HA5GN. JN97mk25eg. Porvasmagok. gyakorlatban. Jánosy. János Sebestyén n HA5GN

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "HA5GN. ha5gn@freestart.hu. JN97mk25eg. Porvasmagok. gyakorlatban. Jánosy. János Sebestyén n HA5GN"

Átírás

1 Porvasmagok és s ferritekf a rövidhullámú rádióamatőr gyakorlatban Jánosy János Sebestyén n HA5GN

2 Optimális állomás s felépítés Nap

3 Mire használunk RF vasmagokat? 1. Antenna illesztés az antenna talppontjában, impedancia transzformálás (Rossz megoldás: hangoló a TCVR után, kábelveszteségek a rossz SWR miatt) 2. Szigetelő fojtó az állomás és az érintésvédelmi föld között 3. Áramfojtó balun a tápvonalon (esetleg mindkét végén) Mindig mindent mérni! Csak akkor érünk el eredményt, és kerüljük el a kínlódást meg a csalódást, ha vasmagos tekercseinket megbízhatóan meg tudjuk mérni!! Nap

4 Légmagos áramfojtó balunok I. Nap

5 Légmagos áramfojtó balunok II. Nap

6 Tyúklétr trás doublet (2x 41.8m) I. Nap

7 Tyúklétr trás doublet (2x 41.8m) II. Nap

8 Tyúklétrás doublet (2x 41.8m) III. Nap

9 K3EA és s beépített balun Nap

10 Balunok a fiókb kból Nap

11 Balunok a börzéről Nap

12 Földhurok bontása Érintésvédelmi földf Nap I Földelt konnektor ( zöldsárga ) I Laptop tápt negatív ága I USB csatlakozó negatív ág I Antenna koax köpenye I Villámv mvédelmi földf

13 Porvasmagok, ferritek a fiókb kból Nap

14 Hivatkozások I.: 1. Saját t cikkek (Mire használunk porvasmagot, ferritet): HA5GN: Tapasztalatok antenna hangolókkal, balunokkal (RT ÉK 2006) HA5GN: Állomás optimalizálás - módszerek, készülékek (RT 2010/4, 2010/5, 2010/6, 2010/7) HA5GN:Amatőrállomások helyi zavarmentesítése (MRC Műszaki Nap 2010) HA5GN: Antennaillesztők (MRC Műszaki Nap 2011) Nap

15 Hivatkozások II.: 2. Saját t cikkek (Mérési( módszerekm dszerek): HA5GN: Mini hálózatanalizátortor ( Nap 2012) HA5GN: Egy nagyon hasznos műszer: a minivna (RT 2013/1, 2013/2, 2013/3, 2013/4) HA5GN: A régi harcos újra aktív: az R130-as készülék balunja (RT 2013/9) Nap

16 Hivatkozások III.: 3. Felhasznált lt cikkek (Mérési( módszerekm dszerek): Bartók k LászlL szló HA5AG: Ismerjük meg ferritgyűrűinket! (RT ÉK 2003) Dr. Gschwindt András HA5WH: Balunokról néhány sorban (RT 2004/7) Regály Gyula HA5HU: Toroid kalkulátor (RT 2012/4) Nap

17 Hivatkozások IV.: 4. Hasznos publikáci ciók: The Lure of the Ladder Line A review of QST article "The Lure of Ladder Line" The Classic Multiband Dipole Antenna Smart Tuning, Emergency Antenna Loop, Tactical HF Kit: STEALTH Shield current chokes: some measurements Build an All Band HF Air Core 1:1 Choke Balun Nap

18 Tekercs tulajdonságai I. Nap

19 Tekercs tulajdonságai II. Ideális tekercs: nincs önkapacitása X L = ω L = 2 π f L (Egyenesen arányos a frekvenciával: val: grafikonon a nullából l induló egyenes; X: itt most nem törődünk a komplex számmal, csak az abszolút értékkel, mint valós s számmal) Valódi tekercs: van egy párhuzamos p önkapacitás X c = 1 / (ω( C) = 1 / (2 π f C) (Fordítottan arányos: a grafikonon a végtelenbv gtelenből l induló,, csökken kkenő értékű hiperbola) A párhuzamos p ágak közül k az dominál, amelynek kisebb az impedanciája ja,, mert az viszi a nagyobb áramot Van, amikor fontos a nagy jóság j g (nagy Q), pl. rezgőkör; r; van amikor pont fordítva kis jóság j g (kis Q) kell, pl. fojtótekercs tekercs Nap

20 Valós s tekercs: van önkapacitás Nap

21 22 H H kitűnő ferrit fojtótekercs tekercs Nap

22 100 H H elfogadható ferrit fojtótekercs tekercs Nap

23 Ellenőrz rzés: 100 pf mérése Nap

24 Tekercsveszteség g I. Tekercsek veszteségei gei: 1. Rézveszteség: : a huzal ohmikus ellenáll llásából l adódó veszteség; 2. Örvényáramú veszteség: : a tekercs mágneses m terébe helyezett vezetőben indukált áram, aminek a vezető ellenáll llásából származ rmazó veszteségi teljesítm tménye a mágneses m mezőn n keresztül a tekercs áramát t terheli 3. Átmágnesezési si veszteség: : a tekercsbe helyezett vasmag mágnesezési si ciklusaiból l adódó veszteség Rézveszteség: Ha van mondjuk egy adott ellenáll llású,, 1m hosszú huzalunk, hogy tudjuk abból l a legnagyobb induktivitást elérni? A (nagy( jóságú) ) tekercs hossza lehetőleg leg ne legyen nagyobb, mint az átmérője, inkább egy kicsit kevesebb; ; a fojtót t veszteségesnek szeretjük, az lehet hosszú Nap

25 Tekercsveszteség g II. egy rácskr cskör Nap

26 Tekercsveszteség g III. Örvényáramú veszteség: : a jój tekercs hossza/átm tmérője majdnem egyforma, és s ne legyenek fémtf mtárgyak egy hossznyi/átm tmérőnyi távolságban; valamint a tekercsbe dugott vasmag vezetőképess pessége legyen kicsi, ugyanis a veszteségi teljesítm tmény: P V = I 2 * R Ha R-t R t megduplázom, az örvényáram (I) feleződik, mivel ez utóbbi négyzeten van, a veszteségi teljesítm tmény is feleződik: (I/2) 2 * 2R = I 2 /4 * 2R = (I 2 * R) / 2 = P V / 2 Porvasmagok, ferritek lényege: l igen magas fajlagos ellenáll llás; a trafó lemezei festve vannak (szigeteltek), jobb minőségű kimenő trafók k lemezeire még m g hártyapaph rtyapapírt is ragasztottak... Nap

27 Tekercsveszteség g IV. Átmágnesezési si veszteség: : csak a vasmagokra jellemző,, vákuumnak, v (de még m g a levegőnek is) ilyen gyakorlatilag nincs; H: térerősség: A * menet / méter; m B: indukció: V * sec / méterm 2 Legfontosabb anyagi tulajdonság: R (relatív permeabilitás): hányszor h lesz nagyobb B, ha levegő helyett vasmag? A vesztesv eszteség a görbe g terület letével arányos; Lágy mágneses: m a görbe vékony; v Kemény mágneses: m görbe széles Nap

28 HA5HU toroid programja: R számítása sa Kell hozzá: 1. Tolómérő (méretek) 2. Próbatekecs ( menet) 3. Induktivitásm smérő (hány H H a tekercs?) Megkapjuk R értékét, t, és az mindent meghatároz Itt ez R = 49.3 a szürke színjelz njelzés s katalógus szerint 50 jó egyezés Nap

29 Miért jój a nagy R érték? Azonos menetszám azonos szórt kapacitás de jóval nagyobb induktivitás, tehát az impedancia görbe baloldalát balra tolhatjuk Azonos induktivitáshoz kevesebb menet szükséges, tehát csökken a szórt kapacitás tehát az impedancia görbe jobboldalát jobbra tolhatjuk! Mindkét esetben a görbe SZÉLESEDIK, MEGNŐ A SÁVSZÉLESSÉG! Légmagos balun, R =1 : max. kb. 1:3 a frekvenciaátfogás ( MHz, MHz, régi rövidhullámhoz 2 tekercs!) Porvasmagos balun, R = : max. kb. 1:10 frekvenciaátfogás ( MHz, egy balun megcsinálja a régi rövidhullámot!) Ferrites balun, R = : max kb. 1:50 átfogás! (Egy balun megteszi a MHz -et, új rövidhullám)! Nap

30 Széles sáv: s Jó 22 μh-s ferrites fojtó mérése Nap

31 Balunok a fiókb kból Nap

32 Anyagtulajdonságok: gok: Porvasmagok #2, #6 Nap

33 Anyagtulajdonságok gok: : ferritek #61 #43 #77 Nap

34 Transzformátoros balun: Fritzel balun I. Nap

35 Transzformátoros balun: Fritzel balun II. Előny: Szekunder oldalán a földpont határozottan középen, csak tényleg szimmetrikus antennákhoz jó, ne legyenek a beam/dipól közelében vezető objektumok, tartja a határozott iránykarakterisztikát, jó nagyfrekis földet lehet lehozni a koax palástján Hátrány: csak kisebb relatív permeabilitásnál működik jól; porvasak R = 8 (sárga, #6 anyag), R = 10 (barnásvörös, #2), ferritek R = 50 (Kőporc szürke jel), R = 125 (Amidon #61), R = 850 (Amidon #43) Áramfojtó balun: Előny: működik nagyobb permeabilitással, R = 2000 (Amidon #77), amitől nagyobb a sávszélessége; földfüggetlen a kimenete, érdektelen, hogy mi van az antenna körül, és hol van az antenna földje, az lebeghet. Hátrány: nem kapunk tőle jó nagyfrekis földet, mert csak szigetel, nem javítja az iránykarakterisztikát, ha elektromosan vezető objektumok vannak a beam-hez közel (közel: távolság kisebb, mint λ/6) Nap

36 Transzformátoros balun: Fritzel balun III. Szűkebb frekvenciatartományban, kisebb relatív permeabilitásokkal működik jól. A terheletlen Fritzel balun kimenetébe belemérve 90.9 H, a bemenetét mérve 90.3 H az induktivitás (ami ugyanaz), és ez két-két mágnesesen szorosan csatolt tekercs induktivitása, ami FT es ferritet felételezve menet. Tehát a trifiláris trafó 3x11 menetes. Ha a vas T lenne, akkor ez 3x87 menettel lehetne megvalósítható, ami nonszensz. A két tekercs együttes impedanciája 1.8 MHz-en is megvan 1027 Ω, ami a kábel impedanciájának több, mint húszszorosa, tehát a terheletlen üresjárati áram ugyancsak kicsi lesz. Ha csak 3.5 MHz-ről akarunk indulni, akkor 45 H is elég volna, ami kb. 3x7 menetet jelent. Ekkor javul a kisebb önkapacitás miatt az 50 MHz feletti viselkedés. A beam, amin ez a balun ül, hatsávos, 10MHz... 30MHz között, itt a balun teljesen megfelelő. Nap

37 Áramfojtó balun (később): Fritzel balun IV. Mint látni fogjuk, az áramfojtó egy koaxból ferritgyűrűre megtekert induktivitás, amelynek az impedanciáját a koax fémharisnyáján illik mérni (a szórt kapacitást tulajdonképpen az adja). Az ökölszabály szerint a szükséges impedancia legalább a kábel impedanciájának négyszerese (200 Ω ), de inkább a tízszerese (500 Ω) kellene legyen. A K3EA által javasolt balunok impedanciái a R = 2000 (Amidon #77) miatt ennél sokkal nagyobbak, a balun az impedanciájának a kapacitív oldalán (hiperbola) működik. A Kőporc 50-es anyagra tekert áramfojtó a kisebb, a R = 50 relatív permeabilitás miatt már 1.8 MHz-en nem is működik jól. Nap

38 Fritzel balun V MHz, Amidon #61-as anyag Nap

39 Fritzel balun VI MHz,, FT trafó Nap

40 K3EA áramfojtó balun (Guanella) 12 menet lazán RG-143 teflon koaxból 2 db FT ferritgyűrűn, induktivitásként az impedanciája megmérve. Ökölszabály: legyen a kábelimpedancia (50 Ω) legalább négyszerese (200 Ω) de inkább tízszerese (500 Ω) Nap

41 K3EA áramfojtó balun mérése Nap

42 K3EA utánépítések (HA5GN) fotója Nap

43 K3EA utánépítések (HA5GN) adatai Nap

44 Balunok a fiókb kból Nap

45 Guanella áramfojtó,, 18 bifiláris menet Kőporc K N50-es ferriten Nap

46 Porvasmagok, ferritek a fiókb kból Nap

47 Mért R kb. 8, hasonlít t a #6 sárga porvasra de a veszteség g nagy!!! Nap

48 Ez előbb 10 menettel mértem, m itt 5 menet: Nap

49 73 & DX D de HA5GN Sok sikert a vasakhoz! QRZ? Nap

Vector Network Analyzer (VNA)

Vector Network Analyzer (VNA) Vector Network Analyzer (VNA) Egy nagyon sokoldalú, jól használható műszer Jánosy János Sebestyén HA5GN Hivatkozások: 1. Friedrichshafen-i tapasztalatok, gondolatok (RT 2007/8, 2007/9) 2. Egy nagyon sokololdalú

Részletesebben

antennaillesztés (Konzultáci

antennaillesztés (Konzultáci Az életvédelem, földelések, zajvédelem delem, antennaillesztés összefüggéseiről (Konzultáci ció) Jánosy János Sebestyén n HA5GN Ezek mind összefüggnek Nem ebben a sorrendben nézzük át, ez fontossági sorrend

Részletesebben

HA5GN. JN97mk25eg. Nem rezonáns. ns vagy improvizált. antennák használata. Jánosy. János Sebestyén n HA5GN

HA5GN. JN97mk25eg. Nem rezonáns. ns vagy improvizált. antennák használata. Jánosy. János Sebestyén n HA5GN Nem rezonáns ns vagy improvizált antennák használata Jánosy János Sebestyén n HA5GN Sokadjára visszatérő téma! MRC Műszaki Nap 2011: HA5GN: ANTENNA ILLESZTŐK improvizált, nem rezonáns antennák illesztése

Részletesebben

ANTENNA ILLESZTŐK. (Improvizált, nem rezonáns. hangolatlan kimenetű tranzisztoros végfokokhoz) HA5GN. Jánosy. János Sebestyén n HA5GN

ANTENNA ILLESZTŐK. (Improvizált, nem rezonáns. hangolatlan kimenetű tranzisztoros végfokokhoz) HA5GN. Jánosy. János Sebestyén n HA5GN ANTENNA ILLESZTŐK (Improvizált, nem rezonáns ns antennák k illesztése se kényes, k hangolatlan kimenetű tranzisztoros végfokokhoz) v Jánosy János Sebestyén n HA5GN Hivatkozások: 1. http://www.w6ier.org/images/the%20lure%20of%20ladder%20line.pdf

Részletesebben

HA5GN. ha5gn@freestart.hu. JN97mk25eg. zavarmentesítése. Jánosy. János Sebestyén n HA5GN

HA5GN. ha5gn@freestart.hu. JN97mk25eg. zavarmentesítése. Jánosy. János Sebestyén n HA5GN dióállomások helyi zavarmentesítése se Jánosy János Sebestyén n HA5GN Hivatkozások: 1. HA5GN: Állomás s optimalizálás - módszerek, készülékek (RT 2010/4, 2010/5, 2010/6, 2010/7) 2. HA5GN: Tapasztalatok

Részletesebben

Tekercsek. Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: Innen:

Tekercsek. Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: Innen: Tekercsek Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: u i =-N dφ/dt=-n dφ/di di/dt=-l di/dt Innen: L=N dφ/di Ezt integrálva: L=N Φ/I A tekercs induktivitása

Részletesebben

Négypólusok helyettesítő kapcsolásai

Négypólusok helyettesítő kapcsolásai Transzformátorok Magyar találmány: Bláthy Ottó Titusz (1860-1939), Déry Miksa (1854-1938), Zipernovszky Károly (1853-1942), Ganz Villamossági Gyár, 1885. Felépítés, működés Transzformátor: négypólus. Működési

Részletesebben

MÁGNESES TÉR, INDUKCIÓ

MÁGNESES TÉR, INDUKCIÓ Egy vezetéket 2 cm átmérőjű szigetelő testre 500 menettel tekercselünk fel, 25 cm hosszúságban. Mekkora térerősség lép fel a tekercs belsejében, ha a vezetékben 5 amperes áram folyik? Mekkora a mágneses

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

Az együttfutásról általában, és konkrétan 2.

Az együttfutásról általában, és konkrétan 2. Az együttfutásról általában, és konkrétan 2. Az első részben áttekintettük azt, hogy milyen számítási eljárás szükséges ahhoz, hogy egy szuperheterodin készülék rezgőköreit optimálisan tudjuk megméretezni.

Részletesebben

Számítási feladatok a 6. fejezethez

Számítási feladatok a 6. fejezethez Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz

Részletesebben

Villamosságtan szigorlati tételek

Villamosságtan szigorlati tételek Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok

Részletesebben

TARTALOMJEGYZÉK EL SZÓ... 13

TARTALOMJEGYZÉK EL SZÓ... 13 TARTALOMJEGYZÉK EL SZÓ... 13 1. A TÖLTÉS ÉS ELEKTROMOS TERE... 15 1.1. Az elektromos töltés... 15 1.2. Az elektromos térer sség... 16 1.3. A feszültség... 18 1.4. A potenciál és a potenciálfüggvény...

Részletesebben

3. számú mérés Szélessávú transzformátor vizsgálata

3. számú mérés Szélessávú transzformátor vizsgálata 3. számú mérés Szélessávú transzformátor vizsgálata A mérésben a hallgatók megismerkedhetnek a szélessávú transzformátorok főbb jellemzőivel. A mérési utasítás első része a méréshez szükséges elméleti

Részletesebben

TARTALOMJEGYZÉK. Előszó 9

TARTALOMJEGYZÉK. Előszó 9 TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha

Részletesebben

Dr. Gschwindt András HA5WH, gschwindt@mht.bme.hu

Dr. Gschwindt András HA5WH, gschwindt@mht.bme.hu NVIS-antennák a gyakorlatban Dr. Gschwindt András HA5WH, gschwindt@mht.bme.hu A rövidhullámok általános használata ismét kezd előtérbe kerülni. A digitalizálódó műsorszórás (DRM) és a holtzóna nélküli,

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel? Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. március 12. (hétfő délelőtti csoport) 1. A mérés elmélete Az anyagok külső mágneses tér hatására polarizálódnak. Általában az

Részletesebben

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése Kutatási beszámoló 2015. február Gyüre Balázs BME Fizika tanszék Dr. Simon Ferenc csoportja Tangens delta mérésére alkalmas mérési összeállítás elkészítése A TKI-Ferrit Fejlsztő és Gyártó Kft.-nek munkája

Részletesebben

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét ELEKTROTECHNIKA (VÁLASZTHATÓ) TANTÁRGY 11-12. évfolyam A tantárgy megnevezése: elektrotechnika Évi óraszám: 69 Tanítási hetek száma: 37 + 32 Tanítási órák száma: 1 óra/hét A képzés célja: Választható tantárgyként

Részletesebben

EGYENÁRAMÚ TÁPEGYSÉGEK

EGYENÁRAMÚ TÁPEGYSÉGEK dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan

Részletesebben

Uef UAF. 2-1. ábra (2.1) A gyakorlatban fennálló nagyságrendi viszonyokat (r,rh igen kicsi, Rbe igen nagy) figyelembe véve azt kapjuk, hogy.

Uef UAF. 2-1. ábra (2.1) A gyakorlatban fennálló nagyságrendi viszonyokat (r,rh igen kicsi, Rbe igen nagy) figyelembe véve azt kapjuk, hogy. Az alábbiakban néhány példát mutatunk a CMR számítására. A példák egyrészt tanulságosak, mert a zavarelhárítással kapcsolatban fontos, általános következtetések vonhatók le belőlük, másrészt útmutatásul

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. október 13. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. október 13. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Antenna Analyzer plus rádiófrekvenciás impedanciamérő 100KHz-től 200MHz-ig ill. 425MHz-től 445MHZ-ig tartalmaz még induktivitás kapacitás mérőt

Antenna Analyzer plus rádiófrekvenciás impedanciamérő 100KHz-től 200MHz-ig ill. 425MHz-től 445MHZ-ig tartalmaz még induktivitás kapacitás mérőt "Az Antenna Analyzer plus egy több funkciós, a rádióamatőr tevékenység során jól használható mérőműszer. Mérete lehetővé teszi, hogy könnyedén magunkkal vigyük akár kitelepülésre is, a panel mérete 115mmx75mm

Részletesebben

7 sávos, egyszerű, függőleges körsugárzó

7 sávos, egyszerű, függőleges körsugárzó 7 sávos, egyszerű, függőleges körsugárzó Dr. Gschwindt András HA5WH gschwindt@mht.bme.hu A rádióamatőröknek engedélyezett sávok száma és a meglevők szélessége az utóbbi évtizedekben örvendetesen növekedett.

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. október 13. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. október 13. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

TV IV. sávi lemezantenna SZABÓ ZOLTÁN

TV IV. sávi lemezantenna SZABÓ ZOLTÁN TV IV. sávi lemezantenna SZABÓ ZOLTÁN BHG Bevezetés A TV IV. sávi átjátszóprogram kiépítése szükségessé tette egy az ebben a sávban működő antennapanel kifejlesztését, amely úgy adó-, mint vevőantennaként

Részletesebben

Háromfázisú hálózat.

Háromfázisú hálózat. Háromfázisú hálózat. U végpontok U V W U 1 t R S T T U 3 t 1 X Y Z kezdőpontok A tekercsek, kezdő és végpontjaik jelölése Ha egymással 10 -ot bezáró R-S-T tekercsek között két pólusú állandó mágnest, vagy

Részletesebben

EHA kód:...2009-2010-1f. As,

EHA kód:...2009-2010-1f. As, MŰSZAKI FIZIKA I. RMINB135/22/v/4 1. ZH A csoport Név:... Mérnök Informatikus EHA kód:...29-21-1f ε 1 As = 9 4π 9 Vm µ = 4π1 7 Vs Am 1) Két ± Q = 3µC nagyságú töltés közti távolság d = 2 cm. Határozza

Részletesebben

Elektrotechnika Feladattár

Elektrotechnika Feladattár Impresszum Szerző: Rauscher István Szakmai lektor: Érdi Péter Módszertani szerkesztő: Gáspár Katalin Technikai szerkesztő: Bánszki András Készült a TÁMOP-2.2.3-07/1-2F-2008-0004 azonosítószámú projekt

Részletesebben

Transzformátorok tervezése

Transzformátorok tervezése Transzformátorok tervezése Többféle céllal használhatunk transzformátorokat, pl. a hálózati feszültség csökken-tésére, invertereknél a feszültség növelésére, ellenállás illesztésre, mérőműszerek méréshatárának

Részletesebben

permittivitás: tan : ), továbbá a külső gerjesztő mágneses tér erőssége.

permittivitás: tan : ), továbbá a külső gerjesztő mágneses tér erőssége. PROJEKT-ELŐREHALADÁS 2. 2012. 12.02. 2013. 05. 31. 1. Modellkészítés. A használt számítógépes program a Computer Simulation Technology (CST) programcsalád Microwave Studio nevű eszköze. Ebben az alap geometriai

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező kölcsönhatás A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonalak vonzó és taszító erő pólusok dipólus mező pólusok északi

Részletesebben

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 1. A gyakorlat célja Kis elmozulások (.1mm 1cm) mérésének bemutatása egyszerű felépítésű érzékkőkkel. Kapacitív és inuktív

Részletesebben

3.16.1. A rádiózavarok forrásai A rádió adó-vevő berendezés üzemeltetésével kapcsolatban két féle rádiózavar fordulhat elő:

3.16.1. A rádiózavarok forrásai A rádió adó-vevő berendezés üzemeltetésével kapcsolatban két féle rádiózavar fordulhat elő: 3.16. Zavarvédelem 3.16.1. A rádiózavarok forrásai A rádió adó-vevő berendezés üzemeltetésével kapcsolatban két féle rádiózavar fordulhat elő: Az adóállomás jelei zavart okoznak valamely más berendezés

Részletesebben

Négypólusok vizsgálata

Négypólusok vizsgálata 7. mérés Négypólusok vizsgálata Bevezetés A Négypólusok vizsgálata című mérés szervesen kapcsolódik a BME-VIK Anyagtudomány, Fizika, Hálózatok és rendszerek, Elektromágneses terek és Méréstechnika című

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 18. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. május 18. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati

Részletesebben

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 35%.

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 35%. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

PASSZÍV ESZKÖZÖK II ELEKTRONIKAI ALKATRÉSZEK KONDENZÁTOROK KONDENZÁTOROK KONDENZÁTOROK KONDENZÁTOROK VESZTESÉGEI 4. ELŐADÁS

PASSZÍV ESZKÖZÖK II ELEKTRONIKAI ALKATRÉSZEK KONDENZÁTOROK KONDENZÁTOROK KONDENZÁTOROK KONDENZÁTOROK VESZTESÉGEI 4. ELŐADÁS PASSZÍV ESZKÖZÖK II ELEKTRONIKAI ALKATRÉSZEK 4. ELŐADÁS Kondenzátorok Tekercsek Transzformátorok Az elektronikában az ellenállások mellett leggyakrabban használt passzív kapcsolási elem a kondenzátor.

Részletesebben

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 4. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 4. óra Verzió: 1.3 Utolsó frissítés: 2011. május 15. 1/51 Tartalom I 1 A/D konverterek alkalmazása

Részletesebben

1. ábra A Colpitts-oszcillátor, valamint közös drain-ű változata, a Clapp-oszcillátor

1. ábra A Colpitts-oszcillátor, valamint közös drain-ű változata, a Clapp-oszcillátor A tárgyalandó oszcillátortípusok a hárompont-kapcsolásúak egyik alcsoportja, méghozzá a a Colpitts-oszcillátor földelt kollektoros (drain-ű, anódú), valamint földelt emitteres (source-ű, katódú) változatai.

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. május 19. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Elektrotechnika 9. évfolyam

Elektrotechnika 9. évfolyam Elektrotechnika 9. évfolyam Villamos áramkörök A villamos áramkör. A villamos áramkör részei. Ideális feszültségforrás. Fogyasztó. Vezeték. Villamos ellenállás. Ohm törvénye. Részfeszültségek és feszültségesés.

Részletesebben

Elmozdulás mérés BELEON KRISZTIÁN BELEON KRISTIÁN - MÉRÉSELMÉLET - ELMOZDULÁSMÉRÉS 1

Elmozdulás mérés BELEON KRISZTIÁN BELEON KRISTIÁN - MÉRÉSELMÉLET - ELMOZDULÁSMÉRÉS 1 Elmozdulás mérés BELEON KRISZTIÁN 2016.11.17. 2016.11.17. BELEON KRISTIÁN - MÉRÉSELMÉLET - ELMOZDULÁSMÉRÉS 1 Mérési eljárás szerint Rezisztív Induktív Kapacitív Optikai Mágneses 2016.11.17. BELEON KRISTIÁN

Részletesebben

Közreműködők Erdélyi István Györe Attila Horvát Máté Dr. Semperger Sándor Tihanyi Viktor Dr. Vajda István

Közreműködők Erdélyi István Györe Attila Horvát Máté Dr. Semperger Sándor Tihanyi Viktor Dr. Vajda István Villamos forgógépek és transzformátorok Szakmai Nap Szupravezetős Önkorlátozó Transzformátor Györe Attila VILLAMOS ENERGETIKA TANSZÉK BUDA PESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGY ETEM Közreműködők Erdélyi

Részletesebben

Bevezetés az analóg és digitális elektronikába. III. Villamos és mágneses tér

Bevezetés az analóg és digitális elektronikába. III. Villamos és mágneses tér Bevezetés az analóg és digitális elektronikába III. Villamos és mágneses tér Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos

Részletesebben

Zárt mágneskörű induktív átalakítók

Zárt mágneskörű induktív átalakítók árt mágneskörű induktív átalakítók zárt mágneskörű átalakítók felépítésükből következően kis elmozdulások mérésére használhatók megfelelő érzékenységgel. zárt mágneskörű induktív átalakítók mágnesköre

Részletesebben

Fejlesztések a zárlati méréstechnikában

Fejlesztések a zárlati méréstechnikában Fejlesztések a zárlati méréstechnikában Fekete Ádám, Schmidt László, Szabó László, Dr. Varga László Varga Balázs Budapest, 2012.04.26 Villamos kapcsolókészülékek és berendezések szakmai nap A zárlati méréstechnika

Részletesebben

Marcsa Dániel Transzformátor - példák 1. feladat : Egyfázisú transzformátor névleges teljesítménye 125kVA, a feszültsége U 1 /U 2 = 5000/400V. A névleges terheléshez tartozó tekercsveszteség 0,06S n, a

Részletesebben

1. ERŐMÉRÉS NYÚLÁSMÉRŐ BÉLYEG ALKALMAZÁSÁVAL

1. ERŐMÉRÉS NYÚLÁSMÉRŐ BÉLYEG ALKALMAZÁSÁVAL 1. ERŐMÉRÉS NYÚLÁSMÉRŐ BÉLYEG LKLMZÁSÁVL nyúlásmérő bélyegek mechanikai deformációt alakítanak át ellenállás-változássá. lkalmazásukkal úgy készítenek erőmérő cellát, hogy egy rugalmas alakváltozást szenvedő

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 02 Elektronikai technikus

Részletesebben

MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c)

MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c) MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c) 1. - Mérőtermi szabályzat, a mérések rendje - Balesetvédelem - Tűzvédelem - A villamos áram élettani hatásai - Áramütés elleni védelem - Szigetelési

Részletesebben

11. ÉVFOLYAM FIZIKA. TÁMOP 3.1.3 Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban

11. ÉVFOLYAM FIZIKA. TÁMOP 3.1.3 Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban TÁMOP 3.1.3 Természettudományos 11. ÉVFOLYAM FIZIKA Szerző: Pálffy Tamás Lektorálta: Szabó Sarolta Tartalomjegyzék Bevezető... 3 Laborhasználati szabályok, balesetvédelem, figyelmeztetések... 4 A mágneses

Részletesebben

Nagyfrekvenciás rendszerek elektronikája házi feladat

Nagyfrekvenciás rendszerek elektronikája házi feladat Nagyfrekvenciás rendszerek elektronikája házi feladat Az elkészítendő kis adatsebességű, rövidhullámú, BPSK adóvevő felépítése a következő: Számítsa ki a vevő földelt bázisú kis zajú hangolt kollektorkörös

Részletesebben

Használati utasítás a SIVA gyártmányú SH 100 típusú erősítőhöz

Használati utasítás a SIVA gyártmányú SH 100 típusú erősítőhöz Használati utasítás a SIVA gyártmányú SH 100 típusú erősítőhöz Tisztelt Vásárló! Köszönjük, hogy termékünket választotta, remélve, hogy hosszú ideig segíti az Ön munkáját. A biztonság, és a készülék optimális

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. május 25. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

<mérésvezető neve> 8 C s z. 7 U ki TL082 4 R. 1. Neminvertáló alapkapcsolás mérési feladatai

<mérésvezető neve> 8 C s z. 7 U ki TL082 4 R. 1. Neminvertáló alapkapcsolás mérési feladatai MÉRÉSI JEGYZŐKÖNYV A mérés tárgya: Egyszerű áramkör megépítése és bemérése (1. mérés) A mérés időpontja: 2004. 02. 10 A mérés helyszíne: BME, labor: I.B. 413 A mérést végzik: A Belso Zoltan B Szilagyi

Részletesebben

SWR, HA5GY. mérése. antenna analizátorok. összeállította:

SWR, HA5GY. mérése. antenna analizátorok. összeállította: SWR, mérése és antenna analizátorok összeállította: HA5GY Illesztés Az antennát megfelelően kell illeszteni a tápvonalhoz. ( ez nem minden esetben valósítható meg, főleg többsávos antennák esetén ) Az

Részletesebben

K Ü L Ö N L E G E S T R A N S Z F O R M Á T O R O K

K Ü L Ö N L E G E S T R A N S Z F O R M Á T O R O K VILLANYSZERELŐ KÉPZÉS 0 5 K Ü L Ö N L E G E S T R A N S Z F O R M Á T O R O K ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - - Tartalomjegyzék Különleges transzformátorok fogalma...3 Biztonsági és elválasztó

Részletesebben

Antennakábelek hangolása vágjak, vagy ne vágjak? Szerző: Bubla Sándor HA4YM

Antennakábelek hangolása vágjak, vagy ne vágjak? Szerző: Bubla Sándor HA4YM Antennakábelek hangolása vágjak, vagy ne vágjak? Szerző: Bubla Sándor HA4YM Kábelhangolás Sokaknak fekete mágiával vetekszik a bonyolult mérés, mely során az antenna kábelei "behangolásra" kerülnek. A

Részletesebben

VILLANYSZERELŐ KÉPZÉS MÁGNESES TÉR ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR

VILLANYSZERELŐ KÉPZÉS MÁGNESES TÉR ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR VIANYSZEREŐ KÉPZÉS 2 0 5 MÁGNESES TÉR ÖSSZEÁÍTOTTA NAGY ÁSZÓ MÉRNÖKTANÁR - 2 - Tartalomjegyzék Mágneses tér fogalma, jellemzői...3 A mágneses tér hatása az anyagokra...4 Elektromágneses indukció...6 Mozgási

Részletesebben

21. laboratóriumi gyakorlat. Rövid távvezeték állandósult üzemi viszonyainak vizsgálata váltakozóáramú

21. laboratóriumi gyakorlat. Rövid távvezeték állandósult üzemi viszonyainak vizsgálata váltakozóáramú 1. laboratóriumi gyakorlat Rövid távvezeték állandósult üzemi viszonyainak vizsgálata váltakozóáramú kismintán 1 Elvi alapok Távvezetékek villamos számításához, üzemi viszonyainak vizsgálatához a következő

Részletesebben

MIB02 Elektronika 1. Passzív áramköri elemek

MIB02 Elektronika 1. Passzív áramköri elemek MIB02 Elektronika 1. Passzív áramköri elemek ELLENÁLLÁSOK -állandóértékű ellenállások - változtatható ellenállások - speciális ellenállások (PTK, NTK, VDR) Állandó értékű ellenállás Felépítés: szigetelő

Részletesebben

Kompenzációs kör vizsgálata. LabVIEW 7.1 4. előadás

Kompenzációs kör vizsgálata. LabVIEW 7.1 4. előadás Kompenzációs kör vizsgálata LabVIEW 7.1 4. előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 EA-4/1 Mágneses hiszterézis mérése előírt kimeneti jel mellett DAQ Rn Un etalon ellenállás etalon ellenállás

Részletesebben

TELEPÍTÉSI ÚTMUTATÓ 40404 V1.0

TELEPÍTÉSI ÚTMUTATÓ 40404 V1.0 TELEPÍTÉSI ÚTMUTATÓ 40404 V1.0 Készlet tartalma: M Távirányító D,I 2 /16 Ohmos hangszóró E Vezérlő egység R Infra vevő Csatlakozó pontok F Tápellátás 230V N Tápellátás 230V I Bal hangszóró ( piros vezeték

Részletesebben

A válaszok között több is lehet helyes. Minden hibás válaszért egy pontot levonunk.

A válaszok között több is lehet helyes. Minden hibás válaszért egy pontot levonunk. A válaszok között több is lehet helyes. Minden hibás válaszért egy pontot levonunk. 1) Villamos töltések rekombinációja a) mindig energia felszabadulással jár; b) energia felvétellel jár; c) nincs kapcsolata

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

Ferromágneses anyagok mikrohullámú tulajdonságainak vizsgálata

Ferromágneses anyagok mikrohullámú tulajdonságainak vizsgálata Ferromágneses anyagok mikrohullámú tulajdonságainak vizsgálata Lutz András Gábor Kutatási beszámoló 2015, Budapest Feladat A mikrohullámú non reciprok eszközök paramétereit döntően meghatározzák a bennük

Részletesebben

Programozható vezérlő rendszerek. Elektromágneses kompatibilitás

Programozható vezérlő rendszerek. Elektromágneses kompatibilitás Elektromágneses kompatibilitás EMC - a legtöbb alkalmazásban több elektromos készüléknek kell együttműködni - minél kisebb az elektromos alkatrészek méretet annál közelebb kerülnek egymáshoz nő az interferencia

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. február 23. ELEKTRONIKAI ALAPISMERETEK ELŐDÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 180 perc

Részletesebben

RF zavarkibocsátás és zavarérzékenység méréshez

RF zavarkibocsátás és zavarérzékenység méréshez MÉRÉSI SEGÉDLET RF zavarkibocsátás és zavarérzékenység méréshez (EMC) V2 épület VII.emelet 721. Antenna Labor BUDAPESTI MŰSZAKI és GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR Szélessávú

Részletesebben

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/ Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/. Coulomb törvény: a pontszerű töltések között ható erő (F) egyenesen arányos a töltések (Q,Q ) szorzatával és fordítottan arányos a

Részletesebben

KTV koaxiális kábelek mérése

KTV koaxiális kábelek mérése KTV koaxiális kábelek mérése Összeállította: Mészáros István tanszéki mérnök 1 Koaxiális kábelek Ez a széles körben használt átviteli közeg egy tömör belső érből áll, amely körül szigetelő van. A szigetelőt

Részletesebben

EÖTVÖS LABOR EÖTVÖS JÓZSEF GIMNÁZIUM TATA FELADATLAPOK FIZIKA. 11. évfolyam. Gálik András. A Tatai Eötvös József Gimnázium Öveges Programja

EÖTVÖS LABOR EÖTVÖS JÓZSEF GIMNÁZIUM TATA FELADATLAPOK FIZIKA. 11. évfolyam. Gálik András. A Tatai Eötvös József Gimnázium Öveges Programja FELADATLAPOK FIZIKA 11. évfolyam Gálik András ajánlott korosztály: 11. évfolyam 1. REZGÉSIDŐ MÉRÉSE fizika-11-01 1/3! BALESETVÉDELEM, BETARTANDÓ SZABÁLYOK, AJÁNLÁSOK A mérés során használt eszközökkel

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése KLASSZIKUS FIZIKA LABORATÓRIUM 7. MÉRÉS Mágneses szuszceptibilitás mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 5. Szerda délelőtti csoport 1. A mérés célja Az

Részletesebben

Antennatervező szoftverek. Ludvig Ottó - HA5OT

Antennatervező szoftverek. Ludvig Ottó - HA5OT Antennatervező szoftverek Ludvig Ottó - HA5OT Miről lesz szó? Megismerkedünk a számítógépes antenna modellezés alapjaival, és történetével Gyakorlati példákon keresztül elsajátítjuk az alapvető fogásokat

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező vonalak Tartalom, erőhatások pólusok dipólus mező, szemléltetése meghatározása forgatónyomaték méréssel Elektromotor nagysága különböző

Részletesebben

1. Válaszd ki a helyes egyenlőségeket! a. 1C=1A*1ms b. 1 μc= 1mA*1ms. 2. Hány elektron halad át egy fogyasztón 1 perc alatt, ha az I= 20 ma?

1. Válaszd ki a helyes egyenlőségeket! a. 1C=1A*1ms b. 1 μc= 1mA*1ms. 2. Hány elektron halad át egy fogyasztón 1 perc alatt, ha az I= 20 ma? 1. Válaszd ki a helyes egyenlőségeket! a. 1C=1A*1ms b. 1 μc= 1mA*1ms c. 1mC 1 A = d. 1 ms A 1mC 1 m = 1 ns 2. Hány elektron halad át egy fogyasztón 1 perc alatt, ha az I= 20 ma? ( q = 1,6 *10-16 C) - e

Részletesebben

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés: Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati

Részletesebben

Az elektromágneses indukció jelensége

Az elektromágneses indukció jelensége Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér

Részletesebben

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 15%.

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 15%. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2014 nyilvántartási számú akkreditált státuszhoz

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2014 nyilvántartási számú akkreditált státuszhoz Nemzeti kkreditáló Testület RÉSZLETEZŐ OKIRT a NT--016/ nyilvántartási sú akkreditált státuszhoz z EROPLEX Közép-Európai Légijármű Műszaki Központ Kft. Kalibráló Labor (1185 Budapest, Liszt Ferenc Nemzetközi

Részletesebben

5. Mérés Transzformátorok

5. Mérés Transzformátorok 5. Mérés Transzformátorok A transzformátor a váltakozó áramú villamos energia, feszültség, ill. áram értékeinek megváltoztatására (transzformálására) alkalmas villamos gép... Működési elv A villamos energia

Részletesebben

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

VÁLTAKOZÓ ÁRAMÚ KÖRÖK Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,

Részletesebben

1.8. Ellenőrző kérdések megoldásai

1.8. Ellenőrző kérdések megoldásai 1.8. Ellenőrző kérdések megoldásai 1. feladat: Számítsuk ki egy cm átmérőjű, cm hosszú, 1 menetes tekercs fluxusát, ha a tekercsben,1 -es áram folyik! N I 1 3,1 H = = 5. l, m Vs B = µ H = 4π 5 = π. m Φ

Részletesebben

Fizika 2. Feladatsor

Fizika 2. Feladatsor Fizika 2. Felaatsor 1. Egy Q1 és egy Q2 =4Q1 töltésű részecske egymástól 1m-re van rögzítve. Hol vannak azok a pontok amelyekben a két töltéstől származó ereő térerősség nulla? ( Q 1 töltéstől 1/3 méterre

Részletesebben

Rogowski-tekercses árammérő rendszer tervezése és fejlesztése

Rogowski-tekercses árammérő rendszer tervezése és fejlesztése Rogowski-tekercses árammérő rendszer tervezése és fejlesztése Fekete Ádám, Schmidt László, Szabó László, Dr. Varga László Fekete Ádám és Varga Balázs Budapest, 2013.04.24 Transzformátorok és mérőváltók

Részletesebben

Kétpólusok vizsgálata

Kétpólusok vizsgálata 6. mérés Kétpólusok vizsgálata Bevezetés Az áramkör modellezés és a gyakorlati kapcsolások építése során egyaránt a passzív kétpólusok a legegyszerűbb építőelemek (R, L, C). A gyakorlatban használt kétpólusok

Részletesebben

SZERKEZETI ELEMEK ÉS FUNKCIÓJUK. Vezeték nélküli FM sztereo fejhallgató HA-W500 RF (EG) FONTOS

SZERKEZETI ELEMEK ÉS FUNKCIÓJUK. Vezeték nélküli FM sztereo fejhallgató HA-W500 RF (EG) FONTOS SZERKEZETI ELEMEK ÉS FUNKCIÓJUK ADÓ Vezeték nélküli FM sztereo fejhallgató HA-W500 RF (EG) Megrend. szám: 35 04 38 Figyelem Elektromos áramütés, tűzveszély elkerülésére az alábbiakra ügyeljünk: 1. Burkolatát

Részletesebben

Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken

Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken Transzformátor rezgés mérés A BME Villamos Energetika Tanszéken A valóság egyszerűsítése, modellezés. A mérés tervszerűen végrehajtott tevékenység, ezért a bonyolult valóságos rendszert először egyszerűsítik.

Részletesebben

Szupravezető alapjelenségek

Szupravezető alapjelenségek Szupravezető alapjelenségek A méréseket összeállította és az útmutatót írta: Balázs Zoltán 1. Meissner effektus bemutatása: Mérési összeállítás: 1. A csipesszel helyezze a polisztirol hab csészébe a szupravezető

Részletesebben

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük. Mágneses mező tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek emelt szint 6 ÉRETTSÉGI VIZSG 06. október 7. ELEKTRONIKI LPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMUTTÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUM Egyszerű,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2016. október 17. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2016. október 17. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A Egyenáram tesztek 1. Az alábbiak közül melyik nem tekinthető áramnak? a) Feltöltött kondenzátorlemezek között egy fémgolyó pattog. b) A generátor fémgömbje és egy földelt gömb között szikrakisülés történik.

Részletesebben

E G Y F Á Z I S Ú T R A N S Z F O R M Á T O R

E G Y F Á Z I S Ú T R A N S Z F O R M Á T O R VILLANYSZERELŐ KÉPZÉS 0 5 E G Y F Á Z I S Ú T R A N S Z F O R M Á T O R ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - - Tartalomjegyzék Villamos gépek fogalma, felosztása...3 Egyfázisú transzformátor felépítése...4

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 5. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 5. óra Verzió: 1.1 Utolsó frissítés: 2011. április 12. 1/20 Tartalom I 1 Demók 2 Digitális multiméterek

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2016. május 18. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 18. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben