Elektromágneses sugárzások és biológiai rendszerek Ionizáló és nem-ionizáló sugárzások. Dr. Fidy Judit egyetemi tanár 2012 Febr.15

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Elektromágneses sugárzások és biológiai rendszerek Ionizáló és nem-ionizáló sugárzások. Dr. Fidy Judit egyetemi tanár 2012 Febr.15"

Átírás

1 Elektromágneses sugárzások és biológiai rendszerek Ionizáló és nem-ionizáló sugárzások Dr. Fidy Judit egyetemi tanár 2012 Febr.15

2 Sugárzások és biológiai rendszerek Ionizáló és nem-ionizáló sugárzások Látható fény (nem ionizáló) Röntgensugárzás (Röntgen-cső, szerkezetvizsgálat,diagnosztika) (Magsugárzások és nagy energiájú röntgen sugárzás orvosi alkalmazásai Orvosi fizika MSc)

3 Fény Röntgen sug. : elekromágneses hullámok Logaritmikus skála 10 9 m = 1nanometer fotonenergia=hf (ev) 800nm 1.55 ev 400nm 3.1 ev

4 emlékeztető 1 ev = 1.6 x Joule

5 Fény X-ray Logaritmikus skála elekromágneses hullámok 10 9 m = 1nanometer X-rays 10 ev 300keV fotonenergia=hf (ev) 10 3 pm 10pm

6 Elektromágneses hullámok - emlékeztető E B = = E B max max sin ( 2π sin ( 2π t T t T + + 2π 2π x λ x λ + Φ) + Φ) Az elektromos és mágneses térnek azonos a fázisa és a periodicitása (T, λ)

7 EM hullámok fontos tulajdonságai T H B t x c = λ / T, f = 1/T, c = f λ(m/s) c = 299,792,458 m/s vákuumban c = E B

8 Elekromágneses hullámok kettős természet? Logaritmikus skála X-rays fotonenergia=hf (ev) 800nm 1.55 ev 400nm 3.1 ev hullám -leírás foton - kép

9 A fény természete, forrásai és biológiai hatásai

10 A fény terjedésének és anyagi kölcsönhatásainak értelmezéséhez mind a hullám- mind a fotonleírást használjuk Kettős természet - hullám Huygens elv, diffrakció, interferencia -részecske: foton (energia-kvantum) fotoelektromos hatás, energiaátadás anyagoknak kvantált energiaadagokban, kölcsönhatásokban partnere az elektron

11 A fény hullám paraméterei X-rays UV-C nm UV-B nm UV-A nm 6.2 ev 1.8 ev

12 A fény hullám polarizáltsága A térerősség vektor iránya meghatározott szabályszerűséget mutat időben és/vagy térben a. Síkban/lineárisan poláros fény A térerősség vektorok iránya a hullám mentén állandó síkot határoz meg.

13 Poláros fény A térerősség vektor iránya meghatározott szabályszerűséget mutat időben és/vagy térben b. Cirkulárisan poláros fény c r jobbra - balra A térerősség vektor végpontja a terjedés iránya körüli spirálison mozog. A c vektor irányára merőleges síkra vetítve E és B egyenletes körmozgást végez. Jobbra cirkulárisan poláros fény E r x

14 Poláros fény A térerősség vektor iránya meghatározott szabályszerűséget mutat időben és/vagy térben A linárisan poláros fény két, jobbra, ill. balra cirkulárisan poláros fény eredője Balra cirkulárisan poláros fény c r x A térerősség vektor végpontja a terjedés iránya körüli spirálison mozog. A c vektor irányára merőleges síkra vetítve E és B egyenletes körmozgást végez. Jobbra cirkulárisan poláros fény Azonos terjedési sebesség, frekvencia és amplitudó

15 Poláros fény Optikailag aktív anyagok (molekulák, szerkezetek) a linárisan poláros fény térerősség-vektorának irányát elfordítják Oka: speciális aszimmetria tükörszimmetria hiánya A mintában a cirkulárisan poláros komponensek terjedési sebessége különböző Balra cirkulárisan poláros fény c r x Jobbra cirkulárisan poláros fény Az optikai forgatás mértéke a molekulák minőségre jellemző és arányos a részecskeszámmal Különböző terjedési sebesség, azonos amplitudó Azonos terjedési sebesség és amplitudó

16 Poláros fény Elliptikusan poláros fény Cirkuláris dikroizmus RNS RNS-bázisok A két cirkulárisan poláros komponens törésmutatóban és abszorbanciában is különbözik a kölcsönhatás után az eredő elliptikusan polárossá válik

17 Fény-foton koncepció anyaggal való kölcsönhatás magyarázata h f = h λ c A fény-elnyelés mértéke függ a hullámhossztólfotonenergiától Hemoglobin molekula oldata Abszorpciós spektrum Elektron-pályaenergia E n szabad elektron-állapotok E n+1 E n Gerjesztés: fény-fotonenergia-felvétellel

18 Fény-foton koncepció anyaggal való kölcsönhatás magyarázata h f = h λ c A fény-elnyelés mértéke függ a hullámhossztólfotonenergiától Hemoglobin molekula oldata Abszorpciós spektrum Elektron-pályaenergia E n szabad elektron-állapotok E n+2 E n Gerjesztés: fotonenergia-felvétellel

19 Fényfoton elnyelése - emissziója használt sémák, jelölések pályanenergia E n Szabad elektron E n+2 E n+1 E n pályaenergia E n hf hf 1 2 = = E E n+ 1 gerjesztés n+ 2 E E n n relaxáció Pl. emisszió szingulett alapállapot S 0 szingulett gerjesztett állapot S 1 Szingulett állapot (singlet): = 0 Sematikus ábrázolás: csak a legfelső betöltött nívó elektronjai i s i

20 Optikai elektron-átmenetek FOTON ELEKTRON abszorpció és emisszió foton-képben Sok-elektronos rendszerek elektron-energiái Egyszerű példa: Cu atom pályaenergiák Optikai foton-energia (~2-3 ev) elnyelése - emissziója a legkülső leglazábban kötött elektronokat érinti E Kα 8 kev (L->K átmenet) Röntgen-tartomány!

21 Fényfoton elnyelése emissziója Mérés: optikai spektroszkópia SPEKTRUM -Elnyelési -Abszorpciós spektrum elnyelés v. kibocsátás valószínűsége -Kibocsátási -Emissziós spektrum ( 1 2 hf mv 2 - részecske-sugárzás) = h c = hc 1 λ λ [ ] 1 1 ev [ cm ] λ energia pl. részecske-energia fotonenergia IR- VIS UV Optikai spektroszkópia

22 Milyen fény-fotonok gerjesztenek? Mérés: optikai abszorpciós spektrum abszorpciós spektrofotométer J 0 J fényintenzitás molekula híg oldata Lambert-Beer törvény A= D= Abszorbancia Optikai denzitás lg J 0 J = ε λ ( ) c l h*f

23 Milyen fotonok gerjesztenek? ε (λ) Egy elektronátmenet valószínűségét a kiindulási és a végső elektron-vibrációs pálya Kvantumszámai határozzák meg (hullám-kép): kiválasztási szabályok S 0 ->S 2 Mennyit változhatnak a kvantumszámok? Moláris extinkció kvantumkémiai értelmezése: Átmeneti dipólus-momentum Hemoglobin abszorpciós spektruma Δn = bármennyi, Δl = +/-1, Δm = 0 vagy +/-1 Δs = 0 + vibrációs módusok csatolása S 0 ->S 1 Gerjesztési vagy emissziós átmenetben az elektron spinállapota nem változhat Megengedett, és tiltott átmenetek nagy vagy kis valószínűségű átmenetek

24 Molekula kölcsönhatásban a környezettel sávos spektrumok Az elektron-pályák energiáit a molekulák diszkrét vibrációs állapotai kis mértékben perturbálják A vibrációs nívók mind az abszorpciós, mind az emissziós átmenetek fotonenergiáiban új lehetőségeket jelentenek Egyes fotonenergiák helyett közeli Fotonenergiák sorozata a spektrumokban Aromás szénhidrogének gerjesztés relaxáció Molekulák vibrációi SÁVOK T hőmérséklet Környezeti kölcsönhatások

25 Molekula kölcsönhatásban a környezettel emisszió csak a legalsó gerjesztett állapotból Az elektron-pályák energiáit a molekulák diszkrét vibrációs állapotai kis mértékben perturbálják Kasha-szabály A felsőbb gerjesztett állapotokból nincs átmenet az alapállapotba fotonemisszióval vibrációs relaxáció (energialeadás hő formájában) az elektronállapotokon belül, és az S 1 állapotba Emisszió csak az S 1 nívóról Aromás szénhidrogének gerjesztés relaxáció

26 Molekula kölcsönhatásban a környezettel emisszió a gerjesztésnél hosszabb hullámhosszakon A mért abszorpciós és emissziós sávok energiája eltér egymástól Stokes-féle eltolódás Az abszorpció és az emisszió is a legalsó vibrációs szintről történik hf abs > hf fluo λ < λ abs fluo Maximum-helyek

27 A polarizáció (hullám-tulajdonság) szerepe fény-abszorpcióban, fény-emisszióban A molekulák gerjesztésekor elektronállapotváltozás töltéseltolódás Dipólus vektorral jellemezhető : átmeneti momentum Függ a molekula szerkezetétől, a szerkezethez orientált pl. triptofán: a molekula sikjában Fotoszelekció: poláros fény elektromos térerősség vektora azokat az elektronokat gerjeszti, ahol a keltett dipólus-momentum és a térerősség vektor iránya (közelitőleg) megegyezik. Emisszióban is dipólus-jelleg érvényesül. Polarizált gerjesztés Álló molekula Polarizált emisszió

28 Az emisszió polarizációfokának (p) mérése p= I VV -I VH I VV +I VH V vertikális polarizáció H horizontális Ha a molekula a gerjesztett állapot ideje alatt elfordul az emisszió polarizációja csökken Beágyazó környezet (pl. plazmamembrán ) fluiditásának jellemzése

29 A fény biológiai hatásai Szempontok: Mi nyeli el? Milyen mélyre jut? Milyen szerveket ér fény? Fénnyel kiváltott reakciók, terápiás beavatkozások

30 A fény biológiai hatásai Mit ér közvetlenül fény? Immune supression Káros hatások szemre bőrre

31 A fény biológiai hatásai Mit ér közvetlenül fény? Pozitív hatások szemre bőrre Szervezetre? Ismert hatások: - D-vitamin szintézis (UV-A) - anyagcsere, hormonrendszer, immunrendszer stimulálása (VIS) - téli depresszió & melatonin hormon túltermelése. Sok az ismeretlen tényező!

32 A fény biológiai hatásai Milyen molekulák nyelik el? Relatív optikai denzitás Hemoglobin, mioglobin β-karotin Melanin Endogén Hullámhossz (nm)

33 A fény biológiai hatásai Milyen molekulák nyelik el? Endogén Relatív optikai denzitás fehérjék aromás aminósavai Hullámhossz (nm) DNS purin és pirimidin bázisai +Exogén kromofórok -ételfestékek -gyógyszerek -kozmetikumok..

34 A fény biológiai hatásai Milyen molekulák nyelik el?

35 A fény biológiai hatásai Behatolási mélység? UVB UVC UVA λ[nm] cornea iris lencse NUV Szem UVA λ[nm] 360 λ[nm] 47 cornea iris lencse retina retina 1 2

36 A fény biológiai hatásai Behatolási mélység? Bőr Fény reflexiója írha bőralja Pigmentek elnyelése- barnulás Szénhidrogének elnyelése Aromás aminosavak elnyelése Nukleinsavak elnyelése

37 Fény-keltő mechanizmusok és fényforrások 1. Hőmérsékleti sugárzás folytonos spektrum Oka: anyagok belső szerkezetének termikusan gerjesztett rezgései 4 M = σ T λ T = konst max Fény? T-től függ A Nap emissziós spektruma A látás érzékenységi görbéje Izzószálas fényforrások Wolfram szál spektruma (Sollux lámpákban) Halogén gáz töltet a szál párolgása ellen

38 A napsugárzás emissziós spektruma A Nap hőmérsékleti sugárzása A Föld légkörét elérő sugárzás A Föld felszínét elérő sugárzás

39 A Nap sugárázásának UV tartományát a légkör elnyelése szűri ki O 3 tartalom!

40 2.1. Spontán fényemisszió: Lumineszcencia Jellemző paraméterek természetben ritka Az emisszió előfeltétele: gerjesztett elektronállapot - Az emissziós spektrum ΔJ Δλ hideg emisszió Stokes szabály Kasha szabály Sávos, vagy vonalas - Az emisszió kvantumhatásfoka: az elnyelt és emittált fotonok számának aránya (fotolumineszcenciánál) Az emissziós spektrum görbe alatti területe Φ em = N N em absz = k em k + k em belső + k külső λ F( ν ) dν ν = 1 λ A gerjesztett elektron egyéb energialeadási reakciósebességei

41 2. 1. Spontán fényemisszió: Lumineszcencia Ritka jelenség a természetben A fényemisszió kvantumhatásfoka kicsi más reakcióutak az energialeadásra

42 2.1. Spontán fényemisszió: Lumineszcencia Fluoreszcencia és Foszforeszcencia Megkülönböztetés az emittáló gerjesztett elektronállapot alapján. Jablonski diagram Az S 1 állapotú gerjesztett elektron spinátfordulással átmehet a T 1 gerjesztett állapotba, ahonnan az S 0 alapállapotba visszatérés tiltott T 1 : alacsonyabb energiájú, hosszú élettartamú metastabil gerjesztett állapot Foszforeszcencia: spontán fotonemisszió metastabil (T 1 ) állapotból

43 2.1. Spontán fényemisszió: Lumineszcencia Fluoreszcencia és Foszforeszcencia Fluoreszcencia: -Megengedett elektron-átmenetből (S1->S0) származó spontán fényemisszió -Élettartama rövid, τ ~ 1-10 ns <-> gerjesztési idő ~10-3 ns -Karakterisztikus fotonenergia(tartomány) szín jellemzi - Többféle gerjesztési átmenettel is gerjeszthető

44 2.1. Spontán fényemisszió: Lumineszcencia Fluoreszcencia és Foszforeszcencia Foszforeszcencia: -Spontán fényemisszió metastabil átmenetből -Az emittáló nívó élettartama hosszú τ ~ ms, sec metastabil állapot -Az emittált fény fotonenergiája kisebb mint a fluoreszcenciáé -Hosszú élettartam -> lehetőség a környezeti energialeadásra emissziós intenzitás igen kicsi -> orvosi alkalmazása csekély

45 2.1. Spontán fényemisszió: Lumineszcencia Fluoreszcencia és Foszforeszcencia spektrumok összehasonlítása természetesen lumineszkáló aminosav Triptofán - egy fehérjében Absz. Fluo Foszf Absz Fluo Foszforeszc. T=10K Vibrációs relaxáció λfoszf > λfluo > λabsz Stokes-féle eltolódás

46 Fény-keltő mechanizmusok és fényforrások 2.1. Lumineszcencián Metal vapour (e.g. Hg) lamps alapuló fényforrások Alapja: gázkisülési csövekben keltett elektrolumineszcencia - - (az üvegbúra elnyeli az UV fényt, a kvarz nem) + -Alacsony nyomású fémgőz-lámpák Pl. - Na-lámpa sárga fénye - germicidlámpa: alacsony nyomású higanygőz vonalas emissziós spektruma 254 nm-en elnyelődik baktériumok genetikai állományában sterilizáló hatás -Ívlámpák nagy nyomású Hg, Xe vagy Na-lámpák, ionizált plazma ívkisülése folytonos spektrum jellegzetes vonalakkal

47 Fémgőz lámpák Kisnyomású Na-gőz lámpa emissziós spektruma Nagy-nyomású Na-gőz lámpa emissziós spektruma Hg-gőz lámpa

48 - Fénycsövek Pl. alacsony nyomású Hg gőz + _ Falra párologtatott vékony réteg bevonat A gáz-töltet elektrolumineszcenciája (Hg esetén UV fény) gerjeszti a fal bevonatának fotolumineszcenciáját. Ez már látható fény, ami áthatol az üvegfalon. A kilépő fény spektruma a bevonattól függ, célja a Nap spektrumának közelítése. Üvegfalú cső Jó fényhozam kompakt csövek Erythemal lámpa : λ a nm közeli UV- tartományban, uviol üvegfal

49 Fény-keltő mechanizmusok és fényforrások 2.2. Indukált fényemisszió - lézerek Spontán emissziós fény : Az egyes elektronátmenetek térben és időben rendezetlenül, véletlenszerűen történnek. Az egyes hullámvonulatok fázisa egymástól független. A fény inkoherens Indukált emissziós fény: A fényfotonok emisszióját az emittálandó fotonenergiával azonos energiájú foton jelenléte indukálja. A kibocsátott hullámvonulat a kiváltóval azonos fázisban lép ki, együtt koherensek

50 Fény-keltő mechanizmusok és fényforrások 2.2. Indukált fényemisszió - lézerek LASER: Light Amplification by the Stimulated Emission of Radiation 1961, Rubin-lézer Nemcsak erősítő, hanem speciális fényforrás A lézer-fény speciális tulajdonságai -monokromatikus Δf/f ~ ( 10-6 ) -koherens : nagy a koherencia-hossz (10 3 m 10-3 m) -kis divergencia (néhány szögperc) jól fókuszálható -nagy intenzitás átlagos intenzitás impulzus-intenzitás

51 Eddig: fény Következik: röntgensugárzás fény röntgensugárzás (rtg. cső) Fotonenergia ev kev Primér hatás e - gerjesztés e - ionizáció Elnyelődés diszkrét fotonenergiáknál energia folytonos valószínűsége függvénye

52 A röntgensugárzás természete, és biológiai hatásai

53 Wilhelm Konrad Röntgen ( )

54 Az intenzitás-gyengülés törvénye érvényes mind a fényelnyelésre, mind a röntgensugárzás elnyelésére! Igen hasonló paraméterek! lg J 0 J = ε λ ( ) c l Fényelnyelés c moláris koncentrációjú oldatban Fotonenergia és a molekula elektronpályájáinak kölcsönhatására jellemző anyagi állandó: moláris extikció Fényútban levő oldat vastagsága J lg 0 J = lge μ x = lge μ ρ x m rtg.sug. elnyelődése ρ sűrűségű x vastagságú anyagban Fotonenergia és az anyag elektronpályájáinak kölcsönhatására jellemző anyagi állandó: tömegabszorpciós együttható

55 A röntgensugárzás alkalmazásai Röntgendiagnosztika alapjai A diagnosztikai alkalmazások a rtg sugárzás szöveti elnyelődésén alapulnak Kétféle mechanizmus a fotonenergiától függő súllyal. Ionizáló sugárzás: az elnyelt foton ionizál J μ = μ = m Abszorpciós együttható J μ o m = τ e m μx ρ = + σ m J Tömeggyengítési együttható o e μ m ρx fotoeffektus τ m erősen függ Z-től és a fotonenergiától hf = A mv + hf 2

56 A röntgensugárzás alkalmazásai Röntgendiagnosztika alapjai Abszorpciós spektrumok rtg. sug.-ra Lágy szövetek τ m J = 3 = konst λ Z J o e μx = J o e 3 ( τ + σ ) ρ x m m Compton effektus valószínűsége kevéssé függ a rendszámtól és a fotonenergiától. Röntgen-kép kontrasztja függ -sűrüségkülönbségektől - rendszám-különbségektől

57 Megjegyzések gamma-sugárzásról fotonenergia ~ MeV elnyelési valószínűség: << rtg. sug. 1 Mev körül minimuma lehet Röntgen sugárzás

58 Vége Köszönöm a figyelmet A továbbiakban néhány magyarázó dia következik a törzsanyagon kívűl

59 A kiválasztási szabályok kvantummechanikai háttere Feltesszük, hogy az oldatot olyan fénnyel világítjuk meg, amelyre teljesül a gerjesztési energia-feltétel hf = +1 E n E n Az elektronok a fény elektromos vektorának irányában elmozdulnak az energia-átmenet során. Mekkora a dipólusmomentum keltésének valószínűsége? Az elektromos dipólusmomentum várható értéke az átmenet során? állapotfüggvény r ψ ψ ( r, R ) = θ ( r, R ) φ( R ) a i r j ( x, Q) = θ ( x, Q) φ ( Q) a r i r j a r j M a g Átmeneti momentum Born-Oppenheimer közelítés az elektronok mozgása független a magokétól elektronok magok

60 Ez a kép most nem jeleníthető meg. A kiválasztási szabályok kvantummechanikai háttere r r r r r μ = μe + μmag = q i z j q e e Rj ψ a ( x, Q) = θa ( x, Q) φa ( Q) M a g ψ ˆ = a μ ψ g dipól operátor M gn a 0 M komplex konjugált ( Q ) q ( x, Q )[ r ] θ ( x Q )dx θ a φ 0 Q M ag Q φ gn Q dq M ag a g = e a i g, r ( ) ( ) ( ) φ a ( Q) φ ( Q)dQ = 0 gn Atomtörzsek vibrációs állapotai: g,n -- a gerjesztett molekuláris elektronállapot n.-ik vibrációs állapota

61 Abszorpciós spektroszkópia biofizikai alkalmazások lg I I 0 = ε λ ( ) c x küvetta rétegvastagsága Abszorbancia Optikai Denzitás moláris konc. moláris extinkció Molekuláris szerkezetvizsgálat MÉRÉS Az a-g átmeneti valószínűség az összes vibrációs állapotokat tekintve K spin M a g 2 = const. ε ( f ) df f multiplicitás hullámszám

62 Fontos mennyiségek Oszcillátor erő f 9 = 4.3 ε ~ ~ 10 d Kloroplaszt spektruma ( ν ) ν S 2 S 0 hf=fotonenergia (ev)= λ ( nm) Hullámszám (cm -1 )=(1/ λ(nm))*10 7 pl. Vibrációk energiája cm -1 Elektronátmenetek és molekuláris rezgések gerjesztése 1600 cm cm -1 S 1 S 0 vibronikus átmenetek

63 3.2. Fényabszorpció fényemisszió Fluoreszcencia: spontán fényemisszió gerjesztett állapotból azonos spinállapotú alapállapotba Átmeneti valószínűségek Einstein együtthatók: B ag abszorpció B ga indukált emisszió A ga spontán emisszió gerj B a, g B g,a A g, a alap Feltétel: hf = ΔE ga fotonsugárzás jelenléte Termikus egyensúly: abszorpciók száma= spontán és indukált emissziók száma/idő

64 3.2. Fényabszorpció fényemisszió Fluoreszcencia: spontán fényemisszió gerjesztett állapotból azonos spinállapotú alapállapotba N N Φ B em abs F = g a =Φ A F g a = B a g Fluoreszcencia emisszió kvantumhatásfoka = 8π hf Φ = ( ~ ν ) ~ ν ~ ν = 1 F F d λ = K M Fluoreszcencia spektrum a gn c 2 a g B g a ε ~ ~ ~ ν ( ν ) d ν az abszorpciós és emissziós spektrumok görbe alatti területei (azonos állapotok között) egymásból kiszámíthatók

65 2.2. lézerek működési elve A lézer anyaga Gáz, folyadék, szilárd test Követelmény: a gerjesztési és emissziós elektron-átmenetek három energiaállapoton belül történjenek, amelyek közül az egyik magasabb nívónak legyen hosszú az élettartama lézer-nívó N g gerjesztés sugárzás nélküli átmenet metastabil lézer nívó N m N 0

66 2.2. lézerek működési elve A lézer anyag gerjesztése Az elektronok gerjesztése külső forrásból: Pl. gázkisülés, fényimpulzus Intenzív gerjesztés a felső nívó populálása átmenet a metastabíl nívóra N m a hosszú élettartam miatt megnő, az alsó nívó kiürül: N m >>N 0 populáció inverzió: a fényerősítés feltétele

67 2.2. lézerek működési elve Fényerősítés indukált emisszióval Populáció inverzió mellett a rendszer a hf= E m -E 0 fotonenergiájú sugárzást erősíti, ilyen foton indukálja az emissziót N m nagy néhány spontán emisszió E 0 -ra fényerősítés

68 2.2. lézerek működési elve Az optikai rezonátor 99.9% Erősíti a lézer tengelyével egyirányú sugárzást Leszűkíti az emisszió hullámhossztartományát 99% L = m λ 2 állóhullámok kialakulása

69 Mai kérdés: Hogyan alkalmazná az alábbi képletet, és milyen adatok hiányoznak, ha azt akarjuk megbecsülni a segítségével, hogy egy sok kötéssel stabilizált óriás-molekulában hány %-ban vannak felszakadt kötések? n n 2 1 = e Δ ε kt

Elektromágneses sugárzások és biológiai rendszerek Ionizáló és nem-ionizáló sugárzások. Sugárzások és biológiai rendszerek

Elektromágneses sugárzások és biológiai rendszerek Ionizáló és nem-ionizáló sugárzások. Sugárzások és biológiai rendszerek Elmaradt ábra a fehérje-dinamikáról Elektromágneses sugárzások és biológiai rendszerek Ionizáló és nem-ionizáló sugárzások Dr. Fidy Judit egyetemi tanár 014 Febr.6 Tormaperoxidáz Foszfoglicerát kináz Sugárzások

Részletesebben

Elektromágneses sugárzások és biológiai rendszerek Ionizáló és nem-ionizáló sugárzások. Sugárzások és biológiai rendszerek

Elektromágneses sugárzások és biológiai rendszerek Ionizáló és nem-ionizáló sugárzások. Sugárzások és biológiai rendszerek Elektromágneses sugárzások és biológiai rendszerek Ionizáló és nem-ionizáló sugárzások Mai kérdés: Becsülje meg, hány % van felszakadva egy makromolekulában azokból a kötésekből, ahol a kötési energia.7x10

Részletesebben

Elektromágneses sugárzások és biológiai rendszerek Ionizáló és nem-ionizáló sugárzások. Sugárzások és biológiai rendszerek

Elektromágneses sugárzások és biológiai rendszerek Ionizáló és nem-ionizáló sugárzások. Sugárzások és biológiai rendszerek Elektromágneses sugárzások és biológiai rendszerek Ionizáló és nem-ionizáló sugárzások Dr. Fidy Judit egyetemi tanár 01 Febr.15 Tormaperoxidáz Foszfoglicerát kináz Sugárzások és biológiai rendszerek Ionizáló

Részletesebben

Abszorpció, emlékeztetõ

Abszorpció, emlékeztetõ Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése

Részletesebben

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási

Részletesebben

Lumineszcencia. Lumineszcencia. mindenütt. Lumineszcencia mindenütt. Lumineszcencia mindenütt. Alapjai, tulajdonságai, mérése. Kellermayer Miklós

Lumineszcencia. Lumineszcencia. mindenütt. Lumineszcencia mindenütt. Lumineszcencia mindenütt. Alapjai, tulajdonságai, mérése. Kellermayer Miklós Alapjai, tulajdonságai, mérése Kellermayer Miklós Fotolumineszcencia Radiolumineszcencia Fotolumineszcencia Radiolumineszcencia Aurora borrealis (sarki fény) Biolumineszcencia GFP-egér Biolumineszcencia

Részletesebben

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT) Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken

Részletesebben

Lumineszcencia Fényforrások

Lumineszcencia Fényforrások Kiegészítés: színkeverés Lumineszcencia Fényforrások Alapszinek additív keverése Alapszinek kiegészítő szineinek keverése: Szubtraktív keverés Fidy udit Egyetemi tanár 2015, November 5 Emlékeztető.. Abszorpciós

Részletesebben

Az elektromágneses hullámok

Az elektromágneses hullámok 203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény;   Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;

Részletesebben

Szerves oldott anyagok molekuláris spektroszkópiájának alapjai

Szerves oldott anyagok molekuláris spektroszkópiájának alapjai Szerves oldott anyagok molekuláris spektroszkópiájának alapjai 1. Oldott molekulában lejátszódó energetikai jelenségek a Jablonski féle energia diagram alapján 2. Példák oldatok abszorpciójára és fotolumineszcenciájára

Részletesebben

Lumineszcencia spektrometria összefoglaló

Lumineszcencia spektrometria összefoglaló Lumineszcencia spektrometria összefoglaló Ismétlés: fény (elektromágneses sugárzás) elnyelés: abszorpció elektron gerjesztés: excitáció alap és gerjesztett állapot atomi energiaszintek, energiaszintek

Részletesebben

Abszorpciós spektrometria összefoglaló

Abszorpciós spektrometria összefoglaló Abszorpciós spektrometria összefoglaló smétlés: fény (elektromágneses sugárzás) tulajdonságai, kettős természet fény anyag kölcsönhatás típusok (reflexió, transzmisszió, abszorpció, szórás) Abszorpció

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség

Részletesebben

Műszeres analitika II. (TKBE0532)

Műszeres analitika II. (TKBE0532) Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses

Részletesebben

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu

Részletesebben

Lumineszcencia spektroszkópia

Lumineszcencia spektroszkópia Lumineszcencia spektroszkópia Elektron+vibrációs+rotációs-spektroszkópia alapjai 213. február Fizika-Biofizika II. szemeszter Orbán József PTE ÁOK Biofizikai Intézet Definíciók, törvények SPEKTROSZKÓPIAI

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény;  Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;

Részletesebben

Lumineszcencia spektrometria összefoglaló

Lumineszcencia spektrometria összefoglaló Lumineszcencia spektrometria összefoglaló Ismétlés: fény (elektromágneses sugárzás) elnyelés: abszorpció elektron gerjesztés: excitáció alap és gerjesztett állapot atomi energiaszintek, energiaszintek

Részletesebben

Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek

Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek 2012. 11. 08. Fotonok és molekulák ütközése Fény (foton) ütközése a molekulákkal fényszóródás abszorpció E=hν

Részletesebben

A fény keletkezése. Hőmérsékleti sugárzás. Hőmérsékleti sugárzás. Lumineszcencia. Lézer. Tapasztalat: a forró testek Hőmérsékleti sugárzás

A fény keletkezése. Hőmérsékleti sugárzás. Hőmérsékleti sugárzás. Lumineszcencia. Lézer. Tapasztalat: a forró testek Hőmérsékleti sugárzás A fény keletkezése Hőmérsékleti sugárzás Hőmérsékleti sugárzás Lumineszcencia Lézer Tapasztalat: a forró testek Hőmérsékleti sugárzás Környezetének hőfokától függetlenül minden test minden, abszolút nulla

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET)

Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Biofizika szeminárium PTE ÁOK Biofizikai Intézet Huber Tamás 2014. 02. 11-13. A gerjesztett állapotú elektron lecsengési lehetőségei Gerjesztés Fluoreszcencia

Részletesebben

Röntgensugárzás. Röntgensugárzás

Röntgensugárzás. Röntgensugárzás Röntgensugárzás 2012.11.21. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ

Részletesebben

Speciális fluoreszcencia spektroszkópiai módszerek

Speciális fluoreszcencia spektroszkópiai módszerek Speciális fluoreszcencia spektroszkópiai módszerek Fluoreszcencia kioltás Fluoreszcencia Rezonancia Energia Transzfer (FRET), Lumineszcencia A molekuláknak azt a fényemisszióját, melyet a valamilyen módon

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria 2013 január Abszorpciós fotometria Elektron-spektroszkópia alapjai Biofizika. szemeszter Orbán József PTE ÁOK Biofizikai ntézet Definíciók, törvények FÉNYTAN ALAPOK SMÉTLÉS - Elektromágneses sugárzás,

Részletesebben

Lumineszcencia. Lumineszcencia. Molekulaszerkezet. Atomszerkezet

Lumineszcencia. Lumineszcencia. Molekulaszerkezet. Atomszerkezet Lumineszcencia Lumineszcencia Alapok, tulajdonságok Molekula energiája Spinállapotok Lumineszcencia típusai Lumineszcencia átmenetei A lumineszcencia paraméterei A lumineszcencia mérése Polarizáció, anizotrópia

Részletesebben

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán

Részletesebben

A fény tulajdonságai

A fény tulajdonságai Spektrofotometria A fény tulajdonságai A fény, mint hullámjelenség (lambda) (nm) hullámhossz (nű) (f) (Hz, 1/s) frekvencia, = c/ c (m/s) fénysebesség (2,998 10 8 m/s) (σ) (cm -1 ) hullámszám, = 1/ A amplitúdó

Részletesebben

Abszorpciós spektroszkópia

Abszorpciós spektroszkópia Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses

Részletesebben

A lézer alapjairól (az iskolában)

A lézer alapjairól (az iskolában) A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o

Részletesebben

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic Abszorpciós spektroszkópia Abszorpciós spektrofotometria 29.2.2. Az abszorpciós spektroszkópia a fényabszorpció jelenségét használja fel híg oldatok minőségi és mennyiségi vizsgálatára. Abszorpció Az elektromágneses

Részletesebben

Fluoreszcencia 2. (Kioltás, Anizotrópia, FRET)

Fluoreszcencia 2. (Kioltás, Anizotrópia, FRET) Fluoreszcencia 2. (Kioltás, Anizotrópia, FRET) Gerjesztés A gerjesztett állapotú elektron lecsengési lehetőségei Fluoreszcencia 10-9 s k f Foszforeszcencia 10-3 s k ph 10-15 s Fizika-Biofizika 2. Huber

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria abszorpció Abszorpciós fotometria Spektroszkópia - Színképvizsgálat Spektro-: görög; jelente kép/szín -szkópia: görög; néz/látás/vizsgálat Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2012. február Vizsgálatok

Részletesebben

Koherens fény (miért is különleges a lézernyaláb?)

Koherens fény (miért is különleges a lézernyaláb?) Koherens fény (miért is különleges a lézernyaláb?) Inkoherens fény Atomok egymástól függetlenül sugároznak ki különböző hullámhosszon sugároznak ki elektromágneses hullámokat Pl: Termikus sugárzó Koherens

Részletesebben

Bevezetés a fluoreszcenciába

Bevezetés a fluoreszcenciába Bevezetés a fluoreszcenciába Gerjesztett Excited Singlet szingulett Manifold állapot S1 Jablonski diagram Belső internal konverzió conversion S2 k isc k -isc Triplett állapot Excited Triplet Manifold T1

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

Fotokémiai alapfogalmak, a fotonok és a molekulák kölcsönhatása

Fotokémiai alapfogalmak, a fotonok és a molekulák kölcsönhatása Fotokémiai alapfogalmak, a fotonok és a molekulák kölcsönhatása A fotokémia tárgya A földi élet számára alapvető a Nap mint energiaforrás Termodinamika. főtétele: zárt rendszer energiája állandó Termodinamika.

Részletesebben

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Atom- és molekula-spektroszkópiás módszerek Módszer Elv Vizsgált anyag típusa Atom abszorpciós spektrofotometria (AAS) A szervetlen Lángfotometria

Részletesebben

Koherens fény (miért is különleges a lézernyaláb?)

Koherens fény (miért is különleges a lézernyaláb?) Koherens fény (miért is különleges a lézernyaláb?) Inkoherens fény Atomok egymástól függetlenül sugároznak ki különböző hullámhosszon, különböző fázissal fotonokat. Pl: Termikus sugárzó Koherens fény Atomok

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria abszorpció A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2013. január Elektromágneses hullám Transzverzális hullám elektromos térerősségvektor hullámhossz E B x mágneses térerősségvektor

Részletesebben

A hőmérsékleti sugárzás

A hőmérsékleti sugárzás A hőmérsékleti sugárzás Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti

Részletesebben

Optikai spektroszkópiai módszerek

Optikai spektroszkópiai módszerek Mi történhet, ha egy mintát fénnyel világítunk meg? Optikai spektroszkópiai módszerek megvilágító fény (elnyelt fény) minta átjutott fény Abszorpció UV-VIS, IR Smeller László kibocsátott fény Lumineszcencia

Részletesebben

Reakciókinetika és katalízis

Reakciókinetika és katalízis Reakciókinetika és katalízis 8. előadás: 1/18 A fény hatására lejátszódó folyamatok részlépései: az elektromágneses sugárzás (foton) elnyelése ill. kibocsátása - fizikai folyamatok a gerjesztett részecskék

Részletesebben

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití

Részletesebben

Orvosi biofizika II. Orvosi Biofizika II. Az X-sugár. Röntgen- sugárzás Előállítás, tulajdonságok

Orvosi biofizika II. Orvosi Biofizika II. Az X-sugár. Röntgen- sugárzás Előállítás, tulajdonságok Orvosi biofizika II Orvosi Biofizika II Röntgensugárzás előállítása és tulajdonságai Röntgendiagnosztikai alapok Az elektromosság orvosi alkalmazásai Termodinamika - egyensúly, változás, főtételek Diffúzió,

Részletesebben

A hőmérsékleti sugárzás

A hőmérsékleti sugárzás A hőmérsékleti sugárzás Felhevített tárgyak több száz fokos hőmérsékletet elérve először vörösen majd még magasabb hőmérsékleten sárgán izzanak, tehát fényt (elektromágneses hullámokat a látható tartományban)

Részletesebben

Színképelemzés. Romsics Imre 2014. április 11.

Színképelemzés. Romsics Imre 2014. április 11. Színképelemzés Romsics Imre 2014. április 11. 1 Más néven: Spektrofotometria A színképből kinyert információkból megállapítható: az atomok elektronszerkezete az elektronállapotokat jellemző kvantumszámok

Részletesebben

Talián Csaba Gábor Biofizikai Intézet 2012. április 17.

Talián Csaba Gábor Biofizikai Intézet 2012. április 17. SUGÁRZÁSOK. ELEKTROMÁGNESES HULLÁMOK. Talián Csaba Gábor Biofizikai Intézet 2012. április 17. MI A SUGÁRZÁS? ENERGIA TERJEDÉSE A TÉRBEN RÉSZECSKÉK VAGY HULLÁMOK HALADÓ MOZGÁSA RÉVÉN Részecske: α-, β-sugárzás

Részletesebben

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás A fény Abszorpciós fotometria Fluoreszcencia spektroszkópia. 2010. október 19. Huber Tamás PTE ÁOK Biofizikai Intézet E A fény elektromos térerısségvektor hullámhossz A fény kettıs természete: Hullám (terjedéskor)

Részletesebben

Optika Gröller BMF Kandó MTI

Optika Gröller BMF Kandó MTI Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Optika Gröller BMF Kandó MTI Az elektromágneses spektrum Az anyag és a fény kölcsönhatása

Részletesebben

2, = 5221 K (7.2)

2, = 5221 K (7.2) 7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon

Részletesebben

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html

Részletesebben

http://www.flickr.com Az atommag állapotait kvantummechanikai állapotfüggvénnyel írjuk le. A mag paritását ezen fv. paritása adja meg. Paritás: egy állapot tértükrözéssel szemben mutatott viselkedését

Részletesebben

A fény mint elektromágneses hullám és mint fényrészecske

A fény mint elektromágneses hullám és mint fényrészecske A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá

Részletesebben

A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD

A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD A csillagközi anyag Interstellar medium (ISM) gáz + por Ebből jönnek létre az újabb és újabb csillagok Bonyolult dinamika turbulens áramlások lökéshullámok MHD Speciális kémia porszemcsék képződése, bomlása

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

A fény és az anyag kölcsönhatása

A fény és az anyag kölcsönhatása A fény és az anyag kölcsönhatása Bohr-feltétel : E = E 2 E 1 = hν abszorpció foton (hν) E 2 E 2 E 1 E 1 E 2 E 2 spontán emisszió E 1 E 1 stimulált (kényszerített) emisszió E 2 E 2 E 1 E 1 Emissziós és

Részletesebben

A röntgensugárzás természete, forrásai és biológiai hatásai X-rays

A röntgensugárzás természete, forrásai és biológiai hatásai X-rays A röntgensugárzás terészete, forrásai és biológiai hatásai X-rays elékeztető Elektroágneses sugárzások Foton koncepció az anyagi kölcsönhatásokban Foton partnere az elektron A foton energiát gyakran ev

Részletesebben

FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK

FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK Légköri nyomanyagok forrásai: bioszféra hiroszféra litoszféra világűr emberi tevékenység AMI BELÉP, ANNAK TÁVOZNIA IS KELL! Légköri nyomanyagok nyelői: száraz

Részletesebben

Az elektromágneses spektrum és a lézer

Az elektromágneses spektrum és a lézer Az elektromágneses spektrum és a lézer A fény Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2010. szeptember Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm

Részletesebben

1. mérés: Benzolszármazékok UV spektrofotometriás vizsgálata

1. mérés: Benzolszármazékok UV spektrofotometriás vizsgálata 1. mérés: Benzolszármazékok UV spektrofotometriás vizsgálata A vegyi anyagok (atomok és molekulák) és az elektromágneses sugárzás kölcsönhatásának vizsgálata jelentős szerepet játszik ezen anyagok mind

Részletesebben

A fény keletkezése. Hőmérsékleti sugárzás. Hőmérsékleti sugárzás. Lumineszcencia. Lézer. Tapasztalat: a forró testek Hőmérsékleti sugárzás

A fény keletkezése. Hőmérsékleti sugárzás. Hőmérsékleti sugárzás. Lumineszcencia. Lézer. Tapasztalat: a forró testek Hőmérsékleti sugárzás A fény keletkezése Hőmérsékleti sugárzás Hőmérsékleti sugárzás Lumineszcencia Lézer Tapasztalat: a forró testek Hőmérsékleti sugárzás Környezetének hőfokától függetlenül minden test minden, abszolút nulla

Részletesebben

Szervetlen komponensek analízise. A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.

Szervetlen komponensek analízise. A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb. Szervetlen komponensek analízise A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.) A fény λ i( k r ωt + φ0 ) Elektromágneses sugárzás E( r,

Részletesebben

ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő

ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

OPTIKA. Vozáry Eszter November

OPTIKA. Vozáry Eszter November OPTIKA Vozáry Eszter 2015. November FÉNY Energia: elektromágneses hullám c = λf részecske foton ε = hf Szubjektív érzet látás fény és színérzékelés ELEKTROMÁGNESES SPEKTRUM c = λf ε = hf FÉNY TRANSZVERZÁLIS

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

CD-spektroszkópia. Az ORD spektroskópia alapja

CD-spektroszkópia. Az ORD spektroskópia alapja CD-spektroszkópia Az ORD spektroskópia alapja - A XIX. század elején Biot megfigyelte, hogy bizonyos, a természetben előforduló szerves anyagok a lineárisan polarizált fény síkját elforgatják. - 1817-ben

Részletesebben

Biofizika. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? A biológiában és orvostudományban alkalmazott fizikai módszerek tárgyalása

Biofizika. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? A biológiában és orvostudományban alkalmazott fizikai módszerek tárgyalása Biofizika Csik Gabriella Eötvös Loránd kora diákjait tréfásan jellemzi : határozott céllal jön az egyetemre, ügyvéd, politikus vagy orvos akar lenni. Amint az egyetembe lép, kritizálja tanárait, s az egész

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal. 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD

Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal. 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD 2012.10.03 1976 2 1. 3 4 n 1 >n 2 5 6 7 8 9 10 11 12 13 14 2. Az ionizáló sugárzások

Részletesebben

Röntgen. W. C. Röntgen. Fizika-Biofizika

Röntgen. W. C. Röntgen. Fizika-Biofizika Röntgen Fizika-Biofizika 2014. 11. 11. Thomas Edison (1847-1931, USA) Első működő fluoroszkóp (röntgen-készülék) feltalálása, 1896 Sugárvédelem hiánya égési sérülések Clarence Madison Dally (Edison aszisztense):

Részletesebben

Röntgendiagnosztikai alapok

Röntgendiagnosztikai alapok Röntgendiagnosztikai alapok Dr. Voszka István A röntgensugárzás keltésének alternatív lehetőségei (röntgensugárzás keletkezik nagy sebességű, töltéssel rendelkező részecskék lefékeződésekor) Röntgencső:

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét

Részletesebben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),

Részletesebben

Lumineszcencia: a fényt kibocsátó rendszer nem a magas hőmérséklet miatt világít!!! Ez az ún. hideg emisszió

Lumineszcencia: a fényt kibocsátó rendszer nem a magas hőmérséklet miatt világít!!! Ez az ún. hideg emisszió Fluoresz Fluores zcenc cencia ia spektroszkópia Lumineszcencia: a fényt kibocsátó rendszer nem a magas hőmérséklet miatt világít!!! Ez az ún. hideg emisszió emisszió jelensége. Orbán József Biofizika szeminárium

Részletesebben

Röntgendiagnosztika és CT

Röntgendiagnosztika és CT Röntgendiagnosztika és CT 2013.04.09. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ

Részletesebben

Lumineszcencia alapjelenségek

Lumineszcencia alapjelenségek Lumineszcencia alapjelenségek (Nyitrai Miklós; 211 február 7.) Lumineszcencia Definíció: Egyes anyagok spontán fénykibocsátása, a termikus fényemissziótól függetlenül, elektrongerjesztést követően. Lumineszcens

Részletesebben

A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása

A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása A sugárzás és az anyag kölcsönhatása A béta-sugárzás és anyag kölcsönhatása Cserenkov-sugárzás v>c/n, n törésmutató cos c nv Cserenkov-sugárzás Pl. vízre (n=1,337): 0,26 MeV c 8 m / s 2. 2* 10 A sugárzás

Részletesebben

Elektromágneses hullámegyenlet

Elektromágneses hullámegyenlet Elektromágneses hullámegyenlet Valódi töltésektől és vezetési áramoktól mentes szigetelőkre felírva az első két egyenletet: Az anyagegyenletek továbbá: Ezekből levezethetők a homogén hullámegyenletek a

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Az optika tudományterületei

Az optika tudományterületei Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17

Részletesebben

Fény kölcsönhatása az anyaggal:

Fény kölcsönhatása az anyaggal: Fény kölcsönhatása az Fény kölcsönhatása az : szórás, abszorpció, emisszió Kellermayer Miklós Fényszórás A fényszórás mérése, orvosi alkalmazásai Lord Rayleigh (1842-1919) J 0 Light Fényforrás source Rayleigh

Részletesebben

Molekulaspektroszkópiai módszerek UV-VIS; IR

Molekulaspektroszkópiai módszerek UV-VIS; IR Molekulaspektroszkópiai módszerek UV-VIS; IR Fény és anyag kölcsönhatása! Optikai módszerek Fényelnyelés mérése (Abszorpción alapul) Fénykibocsátás mérése (Emisszión alapul) Atomspektroszkópiai módszerek

Részletesebben

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Prof. Túri László (ELTE, Kémiai Intézet) turi@chem.elte.hu 2012. november 19. Szent László Gimnázium Önképzőkör 1 Kapcsolódási pontok

Részletesebben

Röntgenanalitika. Röntgenradiológia, Komputertomográfia (CT) Röntgenfluoreszcencia (XRF) Röntgenkrisztallográfia Röntgendiffrakció (XRD)

Röntgenanalitika. Röntgenradiológia, Komputertomográfia (CT) Röntgenfluoreszcencia (XRF) Röntgenkrisztallográfia Röntgendiffrakció (XRD) Röntgenanalitika Röntgenradiológia, Komputertomográfia (CT) Röntgenfluoreszcencia (XRF) Röntgenkrisztallográfia Röntgendiffrakció (XRD) A röntgensugárzás Felfedezése (1895, W. K. Röntgen, katódsugárcső,

Részletesebben

Orvosi biofizika. 1 Az orvostudomány és a biofizika kapcsolata. Sugárzások a medicinában. gyakorlatok. 1. félév előadásai

Orvosi biofizika. 1 Az orvostudomány és a biofizika kapcsolata. Sugárzások a medicinában. gyakorlatok. 1. félév előadásai Orvosi biofizika 1. félév: 1,5 óra előadás + óra gyakorlat. félév: óra előadás + óra gyakorlat Fizika az orvostudományban SE Biofizikai és Sugárbiológiai Intézet igazgató: Prof. Kellermayer Miklós tanulmányi

Részletesebben

www.biophys.dote.hu jelszó: geta5

www.biophys.dote.hu jelszó: geta5 www.biophys.dote.hu felhasználónév: hallgatok jelszó: geta5 Mi a Biofizika? 1. Fizikai módszerek alkalmazása biológiai rendszerek kutatására Pl. Rtg. diffrakciós kísérletek makromolekulák szerkezetének

Részletesebben

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ) Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok

Részletesebben

Sugárvédelem kurzus fogorvostanhallgatók számra. Töltött részecskék elnyelődése. Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése

Sugárvédelem kurzus fogorvostanhallgatók számra. Töltött részecskék elnyelődése. Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése Sugárvédelem kurzus fogorvostanhallgatók számra 2. Az ionizáló sugárzás és az anyag kölcsönhatása. Fizikai dózisfogalmak és az ionizáló sugárzás mérése Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése

Részletesebben

A röntgensugárzás keltése Fékezési vagy folytonos Rtg sugárzás. Röntgensugárzás. A röntgensugárzás elektromágneses sugárzás

A röntgensugárzás keltése Fékezési vagy folytonos Rtg sugárzás. Röntgensugárzás. A röntgensugárzás elektromágneses sugárzás A röntgensugárzás elektromágneses sugárzás Röntgensugárzás ~3 futballpálya ~3 m ~3 cm 400-700 nm ~30 H-atom átmérő Hullámhossz 10-0.01 nm. Frekvencia 30x10 15-30x10 18 Hz. Energia 120 ev - 120 kev. (petaherz

Részletesebben

Infravörös, spektroszkópia

Infravörös, spektroszkópia Infravörös, Raman és CD spektroszkópia Spektroszkópia Az EM sugárzás abszorbcióján alapszik: látható (leggyakrabban kvantitatív) UV IR (inkább kvalitatív) RAMAN ESR (mikrohullám) NMR (rádióhullám) Fény

Részletesebben

Biofizika tesztkérdések

Biofizika tesztkérdések Biofizika tesztkérdések Egyszerű választás E kérdéstípusban A, B,...-vel jelölt lehetőségek szerepelnek, melyek közül az egyetlen megfelelőt kell kiválasztani. A választ írja a kérdés előtt lévő kockába!

Részletesebben

A röntgendiagnosztika alapjai

A röntgendiagnosztika alapjai A röngtgendiagnosztika alapja: a sugárzás elnyelődése A röntgendiagnosztika alapjai A foton kölcsönhatásának lehetőségei: Compton-szórás Comptonszórás elnyelődés fotoeffektusban fotoeffektus nincs kölcsönhatás

Részletesebben

Biofizika. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? A biológiában és orvostudományban alkalmazott fizikai módszerek tárgyalása

Biofizika. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? A biológiában és orvostudományban alkalmazott fizikai módszerek tárgyalása Biofizika Csik Gabriella Eötvös Loránd kora diákjait tréfásan jellemzi : határozott céllal jön az egyetemre, ügyvéd, politikus vagy orvos akar lenni. Amint az egyetembe lép, kritizálja tanárait, s az egész

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson

Részletesebben