉG

ELEKTROMOSSÁG ÉS MÁGNESESSÉG ELEKTROMOSSÁG ÉS MÁGNESESSÉG A) változat Név:... osztály:... 1. Milyen töltésű a proton? 2. Egészítsd ki a következő mondatot! Az azonos elektromos töltések... egymást. 3. A PVC-rudat megdörzsöltük egy

Részletesebben

Optika kérdéssor 2013/14 tanév

Optika kérdéssor 2013/14 tanév Optika kérdéssor 2013/14 tanév Mit mond ki a Fermat elv? Mit mond ki a fényvisszaverődés törvénye? Milyen kapcsolatban van a fényvisszaverődés törvénye a Fermat elvvel? Mit mond ki a fénytörés törvénye?

Részletesebben

Optika gyakorlat 1. Fermat-elv, fénytörés, reflexió sík és görbült határfelületen

Optika gyakorlat 1. Fermat-elv, fénytörés, reflexió sík és görbült határfelületen Optika gyakorlat 1. Fermat-elv, fénytörés, reflexió sík és görbült határfelületen Kivonat Geometriai optika: közelítés, amely a fényterjedést, közeghatáron való áthaladást geometriai alakzatok görbék segítségével

Részletesebben

c v A sebesség vákumbanihoz képesti csökkenését egy viszonyszámmal, a törémutatóval fejezzük ki. c v

c v A sebesség vákumbanihoz képesti csökkenését egy viszonyszámmal, a törémutatóval fejezzük ki. c v Optikai alapogalmak A ény tulajdonságai A ény elektromágneses rezgés. Kettős, hullám-, illetve részecsketermészete van, ezért bizonyos jelenségeket hullámtani, másokat pedig kvantummechanikai tárgyalással

Részletesebben

Spektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer

Spektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer Spektrográf elvi felépítése A: távcső Itt lencse, de általában komplex tükörrendszer Kis kromatikus aberráció fontos Leképezés a fókuszsíkban: sugarak itt metszik egymást B: maszk Fókuszsíkba kerül (kamera

Részletesebben

Fényhullámhossz és diszperzió mérése

Fényhullámhossz és diszperzió mérése KLASSZIKUS FIZIKA LABORATÓRIUM 9. MÉRÉS Fényhullámhossz és diszperzió mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 19. Szerda délelőtti csoport 1. A mérés célja

Részletesebben

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika 2. OPTIKA 2.1. Elmélet Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert fényt bocsátanak ki, vagy a rájuk eső fényt visszaverik, és ezt a fényt a szemünk érzékeli. A

Részletesebben

Fizikai példatár 1. Optika feladatgyűjtemény Csordásné Marton, Melinda

Fizikai példatár 1. Optika feladatgyűjtemény Csordásné Marton, Melinda Fizikai példatár 1. Optika feladatgyűjtemény Csordásné Marton, Melinda Fizikai példatár 1.: Optika feladatgyűjtemény Csordásné Marton, Melinda Lektor: Mihályi, Gyula Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027

Részletesebben

Szög és görbület mérése autokollimációs távcsővel

Szög és görbület mérése autokollimációs távcsővel Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Mechatronika, Optika és Gépészeti Informatika Tanszék Szög és görbület mérése autokollimációs távcsővel Segédlet az Optika (BMEGEMIMM21)

Részletesebben

Fény. , c 2. ) arányával. Ez az arány a két anyagra jellemző adat, a két anyag egymáshoz képesti törésmutatója (n 2;1

Fény. , c 2. ) arányával. Ez az arány a két anyagra jellemző adat, a két anyag egymáshoz képesti törésmutatója (n 2;1 Fény A fény a mechanikai hullámokhoz hasonlóan rendelkezik a hullámok tulajdonságaival, ezért ahhoz hasonlóan két anyag határán visszaverődik és megtörik: Fény visszaverődése Egy másik anyag határára érve

Részletesebben

Fénysugarak visszaverődésének tanulmányozása demonstrációs optikai készlet segítségével

Fénysugarak visszaverődésének tanulmányozása demonstrációs optikai készlet segítségével Fénysugarak visszaverődésének tanulmányozása demonstrációs optikai készlet segítségével Demonstrációs optikai készlet lézer fényforrással Az optikai elemeken mágnesfólia található, így azok fémtáblára

Részletesebben

Budainé Kántor Éva Reimerné Csábi Zsuzsa Lückl Varga Szidónia

Budainé Kántor Éva Reimerné Csábi Zsuzsa Lückl Varga Szidónia Budainé Kántor Éva Reimerné Csábi Zsuzsa Lückl Varga Szidónia Egyszerű optikai eszközök Lencsék: Domború lencsék: melyeknek közepe vastagabb Homorú lencsék: melyeknek a közepe vékonyabb, mint a széle Tükrök:

Részletesebben

Bevezető fizika (VBK) zh2 tesztkérdések

Bevezető fizika (VBK) zh2 tesztkérdések Mi a nyomás mértékegysége? NY) kg m 2 /s 2 TY) kg m 2 /s GY) kg/(m s 2 ) LY) kg/(m 2 s 2 ) Mi a fajhő mértékegysége? NY) kg m 2 /(K s 2 ) GY) J/K TY) kg m/(k s 2 ) LY) m 2 /(K s 2 ) Mi a lineáris hőtágulási

Részletesebben

Optika kérdéssor 2016/17 tanév

Optika kérdéssor 2016/17 tanév Optika kérdéssor 2016/17 tanév 1. Mit mond ki a Fermat elv? 2. Mit mond ki a fényvisszaverődés törvénye? 3. Milyen kapcsolatban van a fényvisszaverődés törvénye a Fermat elvvel? 4. Mit mond ki a fénytörés

Részletesebben

Optika. Fizika 11. Készítette: Rapavi Róbert. Lektorálta: Gavlikné Kis Anita. Kiskunhalas, december 31.

Optika. Fizika 11. Készítette: Rapavi Róbert. Lektorálta: Gavlikné Kis Anita. Kiskunhalas, december 31. Optika Fizika 11. Készítette: Rapavi Róbert Lektorálta: Gavlikné Kis Anita Kiskunhalas, 2014. december 31. 2 Balesetvédelem Minden munkahelyen, így a természettudományos kísérletek végzésekor is be kell

Részletesebben

FIZIKA ZÁRÓVIZSGA 2015

FIZIKA ZÁRÓVIZSGA 2015 FIZIKA ZÁRÓVIZSGA 2015 TESZT A következő feladatokban a három vagy négy megadott válasz közül pontosan egy helyes. Írd be az általad helyesnek vélt válasz betűjelét a táblázat megfelelő cellájába! Indokolni

Részletesebben

FIZIKA MUNKAFÜZET 11. ÉVFOLYAM III. KÖTET

FIZIKA MUNKAFÜZET 11. ÉVFOLYAM III. KÖTET FIZIKA MUNKAFÜZET 11. ÉVFOLYAM III. KÖTET Készült a TÁMOP-3.1.3-11/2-2012-0008 azonosító számú "A természettudományos oktatás módszertanának és eszközrendszerének megújítása a Vajda Péter Evangélikus Gimnáziumban"

Részletesebben

Alapfogalmak. objektívtípusok mélységélesség mennyi az egy?

Alapfogalmak. objektívtípusok mélységélesség mennyi az egy? 2007. február 5. Alapfogalmak objektívtípusok mélységélesség mennyi az egy? A látószög arányosan változik a gyújtótávolsággal. ZOOM objektív: fókusztávolsága adott objektíven keresztül fokozatmentesen

Részletesebben

Foglalkozási napló. Látszerész és optikai árucikk-kereskedő

Foglalkozási napló. Látszerész és optikai árucikk-kereskedő Foglalkozási ló a 20 /20. tanévre Látszerész és optikai árucikk-kereskedő (OKJ száma: 54 725 0) szakma gyakorlati oktatásához 14. évfolyam A ló vezetéséért felelős: A ló megnyitásának dátuma: A ló lezárásának

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Csordásné Marton Melinda. Fizikai példatár 1. FIZ1 modul. Optika feladatgyűjtemény

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Csordásné Marton Melinda. Fizikai példatár 1. FIZ1 modul. Optika feladatgyűjtemény Nyugat-magyarországi Egyetem Geoinformatikai Kara Csordásné Marton Melinda Fizikai példatár 1 FIZ1 modul Optika feladatgyűjtemény SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999

Részletesebben

Az elektromágneses sugárzás kölcsönhatása az anyaggal

Az elektromágneses sugárzás kölcsönhatása az anyaggal Az elektromágneses sugárzás kölcsönhatása az anyaggal Radiometriai alapfogalmak Kisugárzott felületi teljesítmény Besugárzott felületi teljesítmény A fény kölcsönhatása az anyaggal 1. M ΔP W ΔA m 2 E be

Részletesebben

Optika fejezet felosztása

Optika fejezet felosztása Optika Optika fejezet felosztása Optika Geometriai optika vagy sugároptika Fizikai optika vagy hullámoptika Geometriai optika A közeg abszolút törésmutatója: c: a fény terjedési sebessége vákuumban, v:

Részletesebben

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése Mérési jegyzőkönyv Szőke Kálmán Benjamin 2010. november 16. Mérés célja: Feladat meghatározni a mikroszkópon lévő

Részletesebben

- abszolút törésmutató - relatív törésmutató (más közegre vonatkoztatott törésmutató)

- abszolút törésmutató - relatív törésmutató (más közegre vonatkoztatott törésmutató) OPTIKAI MÉRÉSEK A TÖRÉSMUTATÓ Törésmutató fenomenologikus definíció geometriai optika eszköztára (pl. fénysugár) sini c0 n 1 = = = ( n1,0 ) c sin r c 0, c 1 = fény terjedési sebessége vákuumban, illetve

Részletesebben

OPTIKA. Lencse rendszerek. Dr. Seres István

OPTIKA. Lencse rendszerek. Dr. Seres István OPTIKA Lencse rendszerek Dr. Seres István Nagyító képalkotása Látszólagos, egyenes állású nagyított kép Nagyítás: k = - 25 cm (tisztánlátás) 1 f N 1 t k t 1 0,25 0,25 t 1 t 1 f 0,25 0,25 f 0,25 f 1 0,25

Részletesebben

Pelyhe János: Világítástechnikai Jegyzet 2006 / Színház és Filmművészeti Egyetem FÉNYTAN I.-II. (1.-2. tétel)

Pelyhe János: Világítástechnikai Jegyzet 2006 / Színház és Filmművészeti Egyetem FÉNYTAN I.-II. (1.-2. tétel) FÉNYTAN I.-II. (1.-2. tétel) A FÉNY A fény az emberi szem számára érzékelhető elektromágneses sugárzás. amely a szemben fényérzetet kelt, és ez által látható Alapmeghatározásai - elektromágneses hullám

Részletesebben

AGalois-gráf vizuálisan ábrázolja a tananyag szerkezetét, s így a kapott rajz alapján

AGalois-gráf vizuálisan ábrázolja a tananyag szerkezetét, s így a kapott rajz alapján Kovács Szilvia A Galois-gráf alkalmazása a fizika tanításában Napjainkban igen széles a tankönyvek skálája, és a tanárnak döntenie kell, melyiket választja. Az egyes tankönyvek tananyagfeldolgozása ugyanis

Részletesebben

Mikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv

Mikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv (-as számú mérés) mérési jegyzõkönyv Készítette:, II. éves fizikus... Beadás ideje:... / A mérés leírása: A mérés során egy mikroszkóp különbözõ nagyítású objektívjeinek nagyítását, ezek fókusztávolságát

Részletesebben

Fiatal lány vagy öregasszony?

Fiatal lány vagy öregasszony? Zöllner-illúzió. A hosszú, átlós vonalak valójában párhuzamosak, de a keresztvonalkák miatt váltakozó irányúnak látszanak. És bár egyiküket sem látjuk párhuzamosnak a szomszédjával, ha figyelmesen és tudatosan

Részletesebben

d) Az a pont, ahova a homorú tükör az optikai tengely adott pontjából kiinduló sugarakat összegyőjti.

d) Az a pont, ahova a homorú tükör az optikai tengely adott pontjából kiinduló sugarakat összegyőjti. Optika tesztek 1. Melyik állítás nem helyes? a) A Hold másodlagos fényforrás. b) A foszforeszkáló jel másodlagos fényforrás. c) A gyertya lángja elsıdleges fényforrás. d) A szentjánosbogár megfelelı potrohszelvénye

Részletesebben

OPTIKA. Optikai rendszerek. Dr. Seres István

OPTIKA. Optikai rendszerek. Dr. Seres István OPTIKA Dr. Seres István Nagyító képalkotása Látszólagos, egyenes állású nagyított kép Nagyítás: k = - 25 cm (tisztánlátás) 1 f N 1 t k t 1 0,25 0,25 1 t 1 t 0,25 f 0,25 Seres István 2 http://fft.szie.hu

Részletesebben

OPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István

OPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István OPTIKA Diszperzió, interferencia Dr. Seres István : A fény elektromágneses hullám A fehér fény összetevői: Seres István 2 http://fft.szie.hu : A fény elektromágneses hullám: Diszperzió: Különböző hullámhosszúságú

Részletesebben

3. OPTIKA I. A tér egy pontján akárhány fénysugár áthaladhat egymás zavarása nélkül.

3. OPTIKA I. A tér egy pontján akárhány fénysugár áthaladhat egymás zavarása nélkül. 3. OPTIKA I. Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert vagy ők maguk fénysugarakat bocsátanak ki (fényforrások), vagy a fényforrások megvilágítják őket. A tárgyakat

Részletesebben

Gyújtótávolság Élesség, mélységélesség (DOF - Depth Of Field)

Gyújtótávolság Élesség, mélységélesség (DOF - Depth Of Field) Optikai alapok A szövegek forrásai: http://www.szoldan.eu/content/view/46/88888926/lang,hu/ http://www.fotozz-alkoss.info/images/modulok/oktatas/foto.html http://www.fotozz.hu 2010. szeptember 06. A fény

Részletesebben