Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék"

Átírás

1 Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék Polimerek anyagszerkezettana és technológiája AG0P 3+0+2v, 6 krp Előadók: Czvikovszky Tibor, Czigány Tibor, Gaál János, Vas László Mihály 1 1

2 Szerkezet és tulajdonság Monomer (M) Polimer (PA) Termék (PT) (PT) lánc Polimer/oligomer Polimer Monomer anyag termék Polimer elõállítás Polimer feldolgozás M PA PT Szerkezet Technológia Szerkezet Tulajdonság Feldolgozhatóság Technológia Szerkezet Tulajdonság Kérdés: Mi a tulajdonságok anyagszerkezettani magyarázata? 2 2

3 Polimerek szerkezeti szintjei Szerkezeti gráf PE szerkezeti szintjei Polimer test Gráf-pont: szerkezeti szint Kristálycella Szferolit Fibrilla Krisztallit Makromolekula Monomerek Atomok Gráf-él: átmenet a szerkezeti szintek között (él mentén: rendezés és egyesítés műveletek) Krisztallit Fibrilla Szferolit Elemi részecskék Polimer test 3 3

4 Polimer anyagszerkezettan Polimerek szerkezete (mikroszintek) Atomos szerkezet Molekuláris szerkezet Morfológiai vagy finomszerkezet Polimerek tulajdonságai (makroszint) Mechanikai tulajdonságok Hőmérséklet hatása Légnedvesség hatása Egyéb tulajdonságok 4 4

5 Szerkezettan és Technológia jegyzet és tankönyv 5 5

6 Polimereket felépítő atomok A periódusos rendszer első 18 eleme Kationok(+) < Fémes elemek Nemfémes elemek > Anionok(-) 6 6

7 A szén rendezett szerkezetformái 1. Kristályos módosulatok Gyémánt Grafit Kötéstávolság Atomok között Gyémánt Grafit 0,154 nm 0,142 nm Rétegek között - 0,339 nm 7 7

8 A szén rendezett szerkezetformái 2. Fullerének 8 8

9 A szén rendezett szerkezetformái 3. Fullerének Fullerén (C 60 ) kubán (C 8 H 8 ) heteromolekuláris kristály (Nature, Pekker S. és tsi.) Molekuláris motor: Kubán kocka: álló rész Fullerén gömb: forgó elem 9 9

10 A szén rendezett szerkezetformái 4. Nanocsövek Átmérő: Néhány nm 10 10

11 Atomok közötti kötések 1. Kötés energiája és a vonzó-taszító erők Kötés potenciálja U(r) r o = kötéstávolság U o = kötési energia r r o U o Taszító erõk Vonzó erõk r o csökken U o nő 11 11

12 Atomok közötti kötések 2. Primer kötések Jellemzők Jelentőség polimereknél 1. Kovalens Kisszámú közös ö alapvető ő kötés elektronpár 2. Ionos kötés 3. Fémes kötés Elektronleadás és -felvétel Nagyszámú közös elektron kicsi nincs 12 12

13 Atomok közötti kötések 3. Szekunder kötések Jellemzők Polimer jellege, amiben található 1. Dipólus Állandó, vagy Kissé poláris kötés indukált dipólusok 2. Hidrogén kötés 3. Diszperziós kötés Legerősebb dipólus kötés Leggyengébb szekunder kötés Erősen poláris Minden polimerben! Poláris, apoláris 13 13

14 Atomok közötti kötéstípusok 4. Szekunder kötések jelentősége: A víz folyékony a szobahőmérsékleten Polimer folyadék (oldat, olvadék) viszkozitása Lineáris polimer szilárdsága pl. szuperszilárd PE (HPPE) és szénszál 14 14

15 Atomok közötti kötéstípusok 5. Avíz20 o C-on folyadék H-kötések Oxigénmolekula: O 2 m(o 2 )=32 m(h)=1 m(o)=16 Vízmolekula: H 2 O m(h 2 O)=18 O O H O H Gáz Szobahõmérséklet 20 oc Folyadék 15 15

16 Atomok közötti kötéstípusok 6. Gyenge PE fólia Szuperszilárd HPPE (PBO szál: 450 km, E=270 GPa, σ B =5,8 GPa) 16 16

17 Molekuláris szerkezet 1. Polimer lánc (P) szerkezete Ismétlődő egység (A) {M} P = -[A] n - Monomer o Ismétlődő étődő egység: Egyalkotós polimer: Kétalkotós polimer: M -A- M A = -Γ 1 -X-Γ 2 (M) X szénvázú magcsoport (M 1,M 2 ) A = - Γ 1 -X 1 -Γ 1 - Γ 2 -X 2 -Γ 2 - (M 1 ) (M 2 ) Γ=-Γ 2 -Γ 1 - kötővagy hídcsoport Γ 1,ΓΓ 2 - hídfelek 17 17

18 Molekuláris szerkezet 2. Polimer előállítása M A átalakulással Polimerizáció: kettõskötés felbontásával Monomer (M) Ismétlõdõ egység (A) Polikondenzáció: funkciós csoportok leválásával Kondenzátum Monomer (M) Ismétlõdõ egység (A) Poliaddíció: atom-áthelyezõdéssel Monomer (M) Ismétlõdõ egység (A) 18 18

19 Molekuláris szerkezet 3. Polimer anyagosztályok a kötőcsoportok szerint Homogén szénvázú szerves polimerek: Γ=Ø 1. Etilénbázisúak (PE, PP, PS, PVC, PVDC, PVF, PTFE, PMMA) 2. Nem etilénbázisúak (NR, BR) Heterogén szénvázú szerves polimerek: Γ Ø 1. Poliéterek, cellulóz: Γ=-O- (étercsoport, oxigénhíd) 2. Poliészterek: Γ=-CO-O- (észter-csoport) 3. Poliamidok, vázfehérjék: Γ=-NH-CO- (amid csoport) 4. Poliuretánok: Γ=-NH-CO-O- (uretán csoport) Heterogén sziliciumvázú szervetlen polimerek: Γ Ø Szilikátok k (üveg, bazalt, szilikon): Γ=-O-O 19 19

20 Molekuláris szerkezet 4. Láncmenti térbeli szabályosság Fej-láb kapcsolódás módja Szabályos (fl, ffll) Szabálytalan Taktikusság Szabályos (izotaktikus,, szündiotaktikus ) Szabálytalan (ataktikus) Jelentőség Aki kristályosodás feltétele l 20 20

21 Molekuláris szerkezet 5. Láncmenti térbeli szabályosság pl. PP 21 21

22 Molekuláris szerkezet 6. Molekulák alaktípusai Topológiai alak Lineáris (pl. HDPE) Elágazó fa-, fésű- és csillag-alakú alakú (pl. LDPE) Hurkos létra-alakú, alakú, hurkos-elágazó alakú Térháló Konformáció rotáció révén 22 22

23 Molekuláris szerkezet 7. Homopolimer egyféle monomer (A) Kopolimerek többféle monomer (A,B, ) 1. Szabályos (periodikus) szerkezetű van ismétlődő egysége Alternáló kopolimer Blokk-kopolimer kopolimer (rövidblokkos) 2. Szabálytalan (aperiodikus) szerkezetű nincs ismétlődő egysége Statisztikus kopolimer szabálytalan hosszúságú blokkok 3. Hosszúblokkos o kopolimer Tömb-kopolimer lineáris Ojtott kopolimer elágazó 23 23

24 Molekuláris szerkezet 8. Polimerlánc molekulatömege és jellemzői Polimerláncok felépítése: P i = Z 1 -[A] ni -Z 2 (i=1,,n) Z 1, Z 2 zárótagok, végcsoportok Az i-edik lánc tömege: m(p i )=m(z 1 )+n i m(a)+m(z 2 ) n i az i-edik lánc polimerizációs foka Átlagos molekulatömeg (szám-szerinti): szerinti): M n =m(z 1 )+DP m(a)+m(z 2 ) DP = a polimer átlagos polimerizációs i ió foka 24 24

25 Molekuláris szerkezet 9. Átlagos molekulatömeg mérési módszerei Végcsoportok számának meghatározása Fényszóródásmérés Ultracentrifugás szétválasztás Viszkozitásmérés Egyéb módszerek (pl. diffuziós) Molekulatömegeloszlás mérése Frakcionálás GPC Gélpermeációs kromatográfia 25 25

26 Molekuláris szerkezet 10. Molekulatömeg hatása a polimer tulajdonságaira PE állaga és tulajdonságai a molekulatömeg függvényében 26 26

27 Molekuláris szerkezet 11. Molekulatömeg hatása a polimer tulajdonságaira Szilárdság átlagos móltömeg Ömledékviszkozitás átlagos móltömeg (polidimetilsziloxán, 20 o C-on) PP szál 27 27

28 Oldhatóság, elegyíthetőség 1. Jelentősége Nem termoplasztikus, lineáris polimerek feldolgozása oldatból: Természetes anyagok: yg cellulóz, vázfehérjék Mesterséges anyagok: HPPE, PAN (C-szál), Kevlar, Teflon Polimer keverékek, ötvözetek előállítása 28 28

29 Oldhatóság, elegyíthetőség 2. Kohéziós energia [ J/részecske] Kohéziós energiasűrűség: CED [ J/cm 3 ] Alapfunkció Polimer CED [J/cm 3 ] Elasztomer- képző Plasztomer PE, NR <300 PS, PVC 300< <400 <400 Szálképző PET, PA6, PAN 400< 29 29

30 Oldhatóság, elegyíthetőség 3. Oldódás/elegyedés feltétele: Kezdõ állapot Komponens_1 o o o o o o o o o o o o o o o Komponens_2 x x x x x x x x x x x x T = állandó Végállapot Keverék o x o x o x o x o o x x o o x o x o o x x o o x o x G Gibbs-féle szabadenergia H entalpia (hőtartalom) S entrópia T abszolút hőmérséklet ΔH oldódási hő ΔH<0 exoterm folyamat ΔH>0 endoterm folyamat H, S, G Hildebrand-Scott: ΔS = S - S o > 0 Diszperziós kölcsönhatásoknál ΔH=v 1 v 2 (δ 1 -δ 2 ) 2 H o, S o, G o Elegyedés: ΔG = ΔH - TΔS < 0 v i térfogathányad (i=1,2) δ i = CED oldhatósági paraméter (i=1,2) 30 30

31 Oldhatóság, elegyíthetőség 4. Oldhatósági paraméterértékek OLDÓSZER ρ 1 [J/cm 3 ] 1/2 POLIMER ρ 2 [J/cm 3 ] 1/2 n-hexán Polietilén (PE) 16.2 Dekalin Polisztirol (PS) 18.9 Ciklohexán Poli(metil-metakrilát) (PMMA) 18.6 Szén-tetraklorid Poli(vinilklorid)(PVC) Butanon Poli(etilén-tereftalát) (PETP) 21.9 Benzol Nylon 66 (PA6.6) 27.8 Kloroform 18.9 Poliakrilnitril (PAN) 26.3 Tetrahidrofurán Aceton Dimetil-formamid Metanol Ciklohexanon

32 Oldhatóság, elegyíthetőség 5. Polimer keverékek Elegyedő komponensek Pl. PMMA/PVDF, PPO/PS Nem elegyedő komponensek Polimer ötvözet készítése kompatibilizálással (Pl. ABS/PC Bayblend) Technológiai alkalmazások - nem kompatibilis komponensekkel (Pl. mikroszálgyártás) 32 32

33 Morfológiai szerkezet 1. Eltérések a kis- és nagymolekulájú anyagok között Hosszútávú rugalmasság Kristályosságbeli eltérések Kristályos részek elsőrendű átalakulás (T cr <T m ) Amorf részek másodrendű átalakulás (T g ) Kristályosság Olvadás Hiszterézis Átmenet jellege Kismolekulájú Teljes Éles Nincs Egyensúlyi anyagok olvadáspont állapotokon át Nagymolekulá- Részleges Olvadási Van Egyensúlyi jú anyagok it intervallum állapottól távol 33 33

34 Morfológiai szerkezet 2. Polimer kristálycella (nyújtott, spirális láncalakok) PE kristálycella: PP kristályban: PA6.6 kristálycella Láncalak: spirális Láncalak: nyújtott Láncalak: nyújtott a = 0,736 nm b = 0,492 nm c = 0,254 nm 34 34

35 Morfológiai szerkezet 3. Morfológiai egységek rendezett részek Krisztallit: A legkisebb rendezett rész a polimerben Belső rendezettsége: 3D Nem egykristály: mert nem határolják síklapok Elnevezések a befoglaló téglatest méretarányai alapján: Krisztallit Fibrilla Lamella c a b c a a>>b,c b c a a,b>>c b 35 35

36 Morfológiai szerkezet 4. Rojtos micellás szerkezet A láncmolekulák több amorf területen és rendezett részen (micellán) haladnak át. Kis kristályos részarány esetén 36 36

37 Morfológiai szerkezet 5. Parakristályos szerkezet (nagy kristályos részarány is lehet) Ideális rács Elsőfajú rácstorzulás Másodfajú rácstorzulás 37 37

38 Morfológiai szerkezet 6. Parakristályos szerkezet (nagy kristályos részarány is lehet) Ideális Pkr. Reális Pkr. Ideális rács Parakristály-rács (Pkr) Amorf Klaszter 38 38

39 Morfológiai szerkezet 7. Szferolitos szerkezet HDPE gyors kristályosítás, 100x Szferolit: Gömbszerű, kettőstörő képződmény PEO Ø0,2 mm HDPE szemcsés szerkezetben, 100x 39 39

40 Morfológiai szerkezet 8. Szferolitos szerkezet Bernauer szerinti fejlődés PP szferolit 40 40

41 Morfológiai szerkezet 9. Szferolit felépítése Rendezett (kristályos) és amorf részek a szferolitban 41 41

42 Szferolit átalakulása fibrilláris szerkezetté PA6.6 fólia uniaxiális nyújtásakor Morfológiai szerkezet

43 Morfológiai szerkezet 11. Rendezett szerkezetek és amorf részek a polimerben 43 43

44 Morfológiai szerkezet 12. Orientált, fibrilláris szerkezetek Shish-kebab = saslik = rablóhús PE 44 44

45 Morfológiai szerkezet 13. Erősen orientált, fibrilláris szerkezetek Transzkristályos szerkezet Fibrillák Szénszál körül PP-ben PA x Sok kristálygóc - Gátolt szferolitfejlődés Cellulóz 15000x 45 45

46 Morfológiai szerkezet 14. Erősen orientált, fibrilláris szerkezetek - Szálak Orientált poliészter (PET) szál 100% parakristályos HPPE (SK60) Folyadékkristályos Kevlar (100% parakristályos) 46 46

47 Morfológiai szerkezet 15. Anizotróp folyadék folyadékkristályos, vagy mezofázisú szerkezetek Nematikus Szmektikus Koleszterikus 47 47

48 Morfológiai g szerkezet 16. Egyéb szerkezeti képződmények - egykristályok PA6 egykristály PE egykristály Lamellák és a lánchajtogatódás 48 48

49 Morfológiai szerkezet 17. Egyéb szerkezeti z képződményeké k L llá i k i ál k Hedrit (PE) Dendrit (PE) Lamelláris kristályszerkezet PS/PEO diblokk-kopolimerben PTFCE Nyújtott láncú lamellák PE (Több ezer bár nyomáson kristályosítva) 49 49

50 Morfológiai szerkezet 18. Extrudált/fröccsöntött polimer alkatrész összetett szerkezete 50 50

51 Morfológiai szerkezet 19. Többfázisú, összetett szerkezetek Ütésálló PS butadién adalék Ütésálló PVC klórozott PE 51 51

52 Morfológiai szerkezet 20. Többfázisú, összetett szerkezetek 5% PS/95% nagy mólsúlyú PMMA keverék (blend) kétfázisú szerkezete 52 52

53 Többfázisú, összetett szerkezetek Morfológiai szerkezet 21. Rövid üvegszál erősítésű folyadékkristályos poliészter 53 53

54 Morfológiai szerkezet jellemzői 1. Kristályosság Mérése: DSC, WAXS, Sűrűségmérés Kristályos részecskenagyság Mérése: WAXS, DSC Orientáció láncszegmensekkel jellemezve Kristályos Mérése: WAXS Amorf Átlagos Mérése: WAXS, számítással Mérése: Kettőstörés, ultrahang terjedési sebesség 54 54

55 Morfológiai szerkezet jellemzői 2. Láncorientáció és jelentősége Szálak, orientált fóliák, pántszalag gyártása Izotróp Uniaxiális Biaxiális Hideg nyújtás és nyakképződés ( o C) Cellulóz szálak nyújtása Orientálódás nyakképződésnél 55 55

56 Szerkezeti gráf Polimerek mikro- és makroszerkezeti szintjei i Mk Makroszinten mérhető éh ő tulajdonságok a mikroszintűek eredője Sűrűség ű Mechanikai jellemzők Termikus jellemzők Nedvességfelvétel Egyéb 56 56

57 Mechanikai tulajdonságok 1. Mikro- és makrodeformáció komponensek Mikrodeformáció komponensek Makrodeformáció komponensek Energiarugalmas (ε U ) - reverzibilis Pillanatnyi rugalmas (ε r ) (Mech: reverzibilis) (Td: reverzibilis) Entrópiarugalmas (ε S ) - reverzibilis Késleltetett rugalmas (ε k ) (Mech: reverzibilis) (Td: irreverzibilis) Energiadisszipáló (ε D ) - irreverzibilis Maradó (ε m ) (Mech: irrev.) (Td: irreverzibilis) 57 57

58 Mechanikai tulajdonságok 2. Mechanikai vizsgálatok általános sémája Gerjesztés Válasz A anyagminta, anyagoperátor 58 58

59 Mechanikai tulajdonságok 3. Mechanikai viselkedés fekete doboz modellezése A anyagminta, anyagoperátor M modell, modelloperátor 59 59

60 Mechanikai tulajdonságok 4. Mechanikai analóg modellelemek Rugó Hooke törvény: σ = Eε E rugalmassági modulus Viszkózus elem σ=f/a o -feszültség, ε=δl/l o -relatív nyúlás Newton törvény: σ = ηε& η dinamikus viszkozitási tényező 60 60

61 Mechanikai tulajdonságok 5. Deformáció-komponensek modelljei Def. komponens Pillanatnyi rugalmas Maradó Modell Rugó Viszkózus elem Kelvin-Voigt elem Mozgástörvény σ = Eε σ = ηε& Késleltetett rugalmas σ = Eε + η & ε 61 61

62 Mechanikai tulajdonságok 6. Időfüggő mechanikai tulajdonságok - Kúszás ATP GTE MODELLEZÉS: Burgers modell Stuart modell LDPE LDPE ATP GTE 62 62

63 Mechanikai tulajdonságok 7. Időfüggő mech. tulaj.ok - Feszültségrelaxáció ATP GTE MODELLEZÉS: GTE Burgers modell Standard-Solid modell GTE ATP 63 63

64 Mechanikai tulajdonságok 8. Időfüggő mech. tulajd.ok Mennyiségi modellezés MODELL POLIMER Összetett Maxwell modell Általánosított Standard-Solid d S modell Standard-Solid modell válasza Polimer anyagminta válasza τ i =η i /E i ; i=1,,n 64 64

65 Mechanikai tulajdonságok 9. Dinamikus vizsgálatok Dinamikus vizsgálat: A gerjesztő hatás változási sebessége elég nagy

66 Mechanikai tulajdonságok 10. Időfüggő mech. tulajd.ok - Dinamikus vizsgálatok Feltétel: Lineárisan viszkoelasztikus viselkedés Megvalósítás: Elég kicsi gerjesztési amplitudóval Ideálisan rugalmas Viszkoelasztikus Ideálisan viszkózus 66 66

67 Mechanikai tulajdonságok 11. Polimerek szívóssága, g, ütésállósága W RI repedést, törést indító munka W RT repedésterjedési munka W T =W RI +W RT teljes törési munka Tapasztalat: Ha a modulus nő ütésállóság csökken 67 67

68 Mechanikai tulajdonságok 12. Tartós szilárdsági jellemzők Kis deformabilitás: σ B,t időtartam szilárdság σ B, - tartós szilárdság Nagy deformabilitás: σ ε,t időtartam feszültség 68 68

69 Hőmérséklet hatása 1. Polimerek fizikai állapotai 69 69

70 Hőmérséklet hatása 2. Termomechanikai görbék mérési módszerei DMA TMA HSzG 70 70

71 Hőmérséklet hatása 3. Polimer anyagosztályok a szerkezet és a termikus viselkedés szerint T = Termoplasztikus = Hőrelágyuló (HL) Nem termoplasztikus = Nem hőre lágyuló (NHL) I. Amorf (A) polimerek Lineáris (L) >Termoplasztikus (ATP) >Nem termoplasztikus Térhálós (H) >Gyengén/ritkán térhálós (GTH) Elasztomer (GTE) >Sűrűn térhálós (STH) II. Részbenkristályos polimerek (K) Lineáris (L) >Termoplasztikus (RTP) >Nem termoplasztikus Utólagosan térhálózott (pl. utpe) 71 71

72 Hőmérséklet hatása 4. A molekulatömeg és a térhálósság hatása az ATP polimer DMA görbéire Átmeneti hőmérsékletek a molekulatömeg függvényében m és TKS hatása TKS térhálókötés-sűrűség 72 72

73 Hőmérséklet hatása 5. A keverékarány (a) és a lágyítóbevitel (b) hatása az ATP termomechanikai görbéjére 73 73

74 Hőmérséklet hatása 6. Térhálós polimerek DMA görbéi a.) Gyengén (ritkán) térhálós (GTH) (GTE = elasztomer) c.) Sűrűn térhálós (STH) (gyanta) 74 74

75 Hőmérséklet hatása 7. RTP polimer DMA görbéi és a kristályosság hatása RTP elvi görbék: T f <T m <T b Akitál kristályosság á hatása 75 75

76 Hőmérséklet hatása 8. HDPE nyújtás irányában és keresztirányban mért DMA görbéi HDPE E =E 1 E =E

77 Hőmérséklet hatása 9. Amorf (APET) és kristályos (CPET) poliészter (PET) DMA görbéi 77 77

78 Hőmérséklet hatása 10. ATP (a) és RTP (b) polimerek szakítógörbéi a hőmérséklet függvényében 78 78

79 Hőmérséklet hatása 11. A gerjesztési frekvencia és a hőmérséklet hatása a különböző típusú termomechanikai görbékre Mechanikai üvegesedés jelensége: a frekvencia T g -toló hatású Hőmérséklet-idő ekvivalencia: a hasonló hatások révén T~logt o ~log(1/f) 79 79

80 Hőmérséklet hatása 12. Hőmérséklet-idő ekvivalencia felhasználása a tartós vizsgálatok gyorsításához mestergörbe szerkesztés ATP esetében a T = eltolási tényező Eltolás: a WLF egyenlettel c1 ( T Tg ) log at = c + ( T T ) 2 c= -17,44; c=51,6 o C g 80 80

81 Hőmérséklet hatása 13. Polisztirol (PS) különböző hőmérsékleteken mért relaxációs nyírómodulusa és a szerkesztett mestergörbéje 81 81

82 Nedvességtartalom hatása 1. Felvett oldószer koncentrációtól függő polimerállapotok 82 82

83 Nedvességtartalom hatása 2. Nedvességfelvétel mechanizmusa és lágyító hatása Poláris molekula PA Nedvességfelvétel módjai: Diffúziós közvetlen (b) közvetett (c) Kapilláris (d) 83 83

84 Polimerek a technoklímában 1. Környezeti hatások a technoklímában PA polimer alkatrész Egyéb hatások Sugárzások Technoklíma Elektromágneses hatások Mechanikai terhelés (F) PA Biológiai hatások Légköri nyomás (p) Hõmérséklet (T) Vegyi hatások Légköri nedvességtartalom (n) 84 84

85 Polimerek a technoklímában 2. Öregedési, bomlási folyamatok típusai Fokozatos (a) és hirtelen (b) depolimerizáció Depolimerizáció: PS, PMMA Degradáció: PA Elimináció: i ió PVC (HCL kiválás) Migráció: PVC (színezék, lágyító) Degradációs (a) és eliminációs (b) bomlás Mindezekhez enyhe térhálósodás is járulhat

II. POLIMEREK MORFOLÓGIAI SZERKEZETE

II. POLIMEREK MORFOLÓGIAI SZERKEZETE Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék Polimer anyagtudomány BMEGEPTMG04, 3+0+1v, 5 krp II. POLIMEREK MORFOLÓGIAI SZERKEZETE Vas László Mihály Felhasznált források Irodalom

Részletesebben

Anyagok az energetikában

Anyagok az energetikában Anyagok az energetikában BMEGEMTBEA1, 6 krp (3+0+2) Környezeti tényezők hatása, időfüggő mechanikai tulajdonságok Dr. Tamás-Bényei Péter 2018. szeptember 19. Ütemterv 2 / 20 Dátum 2018.09.05 2018.09.19

Részletesebben

Polimerek fizikai, mechanikai, termikus tulajdonságai

Polimerek fizikai, mechanikai, termikus tulajdonságai SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek fizikai, mechanikai, termikus tulajdonságai DR Hargitai Hajnalka 2011.10.05. BURGERS FÉLE NÉGYPARAMÉTERES

Részletesebben

Szerkezet és tulajdonságok

Szerkezet és tulajdonságok Szerkezet és tulajdonságok Bevezetés Molekulaszerkezet és tulajdonságok Kristályos polimerek a kristályosodás feltétele, szabályos lánc kristályos szerkezet kristályosodás, gócképződés kristályosodás,

Részletesebben

Polimer anyagtudomány BMEGEPTMG20, 2+0+1v, 4 krp

Polimer anyagtudomány BMEGEPTMG20, 2+0+1v, 4 krp Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék Polimer anyagtudomány BMEGEPTMG20, 2+0+1v, 4 krp IV. POLIMEREK MECHANIKAI TULAJDONSÁGAI Vas László Mihály 1 Felhasznált források Irodalom

Részletesebben

Műanyagok Pukánszky Béla - Tel.: Műanyag- és Gumiipari Tanszék, H ép. 1. em.

Műanyagok Pukánszky Béla - Tel.: Műanyag- és Gumiipari Tanszék, H ép. 1. em. Műanyagok Pukánszky Béla - Tel.: 20-15 Műanyag- és Gumiipari Tanszék, H ép. 1. em. Tudnivalók: előadás írott anyag kérdések, konzultáció vizsga Vizsgajegyek 2003/2004 őszi félév 50 Jegyek száma 40 30 20

Részletesebben

Polimerek alkalmazástechnikája BMEGEPTAGA4

Polimerek alkalmazástechnikája BMEGEPTAGA4 Polimerek alkalmazástechnikája BMEGEPTAGA4 2015. október 21. Dr. Mészáros László A gyártástechnológia hatása PA 6 esetén 2 Gyártástechnológia Szakítószilárdság [MPa] Extrudálás 50 65 Tömbpolimerizáció

Részletesebben

Makromolekulák. I. A -vázas polimerek szerkezete és fizikai tulajdonságai. Pekker Sándor

Makromolekulák. I. A -vázas polimerek szerkezete és fizikai tulajdonságai. Pekker Sándor Makromolekulák I. A -vázas polimerek szerkezete és fizikai tulajdonságai Pekker Sándor MTA SZFKI Telefon:392-2222/845, Fax:392-229, Email: pekker@szfki.hu SZFKI tanfolyam: www.szfki.hu/moodle/course/ a

Részletesebben

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Ajánlott segédanyagok

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Ajánlott segédanyagok Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) IX. előadás: Polimerek alakemlékező tulajdonsága Előadó: Dr. Mészáros László Egyetemi docens Elérhetőség: T. ép.: 307. meszaros@pt.bme.hu 2018. április 11. Ajánlott

Részletesebben

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v)

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) VIII. előadás: Polimerek anyagtudománya, alapfogalmak Előadó: Dr. Mészáros László Egyetemi docens Elérhetőség: T. ép.: 307. meszaros@pt.bme.hu 2019. április 03.

Részletesebben

Polimerek fizikai, mechanikai, termikus tulajdonságai

Polimerek fizikai, mechanikai, termikus tulajdonságai SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek fizikai, mechanikai, termikus tulajdonságai DR Hargitai Hajnalka Polimerek / Műanyagok monomer egységekből,

Részletesebben

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Bemutatkozás. Számonkérés

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Bemutatkozás. Számonkérés σ [MPa] Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) VIII. előadás: Polimerek anyagtudománya, alapfogalmak Előadó: Dr. Mészáros László Egyetemi docens Elérhetőség: T. ép.: 307. meszaros@pt.bme.hu 2019. április

Részletesebben

Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Molekulák, folyadékok, szilárd anyagok, folyadékkristályok

Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Molekulák, folyadékok, szilárd anyagok, folyadékkristályok Molekulák energiaállapotai E molekula E elektron E (A tankönyvben nem található téma!) vibráció E rotáció pl. vibráció 1 ev 0,1 ev 0,01 ev Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti

Részletesebben

Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok.

Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok. Folyadékok folyékony szilárd Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok Kiemelt témák: Viszkozitás Apatit Kristályhibák és

Részletesebben

Polimerek anyagszerkezettana és technológiája

Polimerek anyagszerkezettana és technológiája Polimerek anyagszerkezettana és technológiája -Javított változat- 2014/2015/2 félév vizsgakérdések kidolgozása Készítette: Mr. GMA Sziasztok! Ez az előző feltöltött polimerek kidolgozás javítása, volt

Részletesebben

I. POLIMEREK ATOMOS ÉS MOLEKULÁRIS SZERKEZETE

I. POLIMEREK ATOMOS ÉS MOLEKULÁRIS SZERKEZETE Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék Polimer anyagtudomány BMEGEPTMG20, 2+0+1v, 4 krp I. POLIMEREK ATOMOS ÉS MOLEKULÁRIS SZERKEZETE Vas László Mihály 2015.03.09. 1 Követelményrendszer

Részletesebben

Társított és összetett rendszerek

Társított és összetett rendszerek Társított és összetett rendszerek Bevezetés Töltőanyagot tartalmazó polimerek tulajdonságok kölcsönhatások szerkezet Polimer keverékek elegyíthetőség összeférhetőség Többkomponensű rendszerek Mikromechanikai

Részletesebben

A POLIMERKÉMIA ESZKÖZTÁRA, AVAGY HOGYAN ÁLLÍTHATÓK BE EGY ÓRIÁSMOLEKULA TULAJDONSÁGAI?

A POLIMERKÉMIA ESZKÖZTÁRA, AVAGY HOGYAN ÁLLÍTHATÓK BE EGY ÓRIÁSMOLEKULA TULAJDONSÁGAI? A POLIMERKÉMIA ESZKÖZTÁRA, AVAGY HOGYAN ÁLLÍTHATÓK BE EGY ÓRIÁSMOLEKULA TULAJDONSÁGAI? Szabó Ákos Magyar Tudományos Akadémia Természettudományi Kutatóközpont Anyag- és Környezetkémiai Intézet Polimer Kémiai

Részletesebben

Polimer anyagtudomány

Polimer anyagtudomány Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék Polimer anyagtudomány BMEGEPT5071, 3+0+1v, 5 krp V. POLIMEREK MECHANIKAI VISELKEDÉSÉNEK MODELLEZÉSE 1. Vas László Mihály 1 Felhasznált

Részletesebben

Termikus analízis alkalmazhatósága a polimerek anyagvizsgálatában és jellemzésében

Termikus analízis alkalmazhatósága a polimerek anyagvizsgálatában és jellemzésében Termikus analízis alkalmazhatósága a polimerek anyagvizsgálatában és jellemzésében Menyhárd Alfréd BME Fizikai Kémia és Anyagtudományi Tanszék PerkinElmer szeminárium Budapest, 2015. október 20. Vázlat

Részletesebben

Fogorvosi anyagtan fizikai alapjai 2.

Fogorvosi anyagtan fizikai alapjai 2. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok Kiemelt témák: Viszkozitás Víz és nyál Kristályok - apatit Polimorfizmus Kristályhibák

Részletesebben

merevség engedékeny merev rugalmasság rugalmatlan rugalmas képlékenység nem képlékeny képlékeny alakíthatóság nem alakítható, törékeny alakítható

merevség engedékeny merev rugalmasság rugalmatlan rugalmas képlékenység nem képlékeny képlékeny alakíthatóság nem alakítható, törékeny alakítható Értelmező szótár: FAFA: Tudományos elnevezés: merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát, hajlékonyságát vesztett . merevség engedékeny merev Young-modulus, E (Pa)

Részletesebben

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v)

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) IX. előadás: Polimerek alakemlékező tulajdonsága Előadó: Dr. Mészáros László Egyetemi docens Elérhetőség: T. ép.: 307. meszaros@pt.bme.hu 2019. április 10. Tematika

Részletesebben

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Tematika. Ajánlott segédanyagok

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Tematika. Ajánlott segédanyagok Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) IX. előadás: Polimerek alakemlékező tulajdonsága Előadó: Dr. Mészáros László Egyetemi docens Elérhetőség: T. ép.: 307. meszaros@pt.bme.hu 2019. április 10. Tematika

Részletesebben

12. Polimerek anyagvizsgálata 2. Anyagvizsgálat NGB_AJ029_1

12. Polimerek anyagvizsgálata 2. Anyagvizsgálat NGB_AJ029_1 12. Polimerek anyagvizsgálata 2. Anyagvizsgálat NGB_AJ029_1 Ömledék reológia Viszkozitás Newtoni folyadék, nem-newtoni folyadék Pszeudoplasztikus, strukturviszkózus közeg Folyásgörbe, viszkozitás görbe

Részletesebben

Lépcsős polimerizáció, térhálósodás; anyagismeret

Lépcsős polimerizáció, térhálósodás; anyagismeret Lépcsős polimerizáció, térhálósodás; anyagismeret Bevezetés Lineáris polimerek jellemzők sztöchiometria és móltömeg (x n ) reakciók Térhálósodás Anyagismeret hőre lágyuló műanyagok térhálós gyanták elasztomerek

Részletesebben

Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok

Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok Folyadékok víz Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok 1 saját térfogat nincs saját alak/folyékony nincsenek belső nyíróerők

Részletesebben

Anyagok az energetikában

Anyagok az energetikában Anyagok az energetikában BMEGEMTBEA1, 6 krp (3+0+2) Bevezetés, alapfogalmak Dr. Tamás-Bényei Péter 2018. szeptember 5. Oktatók 2 / 36 Dr. habil. Orbulov Imre Norbert (fémes rész) egyetemi docens, tárgyfelelős

Részletesebben

Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok.

Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok. Folyadékok folyékony nincs saját alakja szilárd van saját alakja (deformálás után úgy marad, nem (deformálás után visszaalakul, mert ébrednek benne visszatérítő nyíróerők) visszatérítő nyíróerők léptek

Részletesebben

Polimer anyagtudomány

Polimer anyagtudomány Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék Polimer anyagtudomány BMEGEPTMG20, 2+0+1v, 4 krp I. POLIMEREK ATOMOS ÉS MOLEKULÁRIS SZERKEZETE Vas László Mihály 2017.03.30. 1 Követelményrendszer

Részletesebben

Anyagtudomány: hagyományos szerkezeti anyagok és polimerek

Anyagtudomány: hagyományos szerkezeti anyagok és polimerek Anyagtudomány: hagyományos szerkezeti anyagok és polimerek Polimerek szerkezete és tulajdonságai Fizikai Kémia és Anyagtudományi Tanszék BME Műanyag- és Gumiipari Laboratórium H ép. I. emelet Vázlat Bevezetés

Részletesebben

Kecskeméti Főiskola GAMF Kar. Poliolefinek öregítő vizsgálata Szűcs András. Budapest, 2011. X. 18

Kecskeméti Főiskola GAMF Kar. Poliolefinek öregítő vizsgálata Szűcs András. Budapest, 2011. X. 18 Kecskeméti Főiskola GAMF Kar Poliolefinek öregítő vizsgálata Szűcs András Budapest, 211. X. 18 1 Tartalom Műanyagot érő öregítő hatások Alapanyag és minta előkészítés Vizsgálati berendezések Mérési eredmények

Részletesebben

Polimerek reológiája

Polimerek reológiája SZÉCHENYI ISTVÁN EGYETEM ANYAGTUDOMÁNYI ÉS TECHNOLÓGIAI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek reológiája DR Hargitai Hajnalka REOLÓGIA Az anyag deformációjának és folyásának a tudománya. rheo -

Részletesebben

Műanyagok (makromolekuláris kémia)

Műanyagok (makromolekuláris kémia) Műanyagok (makromolekuláris kémia) Fogalmak, definíciók Makromolekula: azonos építőelemekből, ismétlődő egységekből felépített szerves, vagy szervetlen molekula, melynek molekulatömege általában nagyobb,

Részletesebben

Szerkezet és tulajdonságok

Szerkezet és tulajdonságok Szerkezet és tulajdonságok Bevezetés Molekulaszerkezet és tulajdonságok Kristályos polimerek a kristályosodás feltétele, szabályos lánc kristályos szerkezet kristályosodás, gócképződés kristályosodás,

Részletesebben

Lépcsős polimerizáció, térhálósodás; anyagismeret

Lépcsős polimerizáció, térhálósodás; anyagismeret Lépcsős polimerizáció, térhálósodás; anyagismeret Bevezetés Lineáris polimerek jellemzők reakciók kinetika sztöchiometria és x n Térhálósodás Anyagismeret hőre lágyuló műanyagok térhálós gyanták elasztomerek

Részletesebben

Műanyagok tulajdonságai. Horák György 2011-03-17

Műanyagok tulajdonságai. Horák György 2011-03-17 Műanyagok tulajdonságai Horák György 2011-03-17 Hőre lágyuló műanyagok: Lineáris vagy elágazott molekulákból álló anyagok. Üvegesedési (kristályosodási) hőmérséklet szobahőmérséklet felett Hőmérséklet

Részletesebben

Polimerek vizsgálatai

Polimerek vizsgálatai SZÉCHENYI ISTVÁN EGYETEM ANYAGTUDOMÁNYI ÉS TECHNOLÓGIAI TANSZÉK Polimerek vizsgálatai DR Hargitai Hajnalka Rövid idejű mechanikai vizsgálat Szakítóvizsgálat Cél: elsősorban a gyártási körülmények megfelelőségének

Részletesebben

Polimerek vizsgálatai 1.

Polimerek vizsgálatai 1. SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek vizsgálatai 1. DR Hargitai Hajnalka Szakítóvizsgálat Rövid idejű mechanikai vizsgálat Cél: elsősorban

Részletesebben

Polimerek. Alapfogalmak. Alapstruktúra : Természetes polimerek: Mesterséges polimerek, manyagok. Szabad rotáció

Polimerek. Alapfogalmak. Alapstruktúra : Természetes polimerek: Mesterséges polimerek, manyagok. Szabad rotáció Polimerek Alapfogalmak Természetes polimerek: Poliszacharidok (keményít, cellulóz) Polipeptidek, fehérjék Kaucsuk, gumi Mesterséges polimerek, manyagok Monomer: építegység Polimer: fképp szénlánc, különböz

Részletesebben

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens. Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/

Részletesebben

- homopolimerek: AAAAAAA vagy BBBBBBB vagy CCCCCCC. - váltakozó kopolimerek: ABABAB vagy ACACAC vagy BCBCBC. - véletlen kopolimerek: AAABAABBBAAAAB

- homopolimerek: AAAAAAA vagy BBBBBBB vagy CCCCCCC. - váltakozó kopolimerek: ABABAB vagy ACACAC vagy BCBCBC. - véletlen kopolimerek: AAABAABBBAAAAB Polimerek Polimernek nevezzük az ismétlődő egységekből felépülő nagyméretű molekulákat, melyekben az egységeket kémiai kötések kapcsolják össze. Az ismétlődő egység neve monomer. A polimerek óriásmolekulái

Részletesebben

Fogorvosi anyagtan fizikai alapjai 8. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

Fogorvosi anyagtan fizikai alapjai 8. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17 rugalmas B mn 1. A rá ható erő következtében megváltozott alakját a hatás megszűntével visszanyerő. Vmihez hozzáütődve róla visszapattanó. merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát,

Részletesebben

Fogorvosi anyagtan fizikai alapjai 7.

Fogorvosi anyagtan fizikai alapjai 7. Fogorvosi anyagtan fizikai alapjai 7. Mechanikai tulajdonságok 2. Kiemelt témák: Szilárdság, rugalmasság, képlékenység és szívósság összefüggései A képlékeny alakváltozás mechanizmusa kristályokban és

Részletesebben

Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17 rugalmas B mn 1. A rá ható erő következtében megváltozott alakját a hatás megszűntével visszanyerő. Vmihez hozzáütődve róla visszapattanó. merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát,

Részletesebben

Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17 rugalmas B mn 1. A rá ható erő következtében megváltozott alakját a hatás megszűntével visszanyerő. Vmihez hozzáütődve róla visszapattanó. merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát,

Részletesebben

Bevezetés a lézeres anyagmegmunkálásba

Bevezetés a lézeres anyagmegmunkálásba Bevezetés a lézeres anyagmegmunkálásba FBN332E-1 Dr. Geretovszky Zsolt 2010. október 13. A lézeres l anyagmegmunkálás szempontjából l fontos anyagi tulajdonságok Optikai tulajdonságok Mechanikai tulajdonságok

Részletesebben

tervezési szempontok (igénybevétel, feszültségeloszlás,

tervezési szempontok (igénybevétel, feszültségeloszlás, Elhasználódási és korróziós folyamatok Bagi István BME MTAT Biofunkcionalitás Az élő emberi szervezettel való kölcsönhatás biokompatibilitás (gyulladás, csontfelszívódás, metallózis) aktív biológiai környezet

Részletesebben

Mérnöki anyagok. Polimerek

Mérnöki anyagok. Polimerek Mérnöki anyagok NGB_AJ001_1 Polimerek A nem fémes szerkezeti anyagokat két csoportba oszthatjuk. Ezek: szerves (karbon bázisú) nem fémes szerkezeti anyagok vagy polimerek a szervetlen nem fémes szerkezeti

Részletesebben

egyetemi tanár Nyugat-Magyarországi Egyetem

egyetemi tanár Nyugat-Magyarországi Egyetem egyetemi tanár Nyugat-Magyarországi Egyetem Folyadékok szerkezeti jellemz i Az el adás témakörei: Mit nevezünk folyadéknak? - részecskék kölcsönhatása, rendezettsége - mechanikai viselkedése alapján A

Részletesebben

Szilárd anyagok. Műszaki kémia, Anyagtan I. 7. előadás. Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék

Szilárd anyagok. Műszaki kémia, Anyagtan I. 7. előadás. Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék Szilárd anyagok Műszaki kémia, Anyagtan I. 7. előadás Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék Szilárd anyagok felosztása Szilárd anyagok Kristályos szerkezetűek Üvegszerű anyagok

Részletesebben

Osztályozó vizsgatételek. Kémia - 9. évfolyam - I. félév

Osztályozó vizsgatételek. Kémia - 9. évfolyam - I. félév Kémia - 9. évfolyam - I. félév 1. Atom felépítése (elemi részecskék), alaptörvények (elektronszerkezet kiépülésének szabályai). 2. A periódusos rendszer felépítése, periódusok és csoportok jellemzése.

Részletesebben

Fázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium

Fázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium Fázisátalakulások, avagy az anyag ezer arca Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium Atomoktól a csillagokig, Budapest, 2016. december 8. Fázisátalakulások Csak kondenzált anyag? A kondenzált

Részletesebben

IV. POLIMEREK MECHANIKAI TULAJDONSÁGAI

IV. POLIMEREK MECHANIKAI TULAJDONSÁGAI Budapesti Műszaki és Gazdaságtudmányi Egyetem Plimertechnika Tanszék Plimer anyagtudmány BMEGEPTMG04, 3+0+1v, 5 krp IV. POLIMEREK MECHANIKAI TULAJDONSÁGAI Vas László Mihály 1 Felhasznált frrásk Irdalm

Részletesebben

5. előadás 12-09-16 1

5. előadás 12-09-16 1 5. előadás 12-09-16 1 H = U + PV; U=Q-PV H = U + (PV); P= áll H = U + P V; U=Q-P V; U=Q-P V H = Q U= Q V= áll P= áll H = G + T S Munkává nem alakítható Hátalakulás = G + T S 2 3 4 5 6 7 Szilárd halmazállapot

Részletesebben

Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek. Szőri Milán: Kolloidkémia

Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek. Szőri Milán: Kolloidkémia Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek 1 Határfelületi rétegek 2 Pavel Jungwirth, Nature, 2011, 474, 168 169. / határfelületi jelenségek

Részletesebben

Általános Kémia, BMEVESAA101

Általános Kémia, BMEVESAA101 Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:

Részletesebben

Polimerek reológiája

Polimerek reológiája SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek reológiája DR Hargitai Hajnalka 2011.09.28. REOLÓGIA Az anyag deformációjának és folyásának a tudománya.

Részletesebben

Felkészülést segítő kérdések Polimertechnika (BMEGEPTAMT0) 2015 ősz

Felkészülést segítő kérdések Polimertechnika (BMEGEPTAMT0) 2015 ősz Felkészülést segítő kérdések Polimertechnika (BMEGEPTAMT0) 2015 ősz 1. Mi a polimer; monomer; oligomer? 2. Ismertesse a szerkezeti anyagok csoportosítását! 3. Mi a különbség a polimer és a műanyag között?

Részletesebben

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,

Részletesebben

Műanyag-feldolgozó Műanyag-feldolgozó

Műanyag-feldolgozó Műanyag-feldolgozó A /2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol Kémiai kötések A természetben az anyagokat felépítő atomok nem önmagukban, hanem gyakran egymáshoz kapcsolódva léteznek. Ezeket a kötéseket összefoglaló néven kémiai kötéseknek nevezzük. Kémiai kötések

Részletesebben

Polimer kompozitok alapanyagai, tulajdonságai, kompozitmechanikai alapok

Polimer kompozitok alapanyagai, tulajdonságai, kompozitmechanikai alapok SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimer kompozitok alapanyagai, tulajdonságai, kompozitmechanikai alapok DR Hargitai Hajnalka 2011.10.19. Polimerek

Részletesebben

Makromolekulák. I. Rész: Bevezetés, A polimerek képződése, szerkezete (konstitúció) Pekker Sándor

Makromolekulák. I. Rész: Bevezetés, A polimerek képződése, szerkezete (konstitúció) Pekker Sándor Makromolekulák I. A -vázas polimerek I. Rész: evezetés, A polimerek képződése, szerkezete (konstitúció) Pekker Sándor MTA Wigner FK SZFI Telefon:392-2222/1845 Email: pekker.sandor@wigner.mta.hu ELTE, 2017

Részletesebben

Vázlatos tartalom. Szerkezet jellemzése és vizsgálata Szilárdtestek elektronszerkezete Rácsdinamika Transzportjelenségek Mágneses tulajdonságok

Vázlatos tartalom. Szerkezet jellemzése és vizsgálata Szilárdtestek elektronszerkezete Rácsdinamika Transzportjelenségek Mágneses tulajdonságok Szilárdtestfizika Kondenzált Anyagok Fizikája Vázlatos tartalom Szerkezet jellemzése és vizsgálata Szilárdtestek elektronszerkezete Rácsdinamika Transzportjelenségek Mágneses tulajdonságok 2 Szerkezet

Részletesebben

Anyagtudomány. Ötvözetek egyensúlyi diagramjai (állapotábrák)

Anyagtudomány. Ötvözetek egyensúlyi diagramjai (állapotábrák) Anyagtudomány Ötvözetek egyensúlyi diagramjai (állapotábrák) Kétkomponensű fémtani rendszerek fázisai és szövetelemei Folyékony, olvadék fázis Színfém (A, B) Szilárd oldat (α, β) (szubsztitúciós, interstíciós)

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók

Részletesebben

3D bútorfrontok (előlapok) gyártása

3D bútorfrontok (előlapok) gyártása 3D bútorfrontok (előlapok) gyártása 1 2 3 4 5 6 7 8 9 MDF lapok vágása Marás rakatolás Tisztítás Ragasztófelhordás 3D film laminálás Szegély eltávolítása Tisztítás Kész bútorfront Membránpréses kasírozás

Részletesebben

VEGYIPAR ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZÉPSZINTEN SZÓBELI TÉMAKÖRÖK május - június

VEGYIPAR ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZÉPSZINTEN SZÓBELI TÉMAKÖRÖK május - június 1. Méréstechnika 1.1. Méréstechnika alapjai VEGYIPAR ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZÉPSZINTEN SZÓBELI TÉMAKÖRÖK 2019. május - június méréstechnikai alapfogalmak (mérés, mért érték, mérőszám)

Részletesebben

Felkészülést segítő kérdések 1-20 EA + lab. Alapfogalmak, polimerek anagszerkezettana

Felkészülést segítő kérdések 1-20 EA + lab. Alapfogalmak, polimerek anagszerkezettana Felkészülést segítő kérdések 1-20 EA + lab Alapfogalmak, polimerek anagszerkezettana Definiálja a polimer fogalmát! Mit jelent az oligomer? Mi a monomer és mi a különbség a monomer és az ismétlődő egység

Részletesebben

MŰANYAGOK A GÉPJÁRMŰIPARBAN

MŰANYAGOK A GÉPJÁRMŰIPARBAN MŰANYAGK A GÉPJÁRMŰIPARBAN A projekt címe: Egységesített Jármű- és mobilgépek képzés- és tananyagfejlesztés A megvalósítás érdekében létrehozott konzorcium résztvevői: KECSKEMÉTI FŐISKLA BUDAPESTI MŰSZAKI

Részletesebben

Anyagválasztás Dr. Tábi Tamás

Anyagválasztás Dr. Tábi Tamás Anyagválasztás Dr. Tábi Tamás 2018. Február 7. Mi a mérnök feladata? 2 Mit kell tudni a mérnöknek ahhoz, hogy az általa tervezett termék sikeres legyen? Világunk anyagai 3 Polimerek Elasztomerek Fémek,

Részletesebben

1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4.

1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4. 1. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Melyik sor fejezi be helyesen az állítást:

Részletesebben

Mérnöki anyagok. Polimerek

Mérnöki anyagok. Polimerek .04.10. Mérnöki anyagok NGB_AJ001_1 Polimerek A nem fémes szerkezeti anyagokat két csoportba oszthatjuk. Ezek: szerves (karbon bázisú) nem fémes szerkezeti anyagok vagy polimerek a szervetlen nem fémes

Részletesebben

Fogorvosi anyagtan fizikai alapjai 6.

Fogorvosi anyagtan fizikai alapjai 6. Fogorvosi anyagtan fizikai alapjai 6. Mechanikai tulajdonságok 1. Kiemelt témák: Rugalmas alakváltozás Merevség és összefüggése a kötési energiával A geometriai tényezők szerepe egy test merevségében Tankönyv

Részletesebben

Műanyagok és kompozitok anyagvizsgálata 1.

Műanyagok és kompozitok anyagvizsgálata 1. SZÉCHENYI ISTVÁN EGYETEM ANYAGTUDOMÁNYI ÉS TECHNOLÓGIAI TANSZÉK Műanyagok és kompozitok anyagvizsgálata 1. 1. Polimerek (Műnyagok) szerkezete, gyártása és típusai DR Hargitai Hajnalka A világ nyersacél

Részletesebben

MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403. Dr. Dogossy Gábor Egyetemi adjunktus B 408

MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403. Dr. Dogossy Gábor Egyetemi adjunktus B 408 MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403 Dr. Dogossy Gábor Egyetemi adjunktus B 408 Az anyag Az anyagot az ember nyeri ki a természetből és

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek

Részletesebben

3. POLIMEREK DINAMIKUS MECHANIKAI VIZSGÁLATA (DMA )

3. POLIMEREK DINAMIKUS MECHANIKAI VIZSGÁLATA (DMA ) 3. POLIMEREK DINAMIKUS MECHANIKAI VIZSGÁLATA (DMA ) 3.1. A GYAKORLAT CÉLJA A gyakorlat célja a dinamikus mechanikai mérések gyakorlati megismerése polimerek hajlító viselkedésének vizsgálata során. 3..

Részletesebben

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)

Részletesebben

Makroszkópos tulajdonságok, jelenségek, közvetlenül mérhető mennyiségek leírásával foglalkozik (például: P, V, T, összetétel).

Makroszkópos tulajdonságok, jelenségek, közvetlenül mérhető mennyiségek leírásával foglalkozik (például: P, V, T, összetétel). Mire kell? A mindennapi gyakorlatban előforduló jelenségek (például fázisátalakulások, olvadás, dermedés, párolgás) értelmezéséhez, kvantitatív leírásához. Szerkezeti anyagok tulajdonságainak változása

Részletesebben

Fogorvosi anyagtan fizikai alapjai 5. Általános anyagszerkezeti ismeretek Fémek, ötvözetek

Fogorvosi anyagtan fizikai alapjai 5. Általános anyagszerkezeti ismeretek Fémek, ötvözetek Fémek törékeny/képlékeny nemesémek magas/alacsony o.p. Fogorvosi anyagtan izikai alapjai 5. Általános anyagszerkezeti ismeretek Fémek, ötvözetek ρ < 5 g cm 3 könnyűémek 5 g cm3 < ρ nehézémek 2 Fémek tulajdonságai

Részletesebben

Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS

Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS Milyen képlet adódik a következő atomok kapcsolódásából? Fe - Fe H - O P - H O - O Na O Al - O Ca - S Cl - Cl C - O Ne N - N C - H Li - Br Pb - Pb N

Részletesebben

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév A kollokviumon egy-egy tételt kell húzni az 1-10. és a 11-20. kérdések közül. 1. Atomi kölcsönhatások, kötéstípusok.

Részletesebben

AZ ANYAGI HALMAZOK ÉS A MÁSODLAGOS KÖTÉSEK. Rausch Péter kémia-környezettan

AZ ANYAGI HALMAZOK ÉS A MÁSODLAGOS KÖTÉSEK. Rausch Péter kémia-környezettan AZ ANYAGI HALMAZOK ÉS A MÁSODLAGOS KÖTÉSEK Rausch Péter kémia-környezettan Hogy viselkedik az ember egyedül? A kémiában ritkán tudunk egyetlen részecskét vizsgálni! - az anyagi részecske tudja hogy kell

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

Mőanyagok újrahasznosításának lehetıségei. Készítette: Szabó Anett A KÖRINFO tudásbázishoz

Mőanyagok újrahasznosításának lehetıségei. Készítette: Szabó Anett A KÖRINFO tudásbázishoz Mőanyagok újrahasznosításának lehetıségei Készítette: Szabó Anett A KÖRINFO tudásbázishoz A mőanyagok definíciója A mőanyagok olyan makromolekulájú anyagok, melyeket mesterségesen, mővi úton hoznak létre

Részletesebben

Differenciális pásztázó kalorimetria DSC. TMA DMA felszabaduló gázok mennyisége. Fejlődő gáz kimutatása Fejlődő gáz analízise

Differenciális pásztázó kalorimetria DSC. TMA DMA felszabaduló gázok mennyisége. Fejlődő gáz kimutatása Fejlődő gáz analízise Termikus analízis Hő hatására az anyagokban különféle fizikai és kémiai átalakulások mennek végbe. Az átalakulás hőmérséklete az anyagra jellemző. Azokat a módszereket, amelyeknél a minta fizikai és kémiai

Részletesebben

Katalízis. Tungler Antal Emeritus professzor 2017

Katalízis. Tungler Antal Emeritus professzor 2017 Katalízis Tungler Antal Emeritus professzor 2017 Fontosabb időpontok: sósav oxidáció, Deacon process 1860 kéndioxid oxidáció 1875 ammónia oxidáció 1902 ammónia szintézis 1905-1912 metanol szintézis 1923

Részletesebben

Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek. N m J 2

Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek. N m J 2 Határelületi jelenségek 1. Felületi eszültség Fogorvosi anyagtan izikai alapjai 3. Általános anyagszerkezeti ismeretek Határelületi jelenségek Kiemelt témák: elületi eszültség adhézió nedvesítés ázis ázisdiagramm

Részletesebben

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilád, folyékony vagy

Részletesebben

Analitikusok a makromolekulák nyomában Bozi János MTA TTK AKI

Analitikusok a makromolekulák nyomában Bozi János MTA TTK AKI Analitikusok a makromolekulák nyomában Bozi János MTA TTK AKI 2016. január 28. csomagolás építőipar kereskedelem mezőgazdaság számítástechnika kommunikáció orvostudomány űrkutatás Ami körbevesz minket

Részletesebben

Rugalmas műanyagok. Lakos Tamás Groupama Aréna nov. 26.

Rugalmas műanyagok. Lakos Tamás Groupama Aréna nov. 26. Rugalmas műanyagok Lakos Tamás Groupama Aréna 2015. nov. 26. Tartalom TPE áttekintés Tulajdonságok Összefoglalás Termékújdonságaink Rugalmas műanyagok Az elasztomerek felépítése 200-300A E-Modulusz E-Modulusz

Részletesebben

Az anyagi rendszer fogalma, csoportosítása

Az anyagi rendszer fogalma, csoportosítása Az anyagi rendszer fogalma, csoportosítása A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 1 A rendszer fogalma A körülöttünk levő anyagi világot atomok, ionok, molekulák építik

Részletesebben

Spontaneitás, entrópia

Spontaneitás, entrópia Spontaneitás, entrópia 6-1 Spontán folyamat 6-2 Entrópia 6-3 Az entrópia kiszámítása 6-4 Spontán folyamat: a termodinamika második főtétele 6-5 Standard szabadentalpia változás, ΔG 6-6 Szabadentalpia változás

Részletesebben

A felületi kölcsönhatások

A felületi kölcsönhatások A felületi kölcsönhatások 3. hét Adhézió: különbözı, homogén testek közötti összetartó erı ragasztóanyag faanyag; bevonat faanyag Kohézió: homogén anyag molekulái, részecskéi közötti összetartó erı elsırendő

Részletesebben

Víz. Az élő anyag szerkezeti egységei. A vízmolekula szerkezete. Olyan mindennapi, hogy fel sem tűnik, milyen különleges

Víz. Az élő anyag szerkezeti egységei. A vízmolekula szerkezete. Olyan mindennapi, hogy fel sem tűnik, milyen különleges Az élő anyag szerkezeti egységei víz nukleinsavak fehérjék membránok Olyan mindennapi, hogy fel sem tűnik, milyen különleges A Föld felszínének 2/3-át borítja Előfordulása az emberi szövetek felépítésében

Részletesebben

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Potenciális (helyzeti) energia: a részecskék kölcsönhatásából származó energia. Energiamegmaradás

Részletesebben

Általános és szervetlen kémia Laborelıkészítı elıadás I.

Általános és szervetlen kémia Laborelıkészítı elıadás I. Általános és szervetlen kémia Laborelıkészítı elıadás I. Halmazállapotok, fázisok Fizikai állapotváltozások (fázisátmenetek), a Gibbs-féle fázisszabály Fizikai módszerek anyagok tisztítására - Szublimáció

Részletesebben

Spontaneitás, entrópia

Spontaneitás, entrópia Spontaneitás, entrópia 11-1 Spontán és nem spontán folyamat 11-2 Entrópia 11-3 Az entrópia kiszámítása 11-4 Spontán folyamat: a termodinamika második főtétele 11-5 Standard szabadentalpia változás, ΔG

Részletesebben