Polimer anyagtudomány

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Polimer anyagtudomány"

Átírás

1 Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék Polimer anyagtudomány BMEGEPTMG20, 2+0+1v, 4 krp I. POLIMEREK ATOMOS ÉS MOLEKULÁRIS SZERKEZETE Vas László Mihály Követelményrendszer Előadások: minden oktatási héten: Szerda 12:15-14:00 MT. ép. PT-Labor előadó Előadásanyag (prezentáció) letölthető: Labor: páros vagy páratlan oktatási heteken: Hétfő 12:15-14:00 T. ép. fszt. vagy MT ép. PT-Labor 7x2 óra mérőcsoportokban végzett önálló laborgyakorlat Önálló laborfeladat: egy kiválasztott termoplasztikus polimer termoanalízise és komplex mechanikai vizsgálata. Útmutatók és mérésadatok letölthetők: Vizsgára bocsátás feltétele: Részvétel az önálló laborgyakorlatokon Részvétel a csoport-jegyzőkönyv elkészítésében (beadási határidő: az utolsó oktatási héten, május 8. hétfő 12:00 óra)

2 Felhasznált források Irodalom 1. Bodor G.-Vas L.M.: Polimerek szerkezettana. Műegyetemi Kiadó, Bp Halász L.-Zrínyi M.: Bevezetés a polimerfizikába. Műszaki K., Bp Bodor G.: A polimerek szerkezete. Műszaki K. Bp Bodor G.-Vas L.M.: Polimer anyagtudomány. Kézirat. BME, Bp Ehrenstein G.W.: Polymerwerkstoffe. Struktur und mechanische Verhalten. C.Hanser Verlag, München, Pukánszky B.: Műanyagok. Műegyetemi Kiadó, Bp Oswald T.A.-Menges G.: Materials Science of Polymers for Engineers. Hanser Pub., New York, Menges G.: Werkstoffkunde der Kunststoffe. C.Hanser Verlag, München, Ajánlott irodalom 9. Ward I.M.-Hadley D.W.: An Introduction to the Properties of Solid Polymers. J.Wiley&Sons, Chichester, Strobl G.: The Physics of Polymers. Concepts of Understanding their Structures and Behaviour. Springer Verlag, Berlin Eisele U.: Introduction to Polymer Physics. Springer-Verlag, Berlin Vas László M. 3 Anyagtudomány Szerkezeti anyagok főbb osztályai Fémek (M) Kerámiák (C) Polimerek (szerves) (P) A fentiek keverékei, kompozitjai M M: acél Al; C C: kavics cement; P P: PES-szál PVC M C: acél beton; P C: Cell.rost agyag C M: kerámia Al; M P: acél gumi C P: üvegszál UP; P M:??? Monomer = 1 egység/tag Oligomer = Néhány egység/tag Polimer = Sok egység/tag

3 Szerkezeti anyagok és arányaik a civilizáció fejlődése során Gibson R.F.: Principles of Composite Material Mechanics. McGraw Hill, New York, Kondratyev-féle fejlődési ciklusok Ny.D. Kondratyev ( ) orosz-szovjet közgazdász prof. hosszútávú ciklusok Ciklus hajtóereje: új találmány(családok) bevezetése, elterjedése és kifutása Ciklusok (K-hullámok: 50 év (40-80) ) és fejlődési területek: biotechnológia

4 Kondratyev-féle fejlődési ciklusok A fejlődési ciklusok és az USA tényleges áruforgalma Polimer anyagok kidolgozásának története : Vulkanizált lágygumi (1839), az ebonit (keménygumi, 1851), az első termoplasztikus polimer: a celluloid (cellulóz-nitrát, 1869), viszkóz : Az első szintetikus polimer: a bakelit (fenolgyanta, 1907), PVC : Akril polimerek, PS, PVAC, PA (nylon), melamin gyanták, PU, PET : PE, PTFE (teflon), EP és UP gyanták, szilikon polimerek, SBR, ABS), az első termoplasztikus polimerkeverék (PVC/NBR); : ipp, PAC, PC, PAN, POM, LDPE, HDPE; polifenilénoxid (PPO); : Aromás poliamid (aramid, Kevlar), létrapolimerek, klórozott poliéterek, EPDM, PI, poliszulfonok, ionomerek, PAN-alapú szénszálak; : Polifenilénszulfid, poliéterszulfon, poliéterketonok, PAI, PBT, polimerkeverékek (blendek) és ötvözetek térhódítása, folyadékkristályos (önerősítő) polimer (LCP vagy SRF); : PEI, poliariléter, aromás poliéterkarbonát, poliimidszulfon, HPPE : Polimeranyagok tulajdonságainak javítása, új polimer keverékek, polimer ötvözetek, társított anyagok kidolgozása, PBO Intelligens anyagok, nanoszerkezetű anyagok, nanokompozitok

5 POLIMEREK OSZTÁLYOZÁSA Termoplasztikus ( Hőre lágyuló) (lineáris) Amorf szerkezetű PVC, PC, PMMA, PS, ABS Részbenkristályos szerkezetű PE, PP, POM, PA, PET(P) Nem termoplasztikus ( Hőre keményedő) Amorf szerkezetű (térhálós) > Gyengén/ritkán térhálós (gumik): NR, CR, SBR, PUR, SIR > Sűrűn térhálós (gyanták): UP, EP, VE Részbenkristályos szerkezetű > Lineáris (Pl. cellulóz, fehérje, PAN, Kevlar, PTFE, szénszál) > Részben térhálós (gyapjúkeratin, utólagosan térhálózott, pl. PEX) Polimer termelés dinamikája Polimerek, mint szerkezeti anyagok mennyiség és teljesítmény (de.wikipedia.org)

6 Polimer termelés dinamikája A nyersacél és a szintetikus polimerek termelése a nyugati világban Czvikovszky T.: Periodica Polytechnica Mech. Eng. Vol.38. No.4. (1994) Polimerek felhasználása Hajók (polimer kompozit)

7 Polimerek felhasználása Lopakodók (polimer kompozit) Polimerek felhasználása Hidak, egyéb szerkezetek (polimer kompozit)

8 Polimerek felhasználása Repülőgépek (polimer kompozit) Polimerek felhasználása Szélturbina - lapátok (polimer kompozit)

9 Polimerek felhasználása Szélfarm (Polimer kompozit) Polimerek felhasználása Űrrepülőgép (tervezett) (Polimer kompozit)

10 Anyagszerkezet és tulajdonság Monomer (M) Polimer anyag (PA) Termék (PT) lánc Kérdés: Mi a tulajdonságok anyagszerkezettani magyarázata? Polimerek szerkezeti szintjei Szerkezeti gráf Gráf-pont: szerkezeti szint PE szerkezeti szintjei Kristálycella Gráf-él: átmenet a szerkezeti szintek között (él mentén: rendezés és egyesítés műveletek) Krisztallit Fibrilla Szferolit Polimer test Menges G.: Werkstoffkunde der Kunstsstoffe Hanser Verlag, München,

11 Polimer anyagtudomány Szerkezet, tulajdonság és kapcsolatuk Polimerek szerkezete (mikroszintek) Atomos szerkezet (piko/nano szint) Molekuláris szerkezet (nanoszint) Morfológiai vagy finomszerkezet (nano/mikro szint) Polimerek tulajdonságai (makroszint) Mechanikai tulajdonságok Hőmérséklet hatása Légnedvesség hatása Egyéb tulajdonságok (fizikai, kémiai) Polimer anyagtudomány Fejlesztési trendek Új anyagszerkezetek Új molekulaszerkezetek (húzásra duzzadó; energiatároló) Nanoszerkezetű/hibrid/önerősített anyagok Intelligens/önszervező/önreprodukáló szerkezetek Új anyagelőállítási/feldolgozási technológiák Célmolekula technológiák (biochips-ek, növesztés) Nano/mikrotechnológiák (rendező/additív építkezés) Biotechnológiák (gén/enzim/mikroorganizmus) Új anyagmodellezési módszerek Molekuladinamikai (kvantummech.) anyagmodellek Diszkrételemű anyagmodellek (anyaghibák, tönkremenetel) Többszintű összetett (diszkrét/kontinuum) modellek

12 Polimer anyagtudomány (PAT) tárgy felépítése Polimer anyagok, tipikus anyagosztályok, polimer keverékek és ötvözetek szerkezete Polimerek szerkezetvizsgálati módszerei Polimer anyagok mechanikai viselkedése Polimerek viselkedése a hőmérséklet és más környezeti tényezők változása mellett Polimerek szilárdsági és törésmechanikai tulajdonságai Szilárd polimerek mechanikai viselkedésének fenomenológiai modellezése PAT II: Különleges polimer anyagok (gélek, habok, szálak, intelligens anyagok, ) Kontinuum VEM (hiperelasztikus, ) anyagmodellek, Statisztikus szerkezeti-mechanikai diszkrét anyagmodellek, Időfüggő viselkedés, törési folyamat statisztikus modellezése, Polimereket felépítő atomok A periódusos rendszer első 18 eleme Növények: cellulóz-váz C,H,O Állatok: vázfehérje, kitin C,H,O,N Ásványok: szilikátok Si,O, Kationok(+) < Fémes elemek Nemfémes elemek > Anionok(-) Rendszám: protonok száma Tömegszám: nukleonok (protonok és neutronok) száma

13 Néhány atom szerkezete Hidrogén (H) és Hélium (He) n=1 Főkvantumszám: n=1: max. 2 elektron n=2: max. 8 elektron n=3: max. 18 elektron n=4: max. 32 elektron Szénatom (C) n=1 Főkvantumszám (1 n 7): elektronhéj jele Mellékkvantumszám (l): elektron energiaszintje (0 n-l) (s, p, d, f, állapotok) Mágneses kvantumszám (-l m l) (pályaformák térbeli iránya) Spinkvantumszám (elektron impulzusnyomatéka : ±1/2) 1.Pauli elv: 1 atom elektronjai min. 1 kvantumszámban különböznek. 2. Pauli elv: 1 atompályán maximum 2 elektron tartózkodhat. n= Elektronhéj Állapotfüggvény, tartózkodási valószínűség Schrödinger időfüggetlen hullámegyenlete egy energia-sajátértékegyenlet, amely az egy részecske alkotta kvantumrendszer E energiáját, a H (Hamilton-féle) differenciáloperátor sajátértékeiként határozza meg, míg a ψ megoldások az E sajátértékekhez tartozó sajátfüggvények: h= Planck állandó; m=részecske tömege; U(x,y,z)=a mozgást meghatározó potenciál A ψ(x,y,z) hullámfüggvény (megoldás) a részecske (kvantum)állapotát írja le. Állapotok szuperpozíciója: Ha ψ 1 és ψ 2 a részecske két lehetséges állapota ezek lineáris kombinációja is lehetséges állapot. Orbitál=Atompálya: a lehetséges elektronhelyzetek összessége Az elektronfelhő lokális sűrűségét az elektron tartózkodási valószínűsége határozza meg

14 Elektronhéj Állapotfüggvény, tartózkodási valószínűség 1s atompálya dv(r)= 4πr 2 dr A ψ 2 pontsűrűségfüggvény, így ψ(x,y,z) 2 dv annak valószínűsége, hogy az elektron az adott (x,y,z) pont körüli kis, dv térfogatú tartományban található; A ψ 2 4πr 2 radiális sűrűségfüggvény, így ψ(r) 2 4πr 2 dr annak valószínűsége, hogy az elektron az r sugarú, dr vastagságú gömbrétegben található. A maximum a Bohr sugárnál található, ahol az elektronnak alapállapotban keringenie kellene Elektronhéj Állapotfüggvény, tartózkodási valószínűség Atompálya: Az atommag körüli térnek az a része, ahol az elektronok 90%-os valószínűséggel megtalálhatók. Alhéj: az elektronok közel azonos energiaállapotban vannak. Ezeket s,p,d,f, betűkkel jelöljük. Elektronhéj: Az azonos energiaszintű alhéjak összessége. 1, 2, 3, 4, 5, 6, 7 lehet, amennyi a periódusok (sorok) száma a periódusos rendszerben. Atompályák s-elektronok: gömbszimmetrikus pályaforma p-elektronok: súlyzóformájú pályaforma

15 A szén rendezett szerkezetformái 1. Kristályos módosulatok s-elektronok: gömbszimmetrikus pályaforma p-elektronok: súlyzóformájú pályaforma Gyémánt Grafit Kötésben: molekulapálya σ-kötés: max. elektronsűrűség az x-kötéstengelyen (s-s, s-p, p x -p x pályák kapcsolódása) π-elektronok: max. elektronsűrűség az x- kötéstengelyen kívül (p y -p y, p z -p z pályák kapcsolódása) 4 σ kötés Kötéstávolság Gyémánt Grafit Atomok között 0,154 nm 0,142 nm Rétegek között - 0,339 nm 3 σ kötés + π-elektronok A szén rendezett szerkezetformái 2. Kristályos módosulatok Grafén egy atom vastagságú grafitrács

16 A szén rendezett szerkezetformái 3. Fullerének A szén rendezett szerkezetformái 4. Fullerének Fullerén (C 60 ) kubán (C 8 H 8 ) heteromolekuláris kristály (Nature, Pekker S. és tsi.) Molekuláris motor: Kubán kocka: álló rész Fullerén gömb: forgó elem

17 A szén rendezett szerkezetformái 5. Nanocsövek Átmérő: Néhány nm A szén rendezett szerkezetformái 6. Karbinok J. Ayre; Húzómodulus (32 TPa) és -szilárdság: 2x-ese a grafén v. szénnanocső értékének Nyújtással változnak az elektromos tulajdonságok 90 o -al elcsavart állapotban félvezető Oldalláncok, fémkomplexek, hálószerkezet képzésével speciális funkciók teljesíthetők, pl. energiatárolás Szén lineáris allotróp módosulata: Szénlánc, széncérna speciális szerkezettel (1σ, 2σ, 3σ kötések): [ C ] (vagy elvileg: [=C=]) Első detektálás: USSR 1960 Szintézis: 300 egység 1995 Elemzés: első 2004, részletes 2013 Jools; csodaanyag /

18 Atomok közötti kötések 1. Kötés energiája és a vonzó-taszító erők Két részecske alkotta rendszer Lenard-Jones potenciál r o csökken U o nő r o /2= van der Waals távolság (Azonos atomok kapcsolódása, pl. A-A vagy B-B) Atomok közötti kötések 3. Primer kötések Jellemzők Jelentőség polimereknél 1. Kovalens kötés 2. Ionos kötés 3. Fémes kötés Intramolekuláris Makromolekulán belüli atomok között Kisszámú közös elektronpár Elektronleadás és -felvétel Nagyszámú közös elektron alapvető kicsi nincs Kovalens kötés jellemzése: Elektronegativitás (EN) különbség, Dipólusmomentum (µ=δr o ), dipólusindex (DI=µ/er o =δ/e) Elektron féltér-tartózkodási valószínűsége (p)

19 Atomok közötti kötések 2. Kovalens kötések molekulapályák féltér-tartózkodási valószínűségek p 1 p 2 Atompályák Molekulapályák σ-kötés Elektron féltér-tartózkodási valószínűségei: p 1 +p 2 =1 p 1 p 2 π-kötés Atomok közötti kötések 4a. Kovalens kötés (σ-kötés: rotációképes > π-kötés: nincs rotáció) (Többszörös kötésnél az egyik mindig σ kötés.) Ion-kötés Fémes kötés Rendelkezik ionos és kovalens jelleggel is

20 Atomok közötti kötések 4b. Kovalens kötés kvázi- és állandó dipólus tartózkodási valószínűség P(1,1)=P(2,0)+P(0,2) p1=0.9 E(δ)=-0.8 p1=0.95 E(δ)=-0.9 p1=0.99 E(δ)=-0.98 P(2,0)=P(1,1) P(2,0)=P(1,1)+P(0,2) 39 Atomok közötti kötések 5. Kovalens kötések Atomok elektronegativitása (EN) az atomok elektronszívási képességének mértéke Pauling-féle relatív skála: EN(Cs)=0,7; ; EN(Ca) = 1,0 EN(F) = 4,0 Nemfémes jellegű elemek Fémes és félfémes jellegű elemek Elektronegativitás Elektronegativitás Hidrogén (H) Foszfor (P) Szén (C) Kén (S) Bróm (Br) Nitrogén (N) Klór (Cl) Oxigén (O) Fluor (F) 2,1 2,1 2,5 2,5 2,8 3,0 3,0 3,5 4,0 Cézium (Cs) Kálium (K) Nátrium (Na) Litium (Li) Kálcium (Ca) Magnézium (Mg) Alumínium (Al) Cink (Zn) Vas (Fe) Szilicium (Si) Réz Bór (B) 0,7 0,8 0,9 1,0 1,0 1,2 1,5 1,6 1,8 1,8 1,9 2,

21 Atomok közötti kötések 5.a. Kovalens kötések Atomok elektronegativitása (EN) Ionic Pl. Ionos kötésű: NaCl MgO Al 2 O 3 Kerámiák (karbid és egyéb típusú fémkerámiák,) Megj.: Pl. az Fe 3 C vaskarbid (cementit), ill. a TiC intersticiós fémötvözet. Pl. Kovalens kötésű: H 2, O 2, F 2, Cl 2 P 4, S 8 H 2 O, HF, HCl SiO 2 SiC, B 4 C Kerámiák (oxid és nitrid típusú kerámiák) Σ Két atom közötti kötés típusát meghatározza elektronegativitásuk összege (ΣEN) és különbsége ( EN): ΣEN kicsi és EN kicsi fémes kötés jön létre. Ha EN=0 akkor apoláris kovalens kötés ΣEN nagy és EN kicsi kovalens kötés jön létre. 0< EN<2 akkor poláris kovalens kötés EN nagy ( EN 2 ) ionos kötés jön létre Atomok közötti kötések 6. Kovalens kötés C N C C C=O C=N C=C Kötéstávolság [nm] 0,115 0,120 0,121 0,127 0,134 Disszociációs energia [kj/mol] C-F O-H C-H N-H Si-O C-O C-C C-Cl C-N C-Si C-S O-O 0,132 0,139 0,096 0,110 0,101 0,164 0,146 0,154 0,177 0,147 0,187 0,181 0,

22 Atomok közötti kötések 7. Intermolekuláris Makromolekulák között Szekunder kötések 1. Dipólus (orientációs) kötés 2. Hidrogén kötés 3. Diszperziós kötés Jellemzők Állandó, vagy indukált dipólusok Legerősebb dipólus kötés Leggyengébb szekunder kötés Polimer jellege, amiben található Kissé poláris Erősen poláris Apoláris Minden polimerben van! (poláris, vagy apoláris polimerben is) Atomok közötti kötések 8. Szekunder kötés példák Kötéstípus Szerkezet Disszociációs energiasűrűség [kj/mol] Ionkötés (pl. ionomerek) H-kötés (pl. cell., fehérje, PA, PVA, PU) Dipólus kötés (pl. PVC, PVF, PAN, poliészterek) Diszperziós v. van der Waals kötés (pl. PE, PP) ( 40) 6 17 (indukciós: 4 8) 2 4 (8)

23 Atomok közötti kötések 9. Hidrogén kötések (A legnagyobb elektronegativitású elemek, az F, O, és N képesek erre.) Hidrogén kötés Kötéstávolság [nm] Disszociációs energia [kj/mol] C-H---N O-H---N O-H---O O-H---Cl N-H---N N-H---O N-H---Cl N-H---F F-H---F 0,28 0,26 0,28 0,31 0,31 0,29 0,30 0,32 0,28 0, Atomok közötti kötéstípusok 10. Szekunder kötések jelentősége: A víz folyékony a szobahőmérsékleten Molekularácsos anyagok (pl. kén) szilárd állapota Polimer folyadék (oldat, olvadék) viszkozitása Lineáris polimer szilárdsága pl. szuperszilárd PE (HPPE) és szénszál

24 Atomok közötti kötéstípusok 11. A víz 20 o C-on folyadék H-kötések Atomok közötti kötéstípusok 12. Gyenge PE fólia Szuperszilárd HPPE 2000: R=428 km PBO szál: R=450 km, E=270 GPa, σ B =5,8 GPa Acél szál: R=25-35 km, E=210 GPa, σ B =1,5-2,7 GPa HPPE

25 Különböző anyagok sűrűség- és szilárdság jellemzői Anyag Sűrűség [g/cm 3 ] E rug.mod. [GPa] Szak. szil. [MPa] Szak. hossz [km] Ütő-h. szil. [J/cm 2 ] Acél 7,8-7, Alumínium 2,7-2, Beton* 1-3,5 Kerámia 1,9/3, Fa** 0,3-0, PU-gumi 1,1-1,3 0,006-0, nem törik PE-HD 0,95-0,96 0, PP 0,91 1, PA 1,05-1,15 1,2-8, Kevlár szál 1,44-1, PE-HP szál 0, Szénszál Grafitszál 1,7-1,9 2, Molekuláris szerkezet 1. Polimer előállítása M A átalakulással Pl.: PE, PP, PS, PVC, PVDC, PTFE PMMA, PAN, PVAL Pl.: PA, PET, PBT, PC, PI Pl.: PU, PUR

26 Molekuláris szerkezet 2. Polimer lánc (P) szerkezete Ismétlődő egység (A) Monomer Ismétlődő egység (konstitúciós): {M} P = -[A] n - M -A- Egyalkotós polimer: Kétalkotós polimer: M A = -Γ 1 -X-Γ 2 (M) X szénvázú magcsoport Γ=-Γ 2 -Γ 1 - kötővagy hídcsoport Γ 1,Γ 2 - hídfelek (M 1,M 2 ) A = - Γ 1 -X 1 -Γ 1 - Γ 2 -X 2 -Γ 2 - (M 1 ) (M 2 ) Molekuláris szerkezet 3. Kötő-, vagy hídcsoportok a polimerekben Hídcsoport elnevezése Γ Hídcsoport szerkezete Γ 1 Hídfél Γ 2 Hídfél Üres csoport (csak kötés) = -- Karbonil gyök, keton tag -CO- -CO- Oxigénhíd, éter- vagy acetáltag -O- -O- Amin csoport -NH- -NH- Kénhíd, szulfid tag -S- -S- Észtercsoport -CO-O- -CO- -O- Karbonát kötőcsoport -O-CO-O- -O- -CO-O- Amidcsoport, peptidcsoport -NH-CO- -NH- -CO- Urea csoport -NH-CO-NH- (láncmol.) =N-CO-N= (hálóág) Imid csoport -N=(CO) 2 = vagy -CO-N-CO N=(CO) 2 = Szulfon kötőcsoport -SO 2 - -SO 2 - Uretán csoport -NH-CO-O- -NH- -CO-O- -NH-CO- =N-CO- -NH- -N= 26

27 Molekuláris szerkezet 4. Zárócsoportok a polimerekben Zárócsoport elnevezése Zárócsoport szerkezete Metilcsoport -CH 3 Hidroxil csoport Karboxil csoport Metilalkohol gyök -OH -COOH -CH 2 OH Amino csoport -NH 2 Acetát gyök -OCOCH 3 Iniciátor maradék Különböző lehet Molekuláris szerkezet 5. Polimer anyagosztályok a kötőcsoportok szerint Homogén szénvázú szerves polimerek: Γ=Ø={-} 1. Etilénbázisúak (PE, PP, PS, PVC, PVDC, PVF, PTFE, PMMA) 2. Nem etilénbázisúak (NR, BR, SBR, CR) (PpP=PPP) Heterogén szénvázú szerves polimerek: Γ Ø 1. Poliéterek, cellulóz: Γ=-O- (étercsoport, oxigénhíd) 2. Poliészterek: Γ=-CO-O- (észter-csoport) 3. Poliamidok, vázfehérjék: Γ=-NH-CO- (amid csoport) 4. Poliuretánok: Γ=-NH-CO-O- (uretán csoport) Heterogén sziliciumvázú szervetlen polimerek: Γ Ø Szilikátok (üveg, bazalt, szilikon): Γ=-O

28 Molekuláris szerkezet 6. Homogén szénvázú polimerek (Γ=Ø) Etilénbázisúak Nem etilénbázisúak (pl. a gumi alapanyagok, vagy a PpP) BR PpP Polivinil polimerek Molekuláris szerkezet 7. R 4 oldalcsoport Oldalcsoportokban: C,H (szénhidrogén jellegűek) PE (polietilén) -H PP (polipropilén) -CH 3 PMB (polimetilbutén) -C 3 H 7 PMP (TPX) (polimetilpentén) -C 4 H 9 PS (polisztirol) -C 6 H 5 = ο (benzol gyűrű) Oldalcsoportokban: C,H,O (szénhidrát jellegűek) PVA(L) (polivinilalkohol) -OH PVAA (polivinilakrilsav) -COOH PVA(C) (polivinilacetát) -OCOCH 3 PMA (polimetakrilát/polimetilakrilát)) -COOCH 3 PVB (polivinilbutirát) -OCO(CH 2 ) 3 Oldalcsoportokban: C,H,(O),N (N és esetleg O tart.) PAN (poliakrilnitril/polivinilcianid) -CN PAA (poliakrilamid) -CO-NH 2 Oldalcsoportokban: C,H,Cl,F (halogén tartalmúak) PVC (polivinilklorid) -Cl PVF (polivinilfluorid) -F

29 Molekuláris szerkezet 8. Polivinilidén polimerek Oldalcsoportokban: C,H (szénhidrogén jellegűek) R 3 = R 4 oldalcsoportok PIB (poliizobutilén) -CH 3 Oldalcsoportokban: C,H,O (szénhidrát jellegűek) PVDA(L) (polivinilidénalkohol) -OH Oldalcsoportokban: C,H,N (nitrogén tartalmúak) PVDCN (polivinilidéncianid) -CN Oldalcsoportokban: C,H,Cl,F (halogén tartalmúak) PVDC (polivinilidénklorid) -Cl PVDF (polivinilidénfluorid) -F Molekuláris szerkezet 9. Egyéb etilénbázisú polimerek R 1 R 2 R 3 R 4 Oldalcsoportokban: C,H,O (szénhidrát jellegűek) PMMA (polimetilmetakrilát) (plexi) -H -H -CH 3 -COOCH 3 HEMA (polihidroxietilmetakrilát) (>>gél) -H -H -CH 3 -COO(CH 2 ) 2 OH PMAA (polimetakrilsav) -H -H -CH 3 -COOH Oldalcsoportokban: C,H,O,N PECA (polietilcianoakrilát) -H -H -CN -COO(CH 2 ) 2 Oldalcsoportokban: C,H,Cl,F (halogén tartalmúak) P3FE (politrifluoretilén) -H -F -F -F PTFE (politetrafluoretilén) (teflon) -F -F -F -F PTFCE (politrifluormonoklóretilén) -F -F -F -Cl PHFP (polihexafluorpropilén) -F -F -F -CF

30 Molekuláris szerkezet 10. Egyéb, homogén főláncú polimerek (szénhidrogén jellegűek) Diéntartalmúak (vulkanizálva: gumi =R): Szerkezete Ismétlődő egység: -A- = -X- Oldalcsoportokban: H B (polibutadién)(gumi: BR) -CH=CH-(CH 2 ) 2 - Oldalcsoportokban: C,H I (1,4 poliizoprén) (ld ábra: cisz/transz) (kaucsuk, term. anyag: IR - cisz forma) (gutta-percha, term. anyag - transz forma) Oldalcsoportokban: C,H, Cl -C(CH 3 )=CH-(CH 2 ) 2 - C (polikloroprén) (gumi: CR) -CCl=CH-CH 2 - Aromásak: Poli(p-fenilén)(PpP=PPP) ο Poli(p-xilén) -CH 2 ο CH Molekuláris szerkezet 11. Heterogén szénvázú polimerek (Γ Γ Ø) Poliéterek POM POE Poliészterek PET: x=2; PBT: x=4 Poliamidok PAx PAx.y (Pl. PA6.6) Aramid (Pl. PA6) Poliuretánok Kevlar

31 Biopolimerek Molekuláris szerkezet 12. Poliszacharid alapúak Cellulóz és hemicellulóz (β-glükóz) Keményítő (burgonyából) (α-glükóz) Keményítő Fehérje alapúak (aminosav) Növényi eredetűek (kukorica zein) Állati eredetűek (tej kazein; bőr kollagén) Lineáris, alifás poliészterek Poliglikolsav (PGA = polyglycolic-acid) (glikolsavból polikondenzációval) Politejsav (PLA = polylactic-acid, polilaktid)(laktidból polikondenzációval, vagy keményítőből fermentációval) Keményítő Glükóz (fermentáció) Tejsav Politejsav Molekuláris szerkezet 13. Szerves polimerek: Poliéterek POM (polioximetilén, poliformaldehid poliacetál) Magcsoport X -CH 2 - Hídcsoport Γ Oxigénhidas, egykomponensű polimerek Ism. egység: -A- = -X-Γ- -O- POE (polioxietilén, polietilénoxid, polietilénglikol) -(CH 2 ) 2 - POP (polioxipropilén) -CH 2 -CH(CH 3 )- PAC (poliacetaldehid) -CH(CH 3 )- CPE (klórozott poliéter) -CH 2 -C(CH 2 -Cl) 2 -CH 2 - PPO (polifenilénoxid), vagy PPE (polifenilénéter) ο PECH (poliepiklorohidrin) (elasztomer) -CH(CH 2 Cl)- Polikarbonátok -O-CO-O- PC (polikarbonát) -(CH 2 ) 2 ο vagy ο C(CH 2 ) 2 ο Szervetlen polimerek: Szilikonok Polisziloxán -Si(CH 3 ) 2 - -O

32 Molekuláris szerkezet 14. Oxigénhidas, többkomponensű polimerek Lineáris poliészterek: PET, PETP PBT, PBTP Poliéterketonok PEK PEEK PEKK POB (polioxibenzoat) PPE (polifenilénéter) Q = aromás gyűrű Cellulózalapú anyagok Cellulóz (C) Cellulózacetát (CA) Cellulóznitrát (CN) Etilcellulóz (EC) Cellulózpropionát (CP) Cellulózacetátbutirát (CAB) Cellulózacetátpropionát (CAP) Ismétlődő egység (-A-) m = 2 m = 4 -Γ 1 -(CH 2 ) m -Γ 1 -Γ 2 ο Γ 2 - -[ ο Γ 1 -] m -[ ο Γ Γ 2 -] n - m = 1, n = 1 m = 2, n = 1 m = 1, n = 2 m = 2, n = 2 Γ 1 Híd(fél) -O- -O- Γ 2 Híd(fél) -CO- -CO- -G-Γ 1 -G -Γ 2 - G=G = -C 5 O[H 5 R 1 R 2 R 3 ]- R 3 = -CH 3 R 1 R 1 =R 2 = -OH R 1 =R 2 = -OCOCH 3 R 1 =R 2 = -ONO 2 R 1 =R 2 = -O(CH 2 ) 2 R 1 =R 2 = -OCOCH 2 CH 3 R 1 = -OCOCH 3 R 2 = -OCO(CH 2 ) 2 CH 3 R 1 = -OCOCH 3 R 2 = -OCOCH 2 CH 3 -O Polimer N a főláncban: Poliamidok (PA) Egyalkotósak: PAx (x=m+1=4,6,7,11) pl. PA6 polikaprolaktám Kétalkotósak: PAx.y x=m=6; y=n+2=6,10,12 pl. PA6.6 polihexametilén-adipamid Aramidok (aromás amidok) Para-aramid, Q = ο (pl. Kevlár) Meta-aramid, Q=Q : (pl. Nomex) Molekuláris szerkezet 15. Ismétlődő egység (-A-) -Γ 1 -(CH 2 ) m -Γ 2 - -Γ 1 -(CH 2 ) m -Γ 1 -Γ 2 -(CH 2 ) n -Γ 2 - Γ 1 Hídfél Γ 2 Hídfél NH- -Q(CH 3 ) 2 -Γ 1 -Q(CH 3 ) 3 -Γ 2 - -O- -O- -O- -CO- -Γ 1 -Q-Γ 1 -Γ 2 -Q-Γ 2 - -NH- -CO- Polikarbamidok -(CH 2 ) m - -NH-CO- -NH- Fehérjék (polipeptid) (sokalkotós biopolimer) Poliimidek (PI) Q = ο Poliamidimid (PAI) Q = ο R = változó tag -Γ 1 =Q -Γ 2 -Q-R-Q- -N(CO) 2 = -NH-COp-para m-meta -Γ 1 -CHR i -Γ 2 - -NH- -CO- -Γ 1 =Q =Γ 1 -Q- -N(CO) 2 = =(CO) 2 N- 32

33 Molekuláris szerkezet 16. Imid-kötés Polimer Ismétlődő egység (-A-) Γ 1 Hídfél Γ 2 Hídfél N és O a főláncban: Poliimidek (PI) Q = ο -Γ 1 =Q =Γ 1 -Q-Γ 2 -Q- -N(CO) 2 = =(CO) 2 N- Poliuretánok (PU) -Γ 1 -(CH 2 ) m -Γ 1 -Γ 2 -(CH 2 ) n -Γ 2 - -NH-CO- -O- -O- Poliéterimid (PEI) Q = ο -Q-Γ 1 =Q -Γ 2 -Q-C(CH 3 ) 2 -Q- -Γ 2 -Q--Γ 1 - -N(CO) 2 = -O- Polibismaleinimid (PBI) Q = ο R = változó tag -(CH 2 ) 2 =Γ 1 -Q-R-Q-Γ 2 =(CH) 2 - -N=(CO) 2 = Molekuláris szerkezet 17. Polimer S atom a főláncban: Polifenilénszulfid (PPS) Q = ο S és O a főláncban Poliszulfonok (PSU) Q = ο Poliéterszulfon (PESU) Q = ο Ismétlődő egység (-A-) Γ 1 Hídfél Γ 2 Hídfél ο Γ 1 - -S- -Q-Γ 1 -Q-Γ 2 -Q-C(CH 3 ) 2 -Q-Γ 2 - -SO 2 - -O- ο Γ 1 ο Γ 2 ο -SO 2 - -O

34 Molekuláris szerkezet 18. Az ismétlődő egység (A) szerkezeti izomériái Cisz-transz izoméria Cisz Transz Pl. cisz-izoprén = kaucsuk transz-izoprén = gutta-percha 6 atomos gyűrű (5xC, 1xO) szék (a) és kád (b) formájú izomériája (pl. cellulóz) Molekuláris szerkezet 19. Konfigurációs izomerek: Aszimmetrikus C-atomos molekulalánc PE pl. PP: R=-CH 3 PP a. Izotaktikus b. Szündiotaktikus c. Ataktikus

35 Molekuláris szerkezet 20. Láncmenti térbeli szabályosság Konfigurációs izomerek (primer térszerkezet) Konfigurációs ismétlődő egység (K) Fej-láb kapcsolódás módja Szabályos (f-l:, f-f-l-l: ) (K=A, K=AA) Szabálytalan Taktikusság Szabályos (izotaktikus, szündiotaktikus ) (K=A, K=AA) Szabálytalan (ataktikus) Jelentőség A kristályosodás feltétele a láncmenti térbeli szabályosság Molekuláris szerkezet 21. Molekulák alaktípusai Topológiai alak Lineáris (a) (HDPE, LLDPE) Elágazó fa-(b), fésű-(c) és csillag-alakú (d) (LDPE) Hurkos létra-alakú (e), hurkos-elágazó (f) alakú Térhálós (g) Konformáció C-C-C rotáció révén konformációs izomerek

36 Molekuláris szerkezet 23. Konformáció: rotáció a C-C kötések körül Pl. N-bután molekula rotációs helyzetei és energiaszintjei: CH 2 (CH 3 ) CH 2 (CH 3 ) Cisz-állás (1,7): globális energia maximum Transz-állás (4): globális energia minimum Fedő-állás (3, 5): lokális energia maximum Ferde-állás (2,6): lokális energia minimum Molekuláris szerkezet 24. Rotációs energiagát értékek egyes kötéseknél Vázatomok kötése Vegyület Konstitúció Rotációs energiagát [kj/mol] C-C Aceton Cisz-butén Metil-acetát Propilén Transz-butén Etán Izobután Izopentán Hexaklor-etán H 3 C-CO-CH 3 H 3 C-CH=CH-CH 3 H 3 C-CO-O-CH 3 H 3 C-C(CH 3 )=CH 2 H 3 C-CH=CH-CH 3 H 3 C-CH 3 H 3 C-CH(CH 3 ) 2 H 3 C-C(CH 3 ) 3 Cl 3 C-CCl 3 2,09 2,51 3,18 6,28 8,16 11,72 16,32 20,10 42,00 C-O Metil-alkohol H 3 C-OH 4,48 C-N Metil-amin Dimetil-formamid H 3 C-NH 2 H-OC-N(CH 3 ) 2 7,95 92,11 Szekunder kötések disszociációs energiája: 2 30 (..40) kj/mol

37 Molekuláris szerkezet 25. Polimerlánc konformációs térszerkezetei Szekunder térszerkezetek a) Nyújtott b) Spirál c) Statisztikus Van der Waals távolság atomsugár: Atom H C O F Cl Br J CH 3 - r 0 /2 [nm] 0,12 0,17 0,14 0,135 0,18 0,195 0,215 0,20 Spirál: Identitási távolság = Konformációs ismétlődő egység Tercier térszerkezetek Köteges Hajtogatott Szuperhélix 3/1 7/2 4/1 4/1 PP Bobeth W.: Textile Faserstoffe. Springer-Verlag, Berlin Molekuláris szerkezet 26. Térhálós szerkezetek Vulkanizált kaucsuk (NR gumi) (-SSSS- is lehet) (Kötés: Kénhíd) CH2-C(CH3)-CH-CH2 S S CH2-C(CH3)-CH-CH2 Fenol-formaldehid gyanta (Bakelit) (Kötés: Metilén-híd) Urea-formaldehid (karbamid) gyanta (Kötés: Karbonil-híd) N-CH2-N-CH2-N C=O C=O N-CH2-N-CH2-N Telítetlen poliészter (UP) gyanta (Kötés: Alifás lánc) Egymásbahatoló térháló (IPN) -OX1-OOC-X2-COO-X1-OOC-CH-CH-COO-X1-O- [CH2-CHR]n -OX1-OOC-X2-COO-X1-OOC-CH-CH-COO-X1-O

38 Molekuláris szerkezet 27. Térhálós szerkezetek Epoxi gyanta (EP) előpolimerje (0<n<25) Megfelelő katalizátor, vagy térhálósító esetén, a epoxigyűrű O atomjai leválása révén, térhálókötések jönnek létre. Tipikus addíciós térhálósító a TETA (trietilén-tetramin) Vinilészter gyanta (VE) a poliészter gyanta egy hibrid, epoxi molekulákkal szívósított formája, pl. az epoxi észterizálásával kapják. en.wikipedia.org Molekuláris szerkezet 27.a. Térhálós szerkezetek Szilikon gyanták Egykomponensű szilikon gyanta (SI; SR) Ezek szobahőmérsékleten a levegő nedvességtartalmának hatására vulkanizálódó szilikongumik. Jellemzők: nagy hőállóság ( o C), kiváló hézagkitöltő képesség Pl. Poli(dimetil-sziloxán) (PDMS): R=-CH 3 ( /Polydimethylsiloxane) Kétkomponensű szilikon gyanta (SI; SR) - Levegőtől elzárt térben, ill. vastagabb réteg előállítására alkalmazzák. Katalizátorral történő térhálósítás során gumiszerű anyaggá alakulnak. Jellemzők: kiváló hő- és hidegállóság ( o C), vill. szig. kép., önthetőség ( /Kemia/Html/Szilikon.htm) Térhálósítás: Peroxiddal; Platina (Pt), vagy ón (Sn) katalizátorral Nyílt láncú, vagy gyűrűs polimerek Ismétlődő egység: -Si(2R)-O- (

39 Molekuláris szerkezet 28. Térhálós szerkezetek Sűrűn térhálós polimerek (STH) Telítetlen poliészter (UP) gyanta megszilárdulási folyamata Gélesedés: gél állapotba jutás összefüggő molekula Hidegen - lassabb Czvkikovszky-Nagy-Gaál: A polimertechnika alapjai. Műegyetemi Kiadó, Bp Melegen - gyorsabb Molekuláris szerkezet 29. Térhálós szerkezetek Gyengén térhálós elasztomerek (GTE) Kaucsuk vulkanizálása és térhálósodási folyamata

40 Molekuláris szerkezet 30. Homopolimer egyféle ismétlődő egység (A) Kopolimerek többféle ismétlődő egység (A,B, ) (polimerképző monomerekből: M 1 A, M 2 B) 1. Szabályos (periodikus) szerkezetű van ismétlődő egysége Alternáló kopolimer (-AB-) Blokk-kopolimer (rövidblokkos) (pl. -AABBB-) 2. Szabálytalan (aperiodikus) szerkezetű nincs ismétlődő egysége Statisztikus kopolimer szabálytalan hosszúságú blokkok 3. Hosszúblokkos kopolimer Tömb-kopolimer lineáris (-AA A-BB B-) Ojtott kopolimer elágazó Molekuláris szerkezet 30.a. Kopolimerek (A, B) Lehetséges morfológia 1. Szabályos (periodikus) szerkezetű (AB)-típusú kristályok 2. Szabálytalan (aperiodikus) szerkezetű Amorf 3. Hosszúblokkos kopolimer A- és/vagy B-típusú kristályok Kopolimerek (A, B) Mikro/makrotulajdonságok 1. Szabályos (periodikus) szerkezetű Egyfázisú, egyes jellemzők keverékszabállyal becsülhetők (pl. 1/T g ) 2. Szabálytalan (aperiodikus) szerkezetű Egyfázisú, egyes jellemzők keverékszabállyal becsülhetők (pl. 1/T g ) 3. Hosszúblokkos kopolimer Kétfázisú, a komponensek egyes eltérő tulajdonságai együtt jelenhetnek meg (pl. víz- és olajszívó homopolimerek víz- és olajszívó kopolimer)

41 Molekuláris szerkezet 31. Sztirol kopolimerek szerkezete az összetevők hatása Császi F. Gaál J.: Segédlet a Műanyagok c tárgyhoz. Tankönyvkiadó Bp Molekuláris szerkezet 32. Polimerlánc molekulatömege és jellemzői Polimerláncok felépítése: P k = Z 1 -[A] n(k) -Z 2 (k=1,,n) Z 1, Z 2 zárótagok, végcsoportok Az k-adik lánc tömege: m(p k )=m(z 1 )+n k m(a)+m(z 2 ) n k a k-adik lánc polimerizációs foka Átlagos molekulatömeg (szám-szerinti): M n = m(z 1 )+DP m(a)+m(z 2 ) DP = a polimer átlagos polimerizációs foka

42 Molekuláris szerkezet 33. Molekulatömeg számszerinti jellemzői Számszerinti átlag: Számszerinti négyzetes szórás: Molekuláris szerkezet 34. Átlagos molekulatömeg jellemzők Súlyozott molekulatömeg átlag: Polidiszperzitás indexe/foka: g i = súlyozó osztályjellemző M n : g i =n i Általában: PI 3, de lehet akár 50 is; Monodiszperz polimer: PI 1,1 Mérési módszerek Végcsoportok száma/tömege mérése (M n ) Fényszóródás mérés (M n ) Ultracentrifugás mérés (M m, M z ) Viszkozitás mérés (M v ) M m : g i =n i m i M z : gi=n i m 2 i M n < M v < M m < M z Egyéb módszerek (diffúziós, gőz-, ozmózisnyomás mérés)

43 Molekuláris szerkezet 35. Viszkozitás-szerinti molekulatömeg átlag és mérése η o (c), η osz = polimer oldat és oldószer viszkozitása c = polimer koncentrációja [η] = határviszkozitás Mark-Kuhn-Howink-Sakurada összefüggés az i-edik polimer molekulatömeg frakcióra és a teljes oldatra: Flexibilis polimer: 0.5<α<0.8 Merev láncú: 0.8< α <2 Viszkozitás-szerinti átlag: Molekuláris szerkezet 36. GPC készülék molekulatömeg-eloszlás méréséhez Régen: frakcionálással

44 Molekuláris szerkezet 37. GPC mérés eredménye Molekuláris szerkezet 38. Molekulatömeg hatása a polimer tulajdonságaira PE állaga és tulajdonságai a molekulatömeg függvényében

45 Molekuláris szerkezet 39. Molekulatömeg hatása a polimer tulajdonságaira Szilárdság átlagos móltömeg Ömledékviszkozitás átlagos móltömeg (polidimetilsziloxán, 20 o C-on) PP szál Oldhatóság, elegyíthetőség 1. Jelentősége Nem termoplasztikus, lineáris polimerek feldolgozása oldatból: Természetes anyagok: cellulóz, vázfehérjék Mesterséges anyagok: HPPE, PAN (C-szál), Kevlar, Teflon Polimer keverékek, ötvözetek előállítása

46 Oldhatóság, elegyíthetőség 2. Kohéziós energia [ J/részecske] Kohéziós energiasűrűség: CED [ J/cm 3 ] Alapfunkció Polimer CED [J/cm 3 ] Elasztomerképző PE, NR <300 Plasztomer PS, PVC 300< <400 Szálképző PET, PA6, PAN 400< Oldhatóság, elegyíthetőség 3. Oldódás/elegyedés feltétele: G Gibbs-féle szabadenergia H entalpia (hőtartalom) S entrópia T abszolút hőmérséklet H oldódási hő H<0 exoterm folyamat H>0 endoterm folyamat Hildebrand-Scott: Diszperziós kölcsönhatásoknál H=v 1 v 2 (δ 1 -δ 2 ) 2 v i térfogathányad (i=1,2) oldhatósági paraméter (i=1,2)

47 Oldhatóság, elegyíthetőség 4. Oldhatósági paraméterértékek OLDÓSZER ρ 1 [J/cm 3 ] 1/2 POLIMER ρ 2 [J/cm 3 ] 1/2 n-hexán Polietilén (PE) 16.2 Dekalin Polisztirol (PS) 18.9 Ciklohexán Poli(metil-metakrilát) (PMMA) 18.6 Szén-tetraklorid Poli(vinilklorid)(PVC) Butanon Poli(etilén-tereftalát) (PETP) 21.9 Benzol Nylon 66 (PA6.6) 27.8 Kloroform 18.9 Poliakrilnitril (PAN) 26.3 Tetrahidrofurán Aceton Dimetil-formamid Pontosabb beállításhoz: oldószer keverékek Metanol Ciklohexanon Oldhatóság, elegyíthetőség 5. Polimerek oldódása (1) Duzzadás (amorf részekben) (a térhálós csak duzzad!) (2) A duzzadt polimer a gél állapoton áthaladva oldódik Empirikus oldhatósági szabályok Hasonló hasonlót old A móltömeg növekedésével az oldhatóság csökken Az olvadáspont növekedésével az oldhatóság csökken Menges G.: Werkstoffkunde de Kunststoffe. Hanser V. München

48 Oldhatóság, elegyíthetőség 6. Keveredés entrópiája Flory-Huggins-féle rácsmodell (n=n 1 +n 2 számú, V o térfogatú részecskének megfelelő rácspont) Kismolekulájú oldószer (1) és oldandó (2) V 1 = n 1 V o V 2 = n 2 V o Kismolekulájú oldószer (1) + polimer (2) V 1 = n 1 V o V 2 = n 2 N 2 V o Polimer oldószer (1) + polimer (2) V 1 = n 1 N 1 V o V 2 = n 2 N 2 V o N 1 =polimerizációs fok; φ i = V i /V=térfogattört; V=V 1 +V Oldhatóság, elegyíthetőség 8. Az oldódás/keveredés fajlagos szabadentalpiája G Gibbs-féle szabadenergia k Boltzmann állandó T abszolút hőmérséklet n 1, n 2 részecskék száma N 1, N 2 polimerizációs fokok φ 1, φ 2 térfogati részarányok χ 1 =χ 1 (p,t) Flory-Huggins-féle oldószer-polimer kölcsönhatási állandó Boltzmann: S=k lnw Stirling: ln n! n ln n W=mikro-állapotok száma

49 Oldhatóság, elegyíthetőség 9. A Flory-Huggins-féle kölcsönhatási állandó (χ 1 ) Polimer oldat (kismolekulájú oldószer) esetén: Hosszútávú (kizárttérfogat) kölcsönhatások vonzás/taszítás jó/rossz oldószer Rossz oldószer: χ 1 >0,5 Semleges, θ-állapotban: χ 1 =0,5 Jó oldószer: χ 1 <0,5 χ krit = Polimer oldatoknál általában: 0.25<χ 1 <0.6 FKH AKH Felső- és Alsó Kritikus Hőmérséklet Oldhatóság, elegyíthetőség 10. Elegyíthetőség feltétele egy koncentráció tartományban: Egy (φ 1, φ 2 ) tartományban teljesülnie kell: (1) g < 0 (2) g(φ) alulról konvex Korlátlan elegyíthetőség: A fentiek a teljes (0,1) tartományban teljesülnek (0 α 1)

50 Oldhatóság, elegyíthetőség 10. Korlátlan elegyíthetőség feltétele: Korlátlan elegyedés, ha 0<φ<1-re: p(φ)-nek minimuma van a φ krit -nál: Polimer oldat Spinodális pont = inflexiós pont a g(φ) görbén Két egybeeső spinodális pont: χ 1 χ 1,krit Korlátlan elegyedés Két különálló spinodális pont: χ 1 > χ 1,krit Részleges elegyedés Oldhatóság, elegyíthetőség 10.a. Keveredési szabad entalpiagörbék: Kismolekulájú oldat Megjegyzés: A Flory-Huggins elmélet tárgyalt feltevései mellett kapott g(φ) függvény speciális tulajdonsága: A φ=0, illetve φ=1 értékeknél a meredekség, illetve + Minden (reális) χ 1 értéknél van olyan δ>0 kicsi koncentráció érték, hogy a (0,δ), ill. (1-δ,1) kicsiny tartományokban oldódás, illetve elegyedés jön létre

51 Oldhatóság, elegyíthetőség 10.b. Keveredési szabad entalpiagörbék: Polimer oldat Oldhatóság, elegyíthetőség 10.c. Keveredési szabad entalpiagörbék: Polimer keverék

52 Oldhatóság, elegyíthetőség 10.d. Keveredési szabad entalpiagörbék: Polimer keverék Oldhatóság, elegyíthetőség 11. Elegyedés/szételegyedés és az átmenet tartományai Konvex burkoló görbe Binodális pontok Spinodális pontok Irányérzékeny átmenetek: B i S i, S i B i (i=1,2) Keverékek fázisdiagramja AKH alsó kritikus szétválási hőmérséklet (polimer keverékeknél) FKH felső kritikus szétválási hőmérséklet

53 Oldhatóság, elegyíthetőség 12. Egyéb típusú fázisdiagramok FKH: Polimer oldatoknál (kismolekulájú oldószer) AKH és FKH: Kismolekulájú oldatoknál Speciális, ritka esetek Oldhatóság, elegyíthetőség 13. Polimer keverékek Elegyedő komponensek Pl.1. PA/PA (móltömeg különböző) Pl.2. PMMA/PVDF, PPO/PS Nem elegyedő komponensek Polimer ötvözet készítése kompatibilizálással (Pl. ABS/PC Bayblend) Technológiai alkalmazások nem kompatibilis komponensekkel (Pl. mikroszálgyártás)

54 Oldhatóság, elegyíthetőség 14. Kompatibilizálás módszerei Kötő kopolimerek bekeverése Kötő kopolimerek in situ generálása Ionomerek adalékolása Olyan polimer adalékolása, amely a fázishatárokon csökkenti a felületi feszültséget Fázishatáron kötő kopolimer Oldhatóság, elegyíthetőség 15. Polimerkeverék Elegyedők PPO/PS = PPE/PS PMMA/PVDF Közel elegyedők PVC/PMMA A komponensek keverékben érvényesülő tulajdonságai PPO=PPE szilárdság, hőállóság PS - olvadékos megmunkálás, degradáció nélkül PMMA merevség PVDF - lángállóság, megmunkálhatóság PVC - lángállóság, merevség, alacsony költség PMMA merevség Nem elegyedők kompatibilizált keverékek, ötvözetek ABS/PC PC/PETP PC/PBTP PVC/ABS PBTP/EPDM SMA/ABS POM/PTFE PVC/NBR PE/PA ABS megmunkálhatóság, alacsony költség PC - szívósság, hőállóság PETP vagy PBTP vegyszerállóság, megmunkálhatóság PVC - lángállóság, merevség, alacsony költség PBTP megmunkálhatóság, merevség EPDM elasztomer ütésállóság SMA megömleszthetőség ABS - mechanikai tulajdonságok, festhetőség POM - mechanikai tulajdonságok, megmunkálhatóság PTFE - belső vagy önkenés PVC - lángállóság, megmunkálhatóság, vegyszerállóság NBR elasztomer flexibilitás PE-mátrix alacsony költség, megmunkálhatóság PA-rétegképző záróréteg a tartályfalban Utracki L.A.: Polymer Alloys and Blends. Hanser Pub., New York,

55 Folyadékkristályos szerkezetek Folyadékkristályos szerkezet = anizotróp folyadék Mezofázisú szerkezet Hosszútávú irányítottság Feltétele: Merev (pálcikaszerű) molekulaláncok Lyotróp LCP: Polimer oldatban (c 1, c 2 ) koncentráció-, (T 1, T 2 ) hőfoktartományban; pl. Kevlar Termotróp LCP: Polimer olvadékban (T 1, T 2 ) hőfoktartományban; pl. Vectran (LCP poliészter) Szmektikus Nematikus Koleszterikus Lyotróp LCP Bobeth W.: Textile Faserstoffe. Springer Verlag, Berlin, Feldolgozható polimerek előállítása 1. HŐRE LÁGYULÓ POLIMER TERMÉK GYÁRTÁSA TÉRHÁLÓS POLIMER TERMÉK GYÁRTÁSA 1. Monomerek Művelet: Polimerizálás 2. Nagy móltömegű szilárd polimer Művelet: Keverés, elegyítés (kompaundálás) 3. Feldolgozható polimer alapanyag Művelet: Olvadékos formaképzés lehűtés 4. Hőre lágyuló polimer termék 1. Monomerek Művelet: Polimerizálás 2. Kis móltömegű polimer (oligomer, előpolimer) Művelet: Keverés, elegyítés (kompaundálás) 3. Feldolgozható polimer alapanyag Művelet: Formakitöltés melegítés térhálósítás 4. Térhálós polimer termék

56 Feldolgozható polimerek előállítása 2. Adalékanyagok 1. Szerkezetmódosítás Nukleáló szerek Stabilizátorok Lágyítók Szerkezetátalakítás Habosítószerek Ütésálló adalékok Térhálósítók és katalizátorok Térhálósodást gyorsítók/lassítók Töltő- és erősítőanyagok Tapadást elősegítő anyagok Adalékanyagok 2. Feldolgozhatóság Csúsztatók (belső/külső) Kenőanyagok Formaleválasztók Alkalmazhatóság Égésgátlók Lángállóságot növelők Antioxidánsok Antisztatikumok Színezékek, optikai fehérítők Szag- és illatanyagok Polimergyártás Magyarországon Néhány nagyobb gyártó: MOL Petrolkémia Zrt (TVK): (etilén) LDPE, HDPE, LLDPE; (propilén) PP BorsodChem: (vinilklorid) PVC, izocianátok (TDI, MDI) Dunastyr Zrt (sztirol) HIPS, EPS (extendable=habosítható PS) Zoltek Rt.: (akrilnitril) PAN szálak, Pyron szálak (oxidált PAN), PANEX (szén) szálak

I. POLIMEREK ATOMOS ÉS MOLEKULÁRIS SZERKEZETE

I. POLIMEREK ATOMOS ÉS MOLEKULÁRIS SZERKEZETE Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék Polimer anyagtudomány BMEGEPTMG20, 2+0+1v, 4 krp I. POLIMEREK ATOMOS ÉS MOLEKULÁRIS SZERKEZETE Vas László Mihály 2015.03.09. 1 Követelményrendszer

Részletesebben

Műanyagok Pukánszky Béla - Tel.: Műanyag- és Gumiipari Tanszék, H ép. 1. em.

Műanyagok Pukánszky Béla - Tel.: Műanyag- és Gumiipari Tanszék, H ép. 1. em. Műanyagok Pukánszky Béla - Tel.: 20-15 Műanyag- és Gumiipari Tanszék, H ép. 1. em. Tudnivalók: előadás írott anyag kérdések, konzultáció vizsga Vizsgajegyek 2003/2004 őszi félév 50 Jegyek száma 40 30 20

Részletesebben

Makromolekulák. I. A -vázas polimerek szerkezete és fizikai tulajdonságai. Pekker Sándor

Makromolekulák. I. A -vázas polimerek szerkezete és fizikai tulajdonságai. Pekker Sándor Makromolekulák I. A -vázas polimerek szerkezete és fizikai tulajdonságai Pekker Sándor MTA SZFKI Telefon:392-2222/845, Fax:392-229, Email: pekker@szfki.hu SZFKI tanfolyam: www.szfki.hu/moodle/course/ a

Részletesebben

Lépcsős polimerizáció, térhálósodás; anyagismeret

Lépcsős polimerizáció, térhálósodás; anyagismeret Lépcsős polimerizáció, térhálósodás; anyagismeret Bevezetés Lineáris polimerek jellemzők reakciók kinetika sztöchiometria és x n Térhálósodás Anyagismeret hőre lágyuló műanyagok térhálós gyanták elasztomerek

Részletesebben

II. POLIMEREK MORFOLÓGIAI SZERKEZETE

II. POLIMEREK MORFOLÓGIAI SZERKEZETE Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék Polimer anyagtudomány BMEGEPTMG04, 3+0+1v, 5 krp II. POLIMEREK MORFOLÓGIAI SZERKEZETE Vas László Mihály Felhasznált források Irodalom

Részletesebben

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v)

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) VIII. előadás: Polimerek anyagtudománya, alapfogalmak Előadó: Dr. Mészáros László Egyetemi docens Elérhetőség: T. ép.: 307. meszaros@pt.bme.hu 2019. április 03.

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék

Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék Polimerek anyagszerkezettana és technológiája AG0P 3+0+2v, 6 krp Előadók: Czvikovszky Tibor, Czigány Tibor, Gaál János, Vas László

Részletesebben

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Bemutatkozás. Számonkérés

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Bemutatkozás. Számonkérés σ [MPa] Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) VIII. előadás: Polimerek anyagtudománya, alapfogalmak Előadó: Dr. Mészáros László Egyetemi docens Elérhetőség: T. ép.: 307. meszaros@pt.bme.hu 2019. április

Részletesebben

Lépcsős polimerizáció, térhálósodás; anyagismeret

Lépcsős polimerizáció, térhálósodás; anyagismeret Lépcsős polimerizáció, térhálósodás; anyagismeret Bevezetés Lineáris polimerek jellemzők sztöchiometria és móltömeg (x n ) reakciók Térhálósodás Anyagismeret hőre lágyuló műanyagok térhálós gyanták elasztomerek

Részletesebben

3. A kémiai kötés. Kémiai kölcsönhatás

3. A kémiai kötés. Kémiai kölcsönhatás 3. A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS OVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Kémiai kötések Na Ionos kötés Kovalens kötés Fémes

Részletesebben

6. változat. 3. Jelöld meg a nem molekuláris szerkezetű anyagot! A SO 2 ; Б C 6 H 12 O 6 ; В NaBr; Г CO 2.

6. változat. 3. Jelöld meg a nem molekuláris szerkezetű anyagot! A SO 2 ; Б C 6 H 12 O 6 ; В NaBr; Г CO 2. 6. változat Az 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Jelöld meg azt a sort, amely helyesen

Részletesebben

Szilárd anyagok. Műszaki kémia, Anyagtan I. 7. előadás. Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék

Szilárd anyagok. Műszaki kémia, Anyagtan I. 7. előadás. Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék Szilárd anyagok Műszaki kémia, Anyagtan I. 7. előadás Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék Szilárd anyagok felosztása Szilárd anyagok Kristályos szerkezetűek Üvegszerű anyagok

Részletesebben

4. változat. 2. Jelöld meg azt a részecskét, amely megőrzi az anyag összes kémiai tulajdonságait! A molekula; Б atom; В gyök; Г ion.

4. változat. 2. Jelöld meg azt a részecskét, amely megőrzi az anyag összes kémiai tulajdonságait! A molekula; Б atom; В gyök; Г ion. 4. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Melyik sor fejezi be helyesen az állítást:

Részletesebben

Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok

Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok Atomszerkezet Atommag protonok, neutronok + elektronok izotópok atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok periódusos rendszer csoportjai Periódusos rendszer A kémiai kötés Kémiai

Részletesebben

Anyagok az energetikában

Anyagok az energetikában Anyagok az energetikában BMEGEMTBEA1, 6 krp (3+0+2) Bevezetés, alapfogalmak Dr. Tamás-Bényei Péter 2018. szeptember 5. Oktatók 2 / 36 Dr. habil. Orbulov Imre Norbert (fémes rész) egyetemi docens, tárgyfelelős

Részletesebben

Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok

Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok Atomszerkezet Atommag protonok, neutronok + elektronok izotópok atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok periódusos rendszer csoportjai Periódusos rendszer energia szintek atomokban

Részletesebben

Szerkezet és tulajdonságok

Szerkezet és tulajdonságok Szerkezet és tulajdonságok Bevezetés Molekulaszerkezet és tulajdonságok Kristályos polimerek a kristályosodás feltétele, szabályos lánc kristályos szerkezet kristályosodás, gócképződés kristályosodás,

Részletesebben

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol Kémiai kötések A természetben az anyagokat felépítő atomok nem önmagukban, hanem gyakran egymáshoz kapcsolódva léteznek. Ezeket a kötéseket összefoglaló néven kémiai kötéseknek nevezzük. Kémiai kötések

Részletesebben

Osztályozó vizsgatételek. Kémia - 9. évfolyam - I. félév

Osztályozó vizsgatételek. Kémia - 9. évfolyam - I. félév Kémia - 9. évfolyam - I. félév 1. Atom felépítése (elemi részecskék), alaptörvények (elektronszerkezet kiépülésének szabályai). 2. A periódusos rendszer felépítése, periódusok és csoportok jellemzése.

Részletesebben

Műanyagok tulajdonságai. Horák György 2011-03-17

Műanyagok tulajdonságai. Horák György 2011-03-17 Műanyagok tulajdonságai Horák György 2011-03-17 Hőre lágyuló műanyagok: Lineáris vagy elágazott molekulákból álló anyagok. Üvegesedési (kristályosodási) hőmérséklet szobahőmérséklet felett Hőmérséklet

Részletesebben

Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS

Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS Milyen képlet adódik a következő atomok kapcsolódásából? Fe - Fe H - O P - H O - O Na O Al - O Ca - S Cl - Cl C - O Ne N - N C - H Li - Br Pb - Pb N

Részletesebben

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens. Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/

Részletesebben

MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403. Dr. Dogossy Gábor Egyetemi adjunktus B 408

MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403. Dr. Dogossy Gábor Egyetemi adjunktus B 408 MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403 Dr. Dogossy Gábor Egyetemi adjunktus B 408 Az anyag Az anyagot az ember nyeri ki a természetből és

Részletesebben

FELADATMEGOLDÁS. Tesztfeladat: Válaszd ki a helyes megoldást!

FELADATMEGOLDÁS. Tesztfeladat: Válaszd ki a helyes megoldást! FELADATMEGOLDÁS Tesztfeladat: Válaszd ki a helyes megoldást! 1. Melyik sorozatban található jelölések fejeznek ki 4-4 g anyagot? a) 2 H 2 ; 0,25 C b) O; 4 H; 4 H 2 c) 0,25 O; 4 H; 2 H 2 ; 1/3 C d) 2 H;

Részletesebben

Általános Kémia, BMEVESAA101

Általános Kémia, BMEVESAA101 Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:

Részletesebben

Szénhidrogének II: Alkének. 2. előadás

Szénhidrogének II: Alkének. 2. előadás Szénhidrogének II: Alkének 2. előadás Általános jellemzők Általános képlet C n H 2n Kevesebb C H kötés van bennük, mint a megfelelő tagszámú alkánokban : telítetlen vegyületek Legalább egy C = C kötést

Részletesebben

1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4.

1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4. 1. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Melyik sor fejezi be helyesen az állítást:

Részletesebben

Természetes polimer szerkezeti anyagok: Makromolekulák

Természetes polimer szerkezeti anyagok: Makromolekulák POLIMERTECHNIKA TANSZÉK Dr. Morlin Bálint Dr. Tábi Tamás Természetes polimer szerkezeti anyagok: Makromolekulák 2016. Szeptember 9. Természetes polimer szerkezeti anyagok - Természetes polimer szerkezeti

Részletesebben

Makromolekulák. I. Rész: Bevezetés, A polimerek képződése, szerkezete (konstitúció) Pekker Sándor

Makromolekulák. I. Rész: Bevezetés, A polimerek képződése, szerkezete (konstitúció) Pekker Sándor Makromolekulák I. A -vázas polimerek I. Rész: evezetés, A polimerek képződése, szerkezete (konstitúció) Pekker Sándor MTA Wigner FK SZFI Telefon:392-2222/1845 Email: pekker.sandor@wigner.mta.hu ELTE, 2017

Részletesebben

Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések

Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések Pécsi Tudományegyetem Általános Orvostudományi Kar 2010-2011. 1 A vegyületekben az atomokat kémiai kötésnek nevezett erők tartják össze. Az elektronok

Részletesebben

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,

Részletesebben

Elektronegativitás. Elektronegativitás

Elektronegativitás. Elektronegativitás Általános és szervetlen kémia 3. hét Elektronaffinitás Az az energiaváltozás, ami akkor következik be, ha 1 mól gáz halmazállapotú atomból 1 mól egyszeresen negatív töltésű anion keletkezik. Mértékegysége:

Részletesebben

R nem hidrogén, hanem pl. alkilcsoport

R nem hidrogén, hanem pl. alkilcsoport 1 Minimumkövetelmények C 4 metán C 3 - metilcsoport C 3 C 3 C 3 metil kation metilgyök metil anion C 3 -C 3 C 3 -C 2 - C 3 -C 2 C 3 -C 2 C 3 -C 2 C 2 5 - C 2 5 C 2 5 C 2 5 etán etilcsoport etil kation

Részletesebben

Polimer kompozitok alapanyagai, tulajdonságai, kompozitmechanikai alapok

Polimer kompozitok alapanyagai, tulajdonságai, kompozitmechanikai alapok SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimer kompozitok alapanyagai, tulajdonságai, kompozitmechanikai alapok DR Hargitai Hajnalka 2011.10.19. Polimerek

Részletesebben

Kémiai kötések. Kémiai kötések. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

Kémiai kötések. Kémiai kötések. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 Kémiai kötések A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 Cl + Na Az ionos kötés 1. Cl + - + Na Klór: 1s 2 2s 2 2p 6 3s 2 3p 5 Kloridion: 1s2 2s2 2p6 3s2 3p6 Nátrium: 1s 2 2s

Részletesebben

Bevezetés a lézeres anyagmegmunkálásba

Bevezetés a lézeres anyagmegmunkálásba Bevezetés a lézeres anyagmegmunkálásba FBN332E-1 Dr. Geretovszky Zsolt 2010. október 13. A lézeres l anyagmegmunkálás szempontjából l fontos anyagi tulajdonságok Optikai tulajdonságok Mechanikai tulajdonságok

Részletesebben

Műanyagok (makromolekuláris kémia)

Műanyagok (makromolekuláris kémia) Műanyagok (makromolekuláris kémia) Fogalmak, definíciók Makromolekula: azonos építőelemekből, ismétlődő egységekből felépített szerves, vagy szervetlen molekula, melynek molekulatömege általában nagyobb,

Részletesebben

A kémiai kötés. Kémiai kölcsönhatás

A kémiai kötés. Kémiai kölcsönhatás A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS KOVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Ionos kötés Na Cl Ionpár képződése e - Na + Cl - Na:

Részletesebben

Anyagtudomány. Ötvözetek egyensúlyi diagramjai (állapotábrák)

Anyagtudomány. Ötvözetek egyensúlyi diagramjai (állapotábrák) Anyagtudomány Ötvözetek egyensúlyi diagramjai (állapotábrák) Kétkomponensű fémtani rendszerek fázisai és szövetelemei Folyékony, olvadék fázis Színfém (A, B) Szilárd oldat (α, β) (szubsztitúciós, interstíciós)

Részletesebben

KÉMIA 10. Osztály I. FORDULÓ

KÉMIA 10. Osztály I. FORDULÓ KÉMIA 10. Osztály I. FORDULÓ 1) A rejtvény egy híres ember nevét és halálának évszámát rejti. Nevét megtudod, ha a részmegoldások betűit a számozott négyzetekbe írod, halálának évszámát pedig pici számolással.

Részletesebben

Periódusos rendszer (Mengyelejev, 1869) nemesgáz csoport: zárt héj, extra stabil

Periódusos rendszer (Mengyelejev, 1869)   nemesgáz csoport: zárt héj, extra stabil s-mezı (fémek) Periódusos rendszer (Mengyelejev, 1869) http://www.ptable.com/ nemesgáz csoport: zárt héj, extra stabil p-mezı (nemfém, félfém, fém) d-mezı (fémek) Rendezés elve: növekvı rendszám (elektronszám,

Részletesebben

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Ajánlott segédanyagok

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Ajánlott segédanyagok Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) IX. előadás: Polimerek alakemlékező tulajdonsága Előadó: Dr. Mészáros László Egyetemi docens Elérhetőség: T. ép.: 307. meszaros@pt.bme.hu 2018. április 11. Ajánlott

Részletesebben

Kész polimerek reakciói. Makromolekulák átalakítása. Makromolekulák átalakítása. Természetes és mesterséges makromolekulák átalakítása cellulóz, PVAc

Kész polimerek reakciói. Makromolekulák átalakítása. Makromolekulák átalakítása. Természetes és mesterséges makromolekulák átalakítása cellulóz, PVAc Kész polimerek reakciói 8. hét Természetes és mesterséges makromolekulák átalakítása cellulóz, PVAc szabad funkciós csoportok reakciói bomlási folyamatok Térhálósítási folyamatok A cellulóz szabad alkoholos

Részletesebben

Szalai István. ELTE Kémiai Intézet 1/74

Szalai István. ELTE Kémiai Intézet 1/74 Elsőrendű kötések Szalai István ELTE Kémiai Intézet 1/74 Az előadás vázlata ˆ Ismétlés ˆ Ionos vegyületek képződése ˆ Ionok típusai ˆ Kovalens kötés ˆ Fémes kötés ˆ VSEPR elmélet ˆ VB elmélet 2/74 Periodikus

Részletesebben

Polimerek. Alapfogalmak. Alapstruktúra : Természetes polimerek: Mesterséges polimerek, manyagok. Szabad rotáció

Polimerek. Alapfogalmak. Alapstruktúra : Természetes polimerek: Mesterséges polimerek, manyagok. Szabad rotáció Polimerek Alapfogalmak Természetes polimerek: Poliszacharidok (keményít, cellulóz) Polipeptidek, fehérjék Kaucsuk, gumi Mesterséges polimerek, manyagok Monomer: építegység Polimer: fképp szénlánc, különböz

Részletesebben

Tevékenység: Olvassa el a történeti áttekintést! Jegyezze meg a legfontosabb feltalálók nevét és a találmányok megjelenésének időpontját!

Tevékenység: Olvassa el a történeti áttekintést! Jegyezze meg a legfontosabb feltalálók nevét és a találmányok megjelenésének időpontját! Olvassa el a történeti áttekintést! Jegyezze meg a legfontosabb feltalálók nevét és a találmányok megjelenésének időpontját! Bevezetés A makromolekuláris anyagok (polimerek) az élettel egyidősek a földön.

Részletesebben

A tételek: Elméleti témakörök. Általános kémia

A tételek: Elméleti témakörök. Általános kémia A tételek: Elméleti témakörök Általános kémia 1. Az atomok szerkezete az atom alkotórészei, az elemi részecskék és jellemzésük a rendszám és a tömegszám, az izotópok, példával az elektronszerkezet kiépülésének

Részletesebben

A kovalens kötés elmélete. Kovalens kötésű molekulák geometriája. Molekula geometria. Vegyértékelektronpár taszítási elmélet (VSEPR)

A kovalens kötés elmélete. Kovalens kötésű molekulák geometriája. Molekula geometria. Vegyértékelektronpár taszítási elmélet (VSEPR) 4. előadás A kovalens kötés elmélete Vegyértékelektronpár taszítási elmélet (VSEPR) az atomok kötő és nemkötő elektronpárjai úgy helyezkednek el a térben, hogy egymástól minél távolabb legyenek A központi

Részletesebben

Az anyagszerkezet alapjai. Az atomok felépítése

Az anyagszerkezet alapjai. Az atomok felépítése Az anyagszerkezet alapjai Az atomok felépítése Kérdések Mik az építőelemek? Milyen elvek szerint épül fel az anyag? Milyen szintjei vannak a struktúrának? Van-e végső, legkisebb építőelem? A legkisebbeknél

Részletesebben

Az anyagszerkezet alapjai

Az anyagszerkezet alapjai Kérdések Az anyagszerkezet alapjai Az atomok felépítése Mik az építőelemek? Milyen elvek szerint épül fel az anyag? Milyen szintjei vannak a struktúrának? Van-e végső, legkisebb építőelem? A legkisebbeknél

Részletesebben

A kovalens kötés polaritása

A kovalens kötés polaritása Általános és szervetlen kémia 4. hét Kovalens kötés A kovalens kötés kialakulásakor szabad atomokból molekulák jönnek létre. A molekulák létrejötte mindig energia csökkenéssel jár. A kovalens kötés polaritása

Részletesebben

Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39

Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39 Kémiai kötés 4-1 Lewis elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet

Részletesebben

Anyagok az energetikában

Anyagok az energetikában Anyagok az energetikában BMEGEMTBEA1, 6 krp (3+0+2) Környezeti tényezők hatása, időfüggő mechanikai tulajdonságok Dr. Tamás-Bényei Péter 2018. szeptember 19. Ütemterv 2 / 20 Dátum 2018.09.05 2018.09.19

Részletesebben

8. Osztály. Kód. Szent-Györgyi Albert kémiavetélkedő

8. Osztály. Kód. Szent-Györgyi Albert kémiavetélkedő 8. Osztály Kedves Versenyző! A jobb felső sarokban található mezőbe írd fel a verseny lebonyolításáért felelős személytől kapott kódot a feladatlap minden oldalára. A feladatokat lehetőleg a feladatlapon

Részletesebben

Az anyagszerkezet alapjai. Az atomok felépítése

Az anyagszerkezet alapjai. Az atomok felépítése Az anyagszerkezet alapjai Az atomok felépítése Kérdések Mik az építőelemek? Milyen elvek szerint épül fel az anyag? Milyen szintjei vannak a struktúrának? Van-e végső, legkisebb építőelem? A legkisebbeknél

Részletesebben

Kötések kialakítása - oktett elmélet

Kötések kialakítása - oktett elmélet Kémiai kötések Az elemek és vegyületek halmazai az atomok kapcsolódásával - kémiai kötések kialakításával - jönnek létre szabad atomként csak a nemesgázatomok léteznek elsődleges kémiai kötések Kötések

Részletesebben

A kémiai kötés magasabb szinten

A kémiai kötés magasabb szinten A kémiai kötés magasabb szinten 11-1 Mit kell tudnia a kötéselméletnek? 11- Vegyérték kötés elmélet 11-3 Atompályák hibridizációja 11-4 Többszörös kovalens kötések 11-5 Molekulapálya elmélet 11-6 Delokalizált

Részletesebben

Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok

Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok Folyadékok víz Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok 1 saját térfogat nincs saját alak/folyékony nincsenek belső nyíróerők

Részletesebben

R nem hidrogén, hanem pl. alkilcsoport

R nem hidrogén, hanem pl. alkilcsoport 1 Minimumkövetelmények C 4 metán C 3 - metilcsoport C 3 C 3 C 3 metil kation metilgyök metil anion C 3 -C 3 C 3 -C 2 - C 3 -C 2 C 3 -C 2 C 3 -C 2 C 2 5 - C 2 5 C 2 5 C 2 5 etán etilcsoport etil kation

Részletesebben

Fogorvosi anyagtan fizikai alapjai 2.

Fogorvosi anyagtan fizikai alapjai 2. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok Kiemelt témák: Viszkozitás Víz és nyál Kristályok - apatit Polimorfizmus Kristályhibák

Részletesebben

Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia

Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában 1 Órarend 2 Kurzussal kapcsolatos emlékeztető Kurzus: Az előadás látogatása ajánlott Gyakorlat

Részletesebben

Bevezetés a lézeres anyagmegmunkálásba

Bevezetés a lézeres anyagmegmunkálásba Bevezetés a lézeres anyagmegmunkálásba FBN332E-1 Dr. Geretovszky Zsolt 2010. október 6. Anyagcsaládok Fémek Kerámiák, üvegek Műanyagok Kompozitok A családok közti különbségek tárgyalhatóak: atomi szinten

Részletesebben

Energiaminimum- elve

Energiaminimum- elve Energiaminimum- elve Minden rendszer arra törekszi, hogy stabil állapotba kerüljön. Milyen kapcsolat van a stabil állapot, és az adott állapot energiája között? Energiaminimum elve Energiaminimum- elve

Részletesebben

Műanyag- és elasztomer ragasztási útmutató

Műanyag- és elasztomer ragasztási útmutató Műanyag- és elasztomer ragasztási útmutató 3 Miért használjunk Loctite és Teroson ragasztóanyagot más kötési eljárások helyett? Ez az útmutató alapvető iránymutatásokkal ismerteti meg a felhasználókat,

Részletesebben

Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Molekulák, folyadékok, szilárd anyagok, folyadékkristályok

Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Molekulák, folyadékok, szilárd anyagok, folyadékkristályok Molekulák energiaállapotai E molekula E elektron E (A tankönyvben nem található téma!) vibráció E rotáció pl. vibráció 1 ev 0,1 ev 0,01 ev Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti

Részletesebben

Társított és összetett rendszerek

Társított és összetett rendszerek Társított és összetett rendszerek Bevezetés Töltőanyagot tartalmazó polimerek tulajdonságok kölcsönhatások szerkezet Polimer keverékek elegyíthetőség összeférhetőség Többkomponensű rendszerek Mikromechanikai

Részletesebben

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion Minta feladatsor A feladatok megoldására 90 perc áll rendelkezésére. A megoldáshoz zsebszámológépet használhat. 1. Adja meg a következő ionok nevét, illetve képletét! (8 pont) Az ion neve.. Szulfátion

Részletesebben

az Anyagtudomány az anyagok szerkezetével, tulajdonságaival, az anyagszerkezet és a tulajdonságok közötti kapcsolatokkal, valamint a tulajdonságok

az Anyagtudomány az anyagok szerkezetével, tulajdonságaival, az anyagszerkezet és a tulajdonságok közötti kapcsolatokkal, valamint a tulajdonságok az Anyagtudomány az anyagok szerkezetével, tulajdonságaival, az anyagszerkezet és a tulajdonságok közötti kapcsolatokkal, valamint a tulajdonságok megváltoztatásának elvi alapjaival foglalkozó tudomány

Részletesebben

(11) Lajstromszám: E 006 674 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

(11) Lajstromszám: E 006 674 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA !HU000006674T2! (19) HU (11) Lajstromszám: E 006 674 (13) T2 MAGYAR KÖZTÁRSASÁG Magyar Szabadalmi Hivatal EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 03 7326 (22) A bejelentés napja:

Részletesebben

ПРОГРАМА ВСТУПНОГО ВИПРОБУВАННЯ З ХІМІЇ Для вступників на ІІ курс навчання за освітньо-кваліфікаційним рівнем «бакалавр»

ПРОГРАМА ВСТУПНОГО ВИПРОБУВАННЯ З ХІМІЇ Для вступників на ІІ курс навчання за освітньо-кваліфікаційним рівнем «бакалавр» ЗАКАРПАТСЬКИЙ УГОРСЬКИЙ ІНСТИТУТ ІМ. Ф. РАКОЦІ ІІ КАФЕДРА МАТЕМАТИКИ ТА ІНФОРМАТИКИ II. RÁKÓCZI FERENC KÁRPÁTALJAI MAGYAR FŐISKOLA MATEMATIKA ÉS INFORMATIKA TANSZÉK ПРОГРАМА ВСТУПНОГО ВИПРОБУВАННЯ З ХІМІЇ

Részletesebben

Anyagválasztás Dr. Tábi Tamás

Anyagválasztás Dr. Tábi Tamás Anyagválasztás Dr. Tábi Tamás 2018. Február 7. Mi a mérnök feladata? 2 Mit kell tudni a mérnöknek ahhoz, hogy az általa tervezett termék sikeres legyen? Világunk anyagai 3 Polimerek Elasztomerek Fémek,

Részletesebben

A kémiai kötés magasabb szinten

A kémiai kötés magasabb szinten A kémiai kötés magasabb szinten 13-1 Mit kell tudnia a kötéselméletnek? 13- Vegyérték kötés elmélet 13-3 Atompályák hibridizációja 13-4 Többszörös kovalens kötések 13-5 Molekulapálya elmélet 13-6 Delokalizált

Részletesebben

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o ) Az atom- olvasni 2.1. Az atom felépítése Az atom pozitív töltésű atommagból és negatív töltésű elektronokból áll. Az atom atommagból és elektronburokból álló semleges kémiai részecske. Az atommag pozitív

Részletesebben

Molekulák alakja és polaritása, a molekulák között működő legerősebb kölcsönhatás

Molekulák alakja és polaritása, a molekulák között működő legerősebb kölcsönhatás Molekulák alakja és polaritása, a molekulák között működő legerősebb kölcsönhatás I. Egyatomos molekulák He, Ne, Ar, Kr, Xe, Rn - a molekula alakja: pontszerű - a kovalens kötés polaritása: NINCS kötés

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

Szent-Györgyi Albert kémiavetélkedő Kód

Szent-Györgyi Albert kémiavetélkedő Kód Szent-Györgyi Albert kémiavetélkedő 11. osztály Kedves Versenyző! A jobb felső sarokban található mezőbe a verseny lebonyolításáért felelős személy írja be a kódot a feladatlap minden oldalára a verseny

Részletesebben

Polimerek anyagszerkezettana és technológiája

Polimerek anyagszerkezettana és technológiája Polimerek anyagszerkezettana és technológiája -Javított változat- 2014/2015/2 félév vizsgakérdések kidolgozása Készítette: Mr. GMA Sziasztok! Ez az előző feltöltött polimerek kidolgozás javítása, volt

Részletesebben

Általános és szervetlen kémia 3. hét Kémiai kötések. Kötések kialakítása - oktett elmélet. Lewis-képlet és Lewis szerkezet

Általános és szervetlen kémia 3. hét Kémiai kötések. Kötések kialakítása - oktett elmélet. Lewis-képlet és Lewis szerkezet Általános és szervetlen kémia 3. hét Kémiai kötések Az elemek és vegyületek halmazai az atomok kapcsolódásával - kémiai kötések kialakításával - jönnek létre szabad atomként csak a nemesgázatomok léteznek

Részletesebben

Szénhidrogének III: Alkinok. 3. előadás

Szénhidrogének III: Alkinok. 3. előadás Szénhidrogének III: Alkinok 3. előadás Általános jellemzők Általános képlet C n H 2n 2 Kevesebb C H kötés van bennük, mint a megfelelő tagszámú alkánokban : telítetlen vegyületek Legalább egy C C kötést

Részletesebben

Anyagszerkezet és vizsgálat Fémtan, anyagvizsgálat

Anyagszerkezet és vizsgálat Fémtan, anyagvizsgálat SZÉCHENYI ISTVÁN EGYETEM Anyagtudományi és Technológiai Tanszék Anyagszerkezet és vizsgálat Fémtan, anyagvizsgálat Dr. Hargitai Hajnalka hargitai@sze.hu www.sze.hu/~hargitai B 403. (L316) (Csizmazia Ferencné

Részletesebben

Műanyag-feldolgozó Műanyag-feldolgozó

Műanyag-feldolgozó Műanyag-feldolgozó A /2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Makroszkópos tulajdonságok, jelenségek, közvetlenül mérhető mennyiségek leírásával foglalkozik (például: P, V, T, összetétel).

Makroszkópos tulajdonságok, jelenségek, közvetlenül mérhető mennyiségek leírásával foglalkozik (például: P, V, T, összetétel). Mire kell? A mindennapi gyakorlatban előforduló jelenségek (például fázisátalakulások, olvadás, dermedés, párolgás) értelmezéséhez, kvantitatív leírásához. Szerkezeti anyagok tulajdonságainak változása

Részletesebben

Poliaddíció. Polimerek kémiai reakciói. Poliaddíciós folyamatok felosztása. Addíció: két molekula egyesülése egyetlen fıtermék keletkezése közben

Poliaddíció. Polimerek kémiai reakciói. Poliaddíciós folyamatok felosztása. Addíció: két molekula egyesülése egyetlen fıtermék keletkezése közben Polimerek kémiai reakciói 6. hét Addíció: két molekula egyesülése egyetlen fıtermék keletkezése közben Poliaddíció bi- vagy polifunkciós monomerek lépésenkénti összekapcsolódása: dimerek, trimerek oligomerek

Részletesebben

Polimerizáció. A polimerizáci jellemzőit. t. Típusai láncpolimerizáció lépcsős polimerizáció Láncpolimerizációs módszerek. Monomerek szerkezete vinil

Polimerizáció. A polimerizáci jellemzőit. t. Típusai láncpolimerizáció lépcsős polimerizáció Láncpolimerizációs módszerek. Monomerek szerkezete vinil Polimerizáció Bevezetés Gyökös polimerizáció alapvető lépések kinetika mellékreakciók Ionos polimerizáció kationos polimerizáció anionos polimerizáció Sztereospecifikus polimerizáció Kopolimerizáció Ipari

Részletesebben

Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok.

Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok. Folyadékok folyékony szilárd Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok Kiemelt témák: Viszkozitás Apatit Kristályhibák és

Részletesebben

Általános és szervetlen kémia Laborelıkészítı elıadás I.

Általános és szervetlen kémia Laborelıkészítı elıadás I. Általános és szervetlen kémia Laborelıkészítı elıadás I. Halmazállapotok, fázisok Fizikai állapotváltozások (fázisátmenetek), a Gibbs-féle fázisszabály Fizikai módszerek anyagok tisztítására - Szublimáció

Részletesebben

Szerkezet és tulajdonságok

Szerkezet és tulajdonságok Szerkezet és tulajdonságok Bevezetés Molekulaszerkezet és tulajdonságok Kristályos polimerek a kristályosodás feltétele, szabályos lánc kristályos szerkezet kristályosodás, gócképződés kristályosodás,

Részletesebben

Polimerek fizikai és kémiai alapjai Nagy, Roland, Pannon Egyetem

Polimerek fizikai és kémiai alapjai Nagy, Roland, Pannon Egyetem Polimerek fizikai és kémiai alapjai Nagy, Roland, Pannon Egyetem Polimerek fizikai és kémiai alapjai írta Nagy, Roland Publication date 2012 Szerzői jog 2012 Pannon Egyetem A digitális tananyag a Pannon

Részletesebben

Szerves kémia Fontosabb vegyülettípusok

Szerves kémia Fontosabb vegyülettípusok Fontosabb vegyülettípusok Szénhidrogének: alifás telített (metán, etán, propán, bután, ) alifás telítetlen (etén, etin, ) aromás (benzol, toluol, naftalin) Oxigéntartalmú vegyületek: hidroxivegyületek

Részletesebben

KÉMIA TANMENETEK 7-8-9-10 osztályoknak

KÉMIA TANMENETEK 7-8-9-10 osztályoknak KÉMIA TANMENETEK 7-8-9-10 osztályoknak Néhány gondolat a mellékletekhez: A tanterv nem tankönyvhöz készült, hanem témakörökre bontva mutatja be a minimumot és az optimumot. A felsőbb osztályba lépés alapja

Részletesebben

Szigetelőanyagok. Műanyagok; fajták és megmunkálás

Szigetelőanyagok. Műanyagok; fajták és megmunkálás Szigetelőanyagok Műanyagok; fajták és megmunkálás Mi a műanyag? Minden rövidebb láncolatú (kis)molekulából mesterségesen előállított óriásmolekulájú anyagot így nevezünk. természetben nem fordul elő eleve

Részletesebben

AZ ANYAGI HALMAZOK ÉS A MÁSODLAGOS KÖTÉSEK. Rausch Péter kémia-környezettan

AZ ANYAGI HALMAZOK ÉS A MÁSODLAGOS KÖTÉSEK. Rausch Péter kémia-környezettan AZ ANYAGI HALMAZOK ÉS A MÁSODLAGOS KÖTÉSEK Rausch Péter kémia-környezettan Hogy viselkedik az ember egyedül? A kémiában ritkán tudunk egyetlen részecskét vizsgálni! - az anyagi részecske tudja hogy kell

Részletesebben

A felületi kölcsönhatások

A felületi kölcsönhatások A felületi kölcsönhatások 3. hét Adhézió: különbözı, homogén testek közötti összetartó erı ragasztóanyag faanyag; bevonat faanyag Kohézió: homogén anyag molekulái, részecskéi közötti összetartó erı elsırendő

Részletesebben

Javítókulcs (Kémia emelt szintű feladatsor)

Javítókulcs (Kémia emelt szintű feladatsor) Javítókulcs (Kémia emelt szintű feladatsor) I. feladat 1. C 2. B. fenolos hidroxilcsoport, éter, tercier amin db. ; 2 db. 4. észter 5. E 6. A tercier amino-nitrogén. 7. Pl. a trimetil-amin reakciója HCl-dal.

Részletesebben

Az anyagi rendszerek csoportosítása

Az anyagi rendszerek csoportosítása Kémia 1 A kémiai ismeretekről A modern technológiai folyamatok és a környezet védelmére tett intézkedések alig érthetőek kémiai tájékozottság nélkül. Ma már minden mérnök számára alapvető fontosságú a

Részletesebben

Anyagszerkezet és vizsgálat

Anyagszerkezet és vizsgálat SZÉCHENYI ISTVÁN EGYETEM Anyagtudományi és Technológiai Tanszék Anyagszerkezet és vizsgálat NGB_AJ021_1 Dr. Hargitai Hajnalka hargitai@sze.hu www.sze.hu/~hargitai B 403. (L316) (Csizmazia Ferencné dr.

Részletesebben

KÉMIA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK (1997)

KÉMIA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK (1997) KÉMIA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK (1997) MEGOLDÁSOK I. 1. A hidrogén, a hidridek 1s 1 EN=2,1 izotópok: 1 1 H, 2 1 H deutérium 1 H trícium, sajátosságai eltérőek A trícium,- atommagja nagy neutrontartalma

Részletesebben

SiAlON. , TiC, TiN, B 4 O 3

SiAlON. , TiC, TiN, B 4 O 3 ALKALMAZÁSOK 2. SiAlON A műszaki kerámiák (Al 2 O 3, Si 3 N 4, SiC, ZrO 2, TiC, TiN, B 4 C, stb.) fémekhez képest igen kemény, kopásálló, ugyanakkor rideg, azaz dinamikus igénybevételek elviselésére csak

Részletesebben

Szálerősített anyagok fröccsöntése Dr. KOVÁCS József Gábor

Szálerősített anyagok fröccsöntése Dr. KOVÁCS József Gábor Szálerősített anyagok fröccsöntése Dr. KOVÁCS József Gábor 2015. november 18. Előadásvázlat 2 / 32 Fröccsöntés (szálas) Ciklus (kiemelve a száltöltés szerepét) Anyagok (mátrix, szál, adhézió) Rövidszálas

Részletesebben

Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok.

Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok. Folyadékok folyékony nincs saját alakja szilárd van saját alakja (deformálás után úgy marad, nem (deformálás után visszaalakul, mert ébrednek benne visszatérítő nyíróerők) visszatérítő nyíróerők léptek

Részletesebben