Fizika gyakorlatok, 2. félév. Termodinamika

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Fizika gyakorlatok, 2. félév. Termodinamika"

Átírás

1 Fizika gyakorlatok, 2. félév Termodinamika

2 Tőzvédelmi és munkavédelmi ismeretek Fizika-Automatika Tanszék Somlói út L épület kérem a jegyzıkönyvet aláírni a tanszékre való elsı belépés alkalmával kérem a megjelölt helyeket megtekinteni! Fizika gyakorlatok 2

3 A következı ábrán a tőz esetén használható kijáratok láthatók. Északi irányban tájolt ábra. Sz = szeminárium terem labor = mérések színhelye kulcs = a lezárt kijáratok nyitásához használható kulcsok Fizika gyakorlatok 3

4 1.Lépcsı (feljárat) a Somlói út felé. Egyben bejárat is 2. Lakattal lezárt ablak a laboratóriumban. A kulcs az ablak mellett 3. Lépcsı (lejárat) az udvar felé. A kulcs a titkárságon található Fizika gyakorlatok 4

5 Tőzoltó készülékek Minden kijáratnál találunk tőzoltó készüléket. A biztosító csap kihúzásával a plomba elszakad. Ekkor a fúvókát a tőzre irányítjuk, és megnyomjuk a billentyőt. Az épület besorolása D (mérsékelten tőzveszélyes) a papír és faanyagok miatt. A terembe bevezetett földgáz fokozottan tőz- és robbanásveszélyes anyag. Fizika gyakorlatok 5

6 Elektromos hálózat Tőz, vagy baleset: az asztalon található fém kapcsolók kikapcsolása. Az elkészült huzalozásokat a gyakorlatvezetıvel ellenıriztetni kell Az asztalokon jobboldalt toroid transzformátorok vannak. A vezetékek érintése még alacsony feszültségnél is veszélyes A készülékeket nem szabad a megengedettnél nagyobb feszültségre kapcsolni (hıvezetés, pszichrométer) Fizika gyakorlatok 6

7 Gázvezeték és hálózat Minden laborasztalhoz gázvezetéket építettek. Ezek sárga színőek. Baleset, vagy tőz esetén az olivás csıvégeknél található gázcsapot el kell zárni. Ha a tőz a csaphoz túl közel van, akkor az asztal végén a gáz fıcsapot kell elzárni. A használaton kívüli gázcsapokhoz nem szabad hozzányúlni Fizika gyakorlatok 7

8 A laboratórium kijáratai Mindhárom ajtón át el lehet hagyni a laboratóriumot. A gyakorlatvezetınek tudnia kell arról, ha valaki elhagyja a termet. A kijáratoknál tőzoltó készülékeket helyeztünk el. A két szélsı kijáratnál zuhanyozókat szereltek fel arra az esetre, ha valakinek meggyullad a ruhája. Fizika gyakorlatok 8

9 A gyakorlat menete létszámellenırzés röpzárthelyi az elıkészületi munka meglétének és minıségének ellenırzése a gyakorlat ismertetése hallgatói mérés az órán készített vázlat ellenırzése és aláírása Fizika gyakorlatok 9

10 Jegyzıkönyv elkészítése Beadási határidı: a következı hét Elméleti bevezetı Felhasznált eszközök jegyzéke Körülmények, munkamenet Eredmények táblázata Számítások Ábra, kiértékelés Ellenırzı számítás Az eredmény hitelességének ellenırzése

11 Jegyzıkönyv elkészítése, hibák Hiányzik valamelyik rész A mőszer téves azonosítása A vizsgált anyag téves megjelölése Illogikus okfejtés és sorrend Hiányos táblázat Számítási hiba, hiányzó végeredmény a celziusz fok és a kelvin tévesztése Nem engedélyezett mértékegység Ellenırizetlen végeredmény Fizika gyakorlatok 11

12 Jegyzıkönyv elkészítése Fizikai mennyiségek szabályos jelölése Például: sebesség Jele v Mértékegysége [v]=m/s Mérıszáma {v}=18 Dimenziója dim v=lt -1 Tilos a mértékegységet zárójelbe írni akár táblázatban, akár diagramon! Fizika gyakorlatok 12

13 Mértékegységek jelölése The numerical value can therefore be written as {A} = A / [A], which is a convenient form for use in figures and tables. Thus, to eliminate the possibility of misunderstanding, an axis of a graph or the heading of a column of a table can be labeled t/ C instead of t ( C) or Temperature ( C). Ennél fogva, a félreértések elkerülése végett diagram tengelyfeliratául, vagy táblázatok fejlécében írjuk azt: t/ C; ahelyett, hogy t ( C), vagy hımérséklet ( C) Fizika gyakorlatok 13

14 IUPAC Green Book Fizika gyakorlatok 14

15 Mérési gyakorlatok A félév során csak öt mérést tudunk elvégezni a vizsgán valamennyi mérést ismerni kell! Az archivált régebbi mérési leírások csak tájékoztató jellegőek, nem azokból kell az órára készülni Fizika gyakorlatok 15

16 Oktatási segédanyagok: Termodinamika Fizika gyakorlatok 16

17 Órarend hétfı Kedd 8-10 L1 S1 L6 S L2 S2 L7 S L3 S L4 S L5 S5 Fizika gyakorlatok 17

18 o Feladat: Ellenálláshımérık, termisztorok, és egyéb, hımérséklet-érzékeny eszközök karakterisztikájának mérése o Karakterisztikájuk vagy exponenciális függvénnyel, vagy polinommal közelíthetı o Elterjedten alkalmazzák ipari hımérsékletmérési célokra Fizika gyakorlatok 18

19 Hımérık Hımérıként használható bármely fizikai jelenség, pl. kereszteffektus (ismert pontosságú) Gázhımérı: térfogati hıtágulási együttható Folyadékhımérı: vonalmenti (lineáris) hıtágulási együttható Bimetál: szilárd anyagok (fémek) vonalmenti hıtágulási együtthatója Összsugárzásmérı pirométer Színüket változtató festékek Hımérsékletre lágyuló mőanyagok és persze villamos hımérık Fizika gyakorlatok 19

20 R ( n ) 1+ α t + t t = R α α n R 0 Kezdeti ellenállás valamely célszerően kiválasztott hımérsékleten (leginkább a fagyponton) α 1 ellenállás-hımérsékleti együttható α i magasabb fokú együtthatók t a kezdıpontra számított hımérsékletkülönbség Fizika gyakorlatok 20

21 Ellenállás-hımérık tulajdonságai Az ipar nikkel és platina ellenálláshımérıket használ Nikkel esetén figyelembe kell venni az elsı- és másodfokú együtthatót Platina esetén általában elegendı az elsıfokú tag figyelembevétele tehát lineárisnak tekintjük Fizika gyakorlatok 21

22 Félvezetı ellenállás-hımérık H - R = R0e k B T H az elektronok kicserélıdési entalpiája k B a Boltzman-állandó T a termodinamikai hımérséklet Fizika gyakorlatok 22

23 Svante August Arrhenius E k = A e RT Eredetileg k a reakciósebesség, pl. 1/s mértékegységben. Az A itt preexponenciális együttható (arányos az ütközések számával) Az aktiválási energia H, vagy G szabadentalpia Fizika gyakorlatok 23

24 Arrhenius-típusú egyenletek η = Ae E RT viszkozitás ütközések energiája p R X = Ae = R H RT H kbt 0 e = Ae H RT nyomás párolgáshı ellenállás energiaállandó móltört fagyáshı Fizika gyakorlatok 24

25 Félvezetı ellenállás-hımérık Logaritmikus formában: ln B R = + T ln R 0 termisztornál B az energiaállandó, H/k B Fizika gyakorlatok 25

26 Félvezetı ellenállás-hımérık o Anyaguk: szinterelt fémoxidok keveréke: nióbium-oxid, kobalt-oxid, mangán-oxid o Energiaállandójuk lehet o Készíthetı negatív és pozitív hımérsékleti együtthatójú termisztor is Fizika gyakorlatok 26

27 Termisztor ln B R = + T ln R 0 T = 0 T = 273,15 K T= R= katalógus-adat ln R= ln R 0 B = T ln R 0 R = 0 Fizika gyakorlatok 27

28 Félvezetı ellenállás-hımérık Az adatok ellenırzése a Steinhart Hart összefüggéssel (A, B, C helyett A 0, A 1, A 3 is használatos): 1 = A + B ( ln R) 1 + C( ln R) 3 T Fizika gyakorlatok 28

29 Félvezetı ellenállás-hımérık Termisztor lineáris tengelyekkel ellenállás. ohm hımérséklet helytelen ábra, lineáris léptékezéssel Fizika gyakorlatok 29

30 ! Félvezetı ellenállás-hımérık, logaritmikus Termisztor jelleggörbéje 300k 200k 100k 50k C ellenállás logaritmusa hımérséklet reciproka Fizika gyakorlatok 30

31 Termisztoros mérés kiértékelése hımérséklet, C ellenállás, kohm 334, , ,2 68,7 57,3 Fizika gyakorlatok 31

32 Termisztoros mérés kiértékelése ellenállás logaritmusa 12,72 11,67 11,49 11,30 11,14 10,96 ellenállás, kohm 334, , ,2 68,7 57,3 Fizika gyakorlatok 32

33 Termisztoros mérés kiértékelése Az ábrázolandó értékek 10,96 és 12,72 közé esnek. Az ábrára tehát a 10 és a 13 közé esı értékek kerülnek. Ahhoz, hogy az ábra 15 cm magas legyen, 5-ös szorzót használunk. A 10 a nullához kerül. A 13 ennél 3-mal több, tehát 5*3= 15 cm Fizika gyakorlatok 33

34 Termisztoros mérés kiértékelése ellenállás, kohm logaritmusa logaritmus különbsége helyzet, cm 442, ,002 12,72 2,72 13,59 117,3 11,67 1,67 8, ,49 1,49 7,46 81,2 11,30 1,30 6,52 68,7 11,14 1,14 5,69 57,3 10,96 0,96 4,78 22, Fizika gyakorlatok 34

35 Termisztoros mérés kiértékelése, feliratozás ellenállás, kohm logaritmusa logaritmus különbsége helyzet, cm 50 10,82 0,82 4, ,51 1,52 7, ,92 1,92 9, ,21 2,21 11, ,43 2,43 12, ,61 2,61 13, ,77 2,77 13,83 Fizika gyakorlatok 35

36 Termisztoros mérés kiértékelése C hımérséklet K 273,15 298,15 303,15 308,15 313,15 318,15 reciproka K -1 0, , , , , , Fizika gyakorlatok 36

37 Termisztoros mérés kiértékelése hımérséklet K 270,27 273,15 298,15 303,15 308,15 313,15 318,15 322,58 reciproka differencia K -1 K -1 0, , ,00 0, , ,22 0, , ,08 0, , ,97 0, , ,90 0, , ,87 0, , ,86 0, , helye cm 0,00 Fizika gyakorlatok 37

38 Félvezetı ellenállás-hımérık, logaritmikus Termisztor jelleggörbéje 300k 200k 100k 50k C ellenállás logaritmusa hımérséklet reciproka Fizika gyakorlatok 38

39 Hıelemek mérése U = α α α 2 1 Τ + 2 T + 3 T 3... Fizika gyakorlatok 39

40 Hıelemek mérése t C irodalmi mv 0,391 0,589 0,790 0,992 1,196 saját mérés mv 0,4 0,6 0,9 1,0 Fizika gyakorlatok 40

41 Hıelemek mérése Réz-konstantán hıelem termofeszültség, mv 3,5 3 2,5 2 1,5 1 0, hımérséklet, C Fizika gyakorlatok 41

42 Fajlagos hıkapacitás mérése a kalorimetria alapegyenlete Q v =Q i a víz által leadott hı Q=c v m v (t v -t) a vizsgált anyag által felvett hı Q=c i m i (t i -t) Fizika gyakorlatok 42

43 Fajlagos hıkapacitás mérése a kaloriméter annyi hıt vesz fel, mint m k tömegő víz. Ez a kaloriméter vízérték t 1 hımérséklető víz betöltése esetén a víz és a kaloriméter együttes hıfelvétele: Q 1 =c v (m v +m k )(t 1 -t) t 2 hımérséklető m 2 tömegő meleg víz hıleadása: Q 2 =c v m 2 (t 2 -t) Fizika gyakorlatok 43

44 Fajlagos hıkapacitás mérése a hideg és meleg víz adataiból a kaloriméter vízérték (szokásos mértékegysége: g) m k = m 2 t 2 t t t 1 m 1 Fizika gyakorlatok 44

45 Fajlagos hıkapacitás mérése A számításnál az E F hımérséklet-különbséget vesszük figyelembe Fizika gyakorlatok 45

46 Fajlagos hıkapacitás mérése a vízérték ismeretében az ismeretlen hıkapacitás: c i = c v m v + m i m k t v t t t i Fizika gyakorlatok 46

47 Mérés Roloff készülékkel A forrás nyomása és hımérséklete közötti összefüggést a Clausius Clapeyron egyenlet írja le ln r 1 p = m + R T m B r m a moláris párolgáshı R m az általános gázállandó Fizika gyakorlatok 47

48 Mérés Roloff készülékkel Történelmi okokból a tízes alapú logaritmust használjuk: lg r 1 p = m + 2,3R T m B vagy lg 1 p = A + T B Fizika gyakorlatok 48

49 Mérés Roloff készülékkel Az eredményt ellenırizzük az Antoineállapotegyenlet szerint (víz esetén A=23,1964, B=3816,44, C=-46,13 K): B ln p = A T + C Fizika gyakorlatok 49

50 Mérés Roloff készülékkel Roloff, lineáris tengelyek nyomás, Pa hımérséklet, C Fizika gyakorlatok 50

51 Mérés Roloff készülékkel Hımérséklet, C E E E E E E E E-03 1/T, 1/K Fizika gyakorlatok 51

52 Néhány magyarázat A következı két ábra a fázisátalakulások jellegét újszerően ábrázolja (kiegészítés a Roloff-kísérlethez és a fagyáspontcsökkenéshez) Fizika gyakorlatok 52

53 Vaporising= párolgás, Sublimation=szublimáció (a nyomás bárban értendı) Fizika gyakorlatok 53

54 Kompresszibilitás a redukált nyomás függvényében (paraméter: a redukált hımérséklet) Fizika gyakorlatok 54

55 Mérés Roloff készülékkel Az ismertetett képletekbıl számítsuk ki a moláris és a specifikus párolgáshıt, és ellenırizzük táblázatból A = r m 2,3R m Fizika gyakorlatok 55

56 Nedves levegı állapotváltozása Állítsunk a termosztáton egyre magosabb hımérsékletet. Minden esetben olvassuk le az Assman-féle aspirációs pszichrométer által mutatott hımérsékletet A keresett pont a száraz hımérı izotermáján van. A nedves hımérı által mutatott légállapot a telítési görbén van. Fizika gyakorlatok 56

57 Nedves levegı állapotváltozása Fizika gyakorlatok 57

58 Nedves levegı állapotváltozása A nedves hımérı pontjától húzzunk az entalpia-vonalakkal párhuzamos vonalat addig, amíg el nem éri a száraz hımérı izotermáját. Ott van a keresett légállapot. Több termosztát-beállításnál több mérési pontot kapunk. Ezeket összekötve egy állapotváltozás vonala rajzolódik ki. Ezt meg kell rajzolni és be kell adni a mérési jegyzıkönyvvel Fizika gyakorlatok 58

59 Nedves levegı állapotváltozása Fizika gyakorlatok 59

60 Fizika gyakorlatok 60

61 Nedves levegı állapotváltozása Feladat: adatok leolvasása a pszichrométerrıl adatok kiolvasása a digitális adatrögzítıbıl relatív nedvességtartalom harmatpont hımérséklet az adatok kiértékelése és ábrázolása Fizika gyakorlatok 61

62 Fagyáspont csökkenés mérése Fizika gyakorlatok 62

63 Fizika gyakorlatok 63 Fagyáspont csökkenés mérése

64 Fagyáspont csökkenés mérése Valahol itt lesz a mérés eredménye Fizika gyakorlatok 64

65 Fagyáspont csökkenés mérése Állandó hıbevezetésnél a hımérséklet mindaddig emelkedik, amíg a fagyáspontot el nem értük. A fagyáspontot elérve folyadék és szilárd anyag egyaránt jelen van. Ekkor a hımérséklet emelkedése lelassul, mert nemcsak a hıkapacitás, hanem a fázisátalakulás ellenében is történt hıbevezetés. Fizika gyakorlatok 65

66 Fagyáspont csökkenés mérése Készítsük el az olvadás idıfüggvényét! Fizika gyakorlatok 66

67 Fagyáspont csökkenés mérése ln X = H R 1 T 1 T 0 X az oldószer móltörtje az oldott anyagban R a gázállandó T 0 a tiszta oldószer fagyáspontja Fizika gyakorlatok 67

68 Fagyáspont csökkenés mérése X = oldószer oldószer + oldott anyag, mol mol X az oldószer móltörtje Fizika gyakorlatok 68

69 Fagyáspont csökkenés mérése T = E x k E k a krioszkópos állandó x az oldott anyag mólaránya az oldószerben Fizika gyakorlatok 69

70 Fagyáspont csökkenés mérése x = oldott anyag oldószer, mol mol Fizika gyakorlatok 70

71 Fagyáspont csökkenés mérése RT 2 E k = H sl E k a krioszkópos állandó T a tiszta oldószer fagyáspontja H sl a szilárd folyadék átalakulás hıje (a fagyáshı) Fizika gyakorlatok 71

72 A fagyáspont csökkenést sóoldatokon mérjük Összetétel: a vizsgálni kívánt komponens (értékes komponens) mennyiségét elosztjuk az egész elegy (oldat) mennyiségével A mennyiség mérhetı a komponens tömegével, kg térfogatával, m 3 anyagmennyiségével, mol darabszámával, db Fizika gyakorlatok 72

73 A gyakoribb összetétel mérı mennyiségek: tömegtört térfogattört anyagmennyiség-koncentráció Sőrőség: a komponens tömege osztva a komponens térfogatával, kg/m 3 Tömegkoncentráció: a komponens tömege osztva az egész elegy térfogatával, kg/m 3 Fizika gyakorlatok 73

74 Hogy is van ez? 300kg 0,3kg 0,3kg 300g = = = = 1m 3 1l 1000ml 1000ml 30g 100ml Az nem baj, hogy háromszáz helyett azt mondják, hogy harminc százalék. A baj az, hogy ugyanezt mondják a tömegtört esetén is! 300kg 1000kg = 0,3kg 1kg = 0,3kg 1000g = 300g 1000g = 30g 100g Végezzük el az átszámításokat a fagyáspont méréséhez használt oldatoknál! Fizika gyakorlatok 74

75 Fagyáspont csökkenés mérése Klasszikus: Raoult-koncentráció: 1,862 K mol/kg K kg 103,358 0, = 1,862 mol/mol mol K mol/kg 192 K mol/mol, figyelembe véve a disszociációt Fizika gyakorlatok 75

76 Hıvezetési együttható mérése Adott a térben az az irány, amelyben maximális a t 2 -t 1 -bıl számított grádiens. Az erre merıleges A keresztmetszeten áthaladó hıáramból számítjuk a hıáramsőrőséget Fizika gyakorlatok 76

77 Hıvezetési együttható mérése A hıáramsőrőség hagyományos jelölése az elsı félévben megszokott jelölési móddal: q = Φ A j Q = J Q A A a keresztmetszet, amelyben a hı áramlik Fizika gyakorlatok 77

78 Hıvezetési együttható mérése a hımérsékleti grádiens (a hıáramlás irányában l távolságon mérjük a hımérsékletkülönbséget) T T gradt = 2 1 l Fizika gyakorlatok 78

79 Hıvezetési együttható mérése a hıáramsőrőség és a hımérsékleti grádiens ismeretében a hıvezetési együttható már számítható q = λ gradt Fizika gyakorlatok 79

80 Hıvezetési együttható mérése a sőrőség és a hıkapacitás ismeretében kiszámítjuk a hımérséklet vezetési együtthatót: a = ρ λ c p Fizika gyakorlatok 80

81 mérés Fitch módszerével Fizika gyakorlatok 81

82 mérés Fitch módszerével λ minta A t 1 l t = c Cu m Cu dt dτ baloldalt a mintán áthaladó; jobboldalt a réztömb hıkapacitásában elnyelt hımennyiség; feltételezzük, hogy egyenlıek (hıszigetelt térben mérjük) Fizika gyakorlatok 82

83 mérés Fitch módszerével Integrálás után adódik: ln t t 0 t t 1 1 = l λa c m Cu Cu τ a képletekben t a hımérséklet, görög τ az idı feladat: ábrázolni a logaritmusos tagot az idı függvényében t ln t 0 t t 1 1 Fizika gyakorlatok 83

84 Fizika gyakorlatok 84

Halmazállapot-változások vizsgálata ( )

Halmazállapot-változások vizsgálata ( ) Halmazállapot-változások vizsgálata Eddigi tanulmányaik során a szilárd, folyékony és légnemő, valamint a plazma állapottal találkoztak. Ezen halmazállapotok mindegyikében más és más összefüggés áll fenn

Részletesebben

Termisztor és termoelem jelleggörbéjének felvétele

Termisztor és termoelem jelleggörbéjének felvétele ermisztor és termoelem jelleggörbéjének felvétele Hımérıként használható bármely fizikai jelenség, pl. kereszteffektus (ismert pontosságú) Gázhımérı: térfogati hıtágulási együttható Folyadékhımérı: vonalmenti

Részletesebben

A nátrium-klorid oldat összetétele. Néhány megjegyzés az összetételi arány méréséről és számításáról

A nátrium-klorid oldat összetétele. Néhány megjegyzés az összetételi arány méréséről és számításáról A nátrium-klorid oldat összetétele Néhány megjegyzés az összetételi arány méréséről és számításáról Mérés areométerrel kiértékelés lineáris regresszióval αραιός = híg Sodium-chloride solution at 20 Celsius

Részletesebben

Fizika gyakorlatok,1. félév. Fizika

Fizika gyakorlatok,1. félév. Fizika Fizika gyakorlatok,1. félév Fizika Fizika részterületei az 1. félévben o Kinetika, kinematika, dinamika o Hidrosztatika, hidrodinamika, aerosztatika o Szilárdságtan, reológia o Fénytan, optika, színtan

Részletesebben

5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével

5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5.1. Átismétlendő anyag 1. Adszorpció (előadás) 2. Langmuir-izoterma (előadás) 3. Spektrofotometria és Lambert Beer-törvény

Részletesebben

Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)

Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n) Általános kémia képletgyűjtemény (Vizsgára megkövetelt egyenletek a szimbólumok értelmezésével, illetve az egyenletek megfelelő alkalmazása is követelmény) Atomszerkezet Tömegszám (A) A = Z + N Rendszám

Részletesebben

5. gy. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL

5. gy. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL 5. gy. VIZES OLDAOK VISZKOZIÁSÁNAK MÉRÉSE OSWALD-FENSKE-FÉLE VISZKOZIMÉERREL A fluid közegek jellemző anyagi tulajdonsága a viszkozitás, mely erősen befolyásolhatja a bennük lejátszódó reakciók sebességét,

Részletesebben

Általános Kémia Gyakorlat II. zárthelyi október 10. A1

Általános Kémia Gyakorlat II. zárthelyi október 10. A1 2008. október 10. A1 Rendezze az alábbi egyenleteket! (5 2p) 3 H 3 PO 3 + 2 HNO 3 = 3 H 3 PO 4 + 2 NO + 1 H 2 O 2 MnO 4 + 5 H 2 O 2 + 6 H + = 2 Mn 2+ + 5 O 2 + 8 H 2 O 1 Hg + 4 HNO 3 = 1 Hg(NO 3 ) 2 +

Részletesebben

Labor elızetes feladatok

Labor elızetes feladatok Oldatkészítés szilárd anyagból és folyadékok hígítása. Tömegmérés. Eszközök és mérések pontosságának vizsgálata. Név: Neptun kód: mérıhely: Labor elızetes feladatok 101 102 103 104 105 konyhasó nátrium-acetát

Részletesebben

Mérésadatgyűjtés, jelfeldolgozás.

Mérésadatgyűjtés, jelfeldolgozás. Mérésadatgyűjtés, jelfeldolgozás. Nem villamos jelek mérésének folyamatai. Érzékelők, jelátalakítók felosztása. Passzív jelátalakítók. 1.Ellenállás változáson alapuló jelátalakítók -nyúlásmérő ellenállások

Részletesebben

Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata KLASSZIKUS FIZIKA LABORATÓRIUM 6. MÉRÉS Fázisátalakulások vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. szeptember 28. Szerda délelőtti csoport 1. A mérés célja A mérés

Részletesebben

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III. Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak

Részletesebben

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor

Részletesebben

Termoelektromos hűtőelemek vizsgálata

Termoelektromos hűtőelemek vizsgálata KLASSZIKUS FIZIKA LABORATÓRIUM 4. MÉRÉS Termoelektromos hűtőelemek vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 30. Szerda délelőtti csoport 1. A mérés célja

Részletesebben

ROMAVERSITAS 2017/2018. tanév. Kémia. Számítási feladatok (oldatok összetétele) 4. alkalom. Összeállította: Balázs Katalin kémia vezetőtanár

ROMAVERSITAS 2017/2018. tanév. Kémia. Számítási feladatok (oldatok összetétele) 4. alkalom. Összeállította: Balázs Katalin kémia vezetőtanár ROMAVERSITAS 2017/2018. tanév Kémia Számítási feladatok (oldatok összetétele) 4. alkalom Összeállította: Balázs Katalin kémia vezetőtanár 1 Számítási feladatok OLDATOK ÖSSZETÉTELE Összeállította: Balázs

Részletesebben

2011/2012 tavaszi félév 2. óra. Tananyag:

2011/2012 tavaszi félév 2. óra. Tananyag: 2011/2012 tavaszi félév 2. óra Tananyag: 2. Gázelegyek, gőztenzió Gázelegyek összetétele, térfogattört és móltört egyezősége Gázelegyek sűrűsége Relatív sűrűség Parciális nyomás és térfogat, Dalton-törvény,

Részletesebben

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető . Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék

Részletesebben

Kiegészítő tudnivalók a fizikai mérésekhez

Kiegészítő tudnivalók a fizikai mérésekhez Kiegészítő tudnivalók a fizikai mérésekhez A mérési gyakorlatokra való felkészüléshez a Fizika Gyakorlatok c. jegyzet használható (Nagy P. Fizika gyakorlatok az általános és gazdasági agrármérnök hallgatók

Részletesebben

Oldatkészítés, koncentráció fotometriás meghatározása.

Oldatkészítés, koncentráció fotometriás meghatározása. Oldatkészítés, koncentráció fotometriás meghatározása. A laboratóriumban nélkülözhetetlen a pontos oldatok készítése, felhasználása. Pontos oldat készíthetı beméréssel tiszta, nem illékony, pontosan ismert

Részletesebben

MŰSZAKI TERMODINAMIKA 1. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS

MŰSZAKI TERMODINAMIKA 1. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS MŰSZAKI TERMODINAMIKA. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS 207/8/2 MT0A Munkaidő: 90 perc NÉV:... NEPTUN KÓD: TEREM HELYSZÁM:... DÁTUM:... KÉPZÉS Energetikai mérnök BSc Gépészmérnök BSc JELÖLJE MEG

Részletesebben

Ellenállásmérés Wheatstone híddal

Ellenállásmérés Wheatstone híddal Ellenállásmérés Wheatstone híddal A nagypontosságú elektromos ellenállásmérésre a gyakorlatban sokszor szükség van. Nagyon sok esetben nem elektromos mennyiségek mérését is visszavezethetjük ellenállásmérésre.

Részletesebben

TERMODINAMIKAI EGYENSÚLYOK. heterogén és homogén. HETEROGÉN EGYENSÚLYOK: - fázisegyensúly. vezérlelv:

TERMODINAMIKAI EGYENSÚLYOK. heterogén és homogén. HETEROGÉN EGYENSÚLYOK: - fázisegyensúly. vezérlelv: TERMODINAMIKAI EGYENSÚLYOK heterogén és homogén HETEROGÉN EGYENSÚLYOK: - fázisegyensúly vezérlelv: Gibbs-féle fázisszabály: Sz = K + 2 F Sz: a rendszer szabadsági fokainak megfelel számú intenzív TD-i

Részletesebben

FELADATOK A DINAMIKUS METEOROLÓGIÁBÓL 1. A 2 m-es szinten végzett standard meteorológiai mérések szerint a Földön valaha mért második legmagasabb hőmérséklet 57,8 C. Ezt San Luis-ban (Mexikó) 1933 augusztus

Részletesebben

5. Laboratóriumi gyakorlat

5. Laboratóriumi gyakorlat 5. Laboratóriumi gyakorlat HETEROGÉN KÉMIAI REAKCIÓ SEBESSÉGÉNEK VIZSGÁLATA A CO 2 -nak vízben történő oldódása és az azt követő egyensúlyra vezető kémiai reakció az alábbi reakcióegyenlettel írható le:

Részletesebben

Az SI alapegysegei http://web.inc.bme.hu/fpf/kemszam/alapegysegek.html 1 of 2 10/23/2008 10:34 PM Az SI alapegységei 1. 2. 3. 4. 5. 6. 7. A hosszúság mértékegysége a méter (m). A méter a kripton-86-atom

Részletesebben

Légköri termodinamika

Légköri termodinamika Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a

Részletesebben

Az α értékének változtatásakor tanulmányozzuk az y-x görbe alakját. 2 ahol K=10

Az α értékének változtatásakor tanulmányozzuk az y-x görbe alakját. 2 ahol K=10 9.4. Táblázatkezelés.. Folyadék gőz egyensúly kétkomponensű rendszerben Az illékonyabb komponens koncentrációja (móltörtje) nagyobb a gőzfázisban, mint a folyadékfázisban. Móltört a folyadékfázisban x;

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata Klasszikus Fizika Laboratórium VI.mérés Fázisátalakulások vizsgálata Mérést végezte: Vanó Lilla VALTAAT.ELTE Mérés időpontja: 2012.10.18.. 1. Mérés leírása A mérés során egy adott minta viselkedését vizsgáljuk

Részletesebben

100 o C víz forrása 212 o F 0 o C víz olvadása 32 o F T F = 9/5 T C Példák: 37 o C (láz) = 98,6 o F 40 o C = 40 o F 20 o C = 68 o F

100 o C víz forrása 212 o F 0 o C víz olvadása 32 o F T F = 9/5 T C Példák: 37 o C (láz) = 98,6 o F 40 o C = 40 o F 20 o C = 68 o F III. HőTAN 1. A HŐMÉSÉKLET ÉS A HŐ Látni fogjuk: a mechanika fogalmai jelennek meg mikroszkópikus szinten 1.1. A hőmérséklet Mindennapi általános tapasztalatunk van. Termikus egyensúly a résztvevők hőmérséklete

Részletesebben

FIZIKA. Ma igazán belemelegszünk! (hőtan) Dr. Seres István

FIZIKA. Ma igazán belemelegszünk! (hőtan) Dr. Seres István FIZIKA Ma igazán belemelegszünk! (hőtan) Dr. Seres István Hőtágulás, kalorimetria, Halmazállapot változások fft.szie.hu 2 Seres.Istvan@gek.szi.hu Lineáris (vonalmenti) hőtágulás L L L 1 t L L0 t L 0 0

Részletesebben

NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS. Mérési feladatok

NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS. Mérési feladatok Hidrodinamikai Rendszerek Tanszék Készítette:... kurzus Elfogadva: Dátum:...év...hó...nap NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS Mérési feladatok 1. Csővezetékben áramló levegő nyomásveszteségének mérése U-csöves

Részletesebben

1. Kalorimetria. Fizikai-kémiai gyakorlatok I. 1. Bevezetés

1. Kalorimetria. Fizikai-kémiai gyakorlatok I. 1. Bevezetés Fizikai-kémiai gyakorlatok I. 1 1. Kalorimetria 1. Bevezetés A fizikai és kémiai folyamatokat kísérı energiaváltozások több féle képpen nyilvánulhatnak meg. E folyamatok nyomonkövetése viszonylag egyszerû

Részletesebben

Kémiai reakciók sebessége

Kémiai reakciók sebessége Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 151 ÉRETTSÉGI VIZSGA 015. május 18. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útmutató utasításai szerint,

Részletesebben

Értékes jegyek fogalma és használata. Forrás: Dr. Bajnóczy Gábor, BME, Vegyészmérnöki és Biomérnöki Kar Kémiai és Környezeti Folyamatmérnöki Tanszék

Értékes jegyek fogalma és használata. Forrás: Dr. Bajnóczy Gábor, BME, Vegyészmérnöki és Biomérnöki Kar Kémiai és Környezeti Folyamatmérnöki Tanszék Értékes jegyek fogalma és használata Forrás: Dr. Bajnóczy Gábor, BME, Vegyészmérnöki és Biomérnöki Kar Kémiai és Környezeti Folyamatmérnöki Tanszék Értékes jegyek száma Az értékes jegyek számának meghatározását

Részletesebben

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató Oktatási Hivatal A 06/07 tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I KATEGÓRIA Javítási-értékelési útmutató feladat Három azonos méretű, pontszerűnek tekinthető, m, m, m tömegű

Részletesebben

Ón-ólom rendszer fázisdiagramjának megszerkesztése lehűlési görbék alapján

Ón-ólom rendszer fázisdiagramjának megszerkesztése lehűlési görbék alapján Ón-ólom rendszer fázisdiagramjának megszerkesztése lehűlési görbék alapján Készítette: Zsélyné Ujvári Mária, Szalma József; 2012 Előadó: Zsély István Gyula, Javított valtozat 2016 Laborelőkészítő előadás,

Részletesebben

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június 1. Egyenes vonalú mozgások kinematikája mozgásokra jellemzı fizikai mennyiségek és mértékegységeik. átlagsebesség egyenes vonalú egyenletes mozgás egyenes vonalú egyenletesen változó mozgás mozgásokra

Részletesebben

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom: 1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:

Részletesebben

Vízóra minıségellenırzés H4

Vízóra minıségellenırzés H4 Vízóra minıségellenırzés H4 1. A vízórák A háztartási vízfogyasztásmérık tulajdonképpen kis turbinák: a mérın átáramló víz egy lapátozással ellátott kereket forgat meg. A kerék által megtett fordulatok

Részletesebben

Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata Fázisátalakulások vizsgálata Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/12/2011 Beadás ideje: 10/19/2011 1 1. A mérés rövid leírása Mérésem

Részletesebben

Zener dióda karakterisztikáinak hőmérsékletfüggése

Zener dióda karakterisztikáinak hőmérsékletfüggése A mérés célja 18. mérés Zener dióda karakterisztikáinak hőmérsékletfüggése A Zener dióda nyitóirányú és záróirányú karakterisztikájának, a karakterisztika hőmérsékletfüggésének vizsgálata, a Zener dióda

Részletesebben

TÉRFOGATÁRAM MÉRÉSE. Mérési feladatok

TÉRFOGATÁRAM MÉRÉSE. Mérési feladatok Készítette:....kurzus Dátum:...év...hó...nap TÉRFOGATÁRAM MÉRÉSE Mérési feladatok 1. Csővezetékben áramló levegő térfogatáramának mérése mérőperemmel 2. Csővezetékben áramló levegő térfogatáramának mérése

Részletesebben

Modellkísérlet szivattyús tározós erőmű hatásfokának meghatározására

Modellkísérlet szivattyús tározós erőmű hatásfokának meghatározására Budapesti Műszaki és Gazdaságtudományi Egyetem Nukleáris Technikai Intézet Hallgatói laboratóriumi gyakorlat Modellkísérlet szivattyús tározós erőmű hatásfokának meghatározására Mintajegyzőkönyv Készítette:

Részletesebben

1. feladat Összesen: 18 pont. 2. feladat Összesen: 9 pont

1. feladat Összesen: 18 pont. 2. feladat Összesen: 9 pont 1. feladat Összesen: 18 pont Különböző anyagok vízzel való kölcsönhatását vizsgáljuk. Töltse ki a táblázatot! második oszlopba írja, hogy oldódik-e vagy nem oldódik vízben az anyag, illetve ha reagál,

Részletesebben

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,

Részletesebben

Hőmérséklet mérése Termisztor és termoelem hitelesítése

Hőmérséklet mérése Termisztor és termoelem hitelesítése 1 Hőmérséklet mérése Termisztor és termoelem hitelesítése Mit nevezünk hőmérsékletnek? A hőmérséklet fogalma hőérzetünkből származik: valamit melegebbnek, hűvösebbnek érzünk tapintással. A hőmérséklet

Részletesebben

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete Fizika feladatok 2014. november 28. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-23) Határozzuk meg egy 20 cm hosszú, 4 cm átmérőjű hengeres vörösréz

Részletesebben

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI II. Ismerjük fel, hogy többkomponens fázisegyensúlyokban a folyadék fázisnak kitüntetett szerepe van!

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI II. Ismerjük fel, hogy többkomponens fázisegyensúlyokban a folyadék fázisnak kitüntetett szerepe van! TÖKOMPONENS RENDSZEREK FÁZISEGYENSÚLYI II Ismerjük fel hogy többkomonens fázisegyensúlyokban a folyadék fázisnak kitüntetett szeree van! Eddig: egymásban korátlanul oldódó folyadékok folyadék-gz egyensúlyai

Részletesebben

Energetikai Gépek és Rendszerek Tanszék. Gázmotor mérési segédlet

Energetikai Gépek és Rendszerek Tanszék. Gázmotor mérési segédlet Energetikai Gépek és Rendszerek Tanszék Gázmotor mérési segédlet 2009 A MÉRÉSEN VALÓ RÉSZVÉTEL FELTÉTELEI, BALESETVÉDELEM A mérés során érvényesek a laborbevezetın elhangzott általános tőz és munkavédelmi

Részletesebben

9. évfolyam I. félév 1. dolgozat A csoport

9. évfolyam I. félév 1. dolgozat A csoport 9. évfolyam I. félév 1. dolgozat A csoport 1. A tudományos módszer használata során melyik lépés történik előbb, a kísérletezés vagy a hipotézis felállítása?... 2. Egészítsd ki az alábbi laboratóriumi

Részletesebben

25/1. Stacionárius és tranziens megoldás. Kezdeti és végérték tétel.

25/1. Stacionárius és tranziens megoldás. Kezdeti és végérték tétel. 25/1. Stacionárius és tranziens megoldás. Kezdeti és végérték tétel. A gerjesztı jelek hálózatba történı be- vagy kikapcsolása után átmeneti (tranziens) jelenség játszódik le. Az állandósult (stacionárius)

Részletesebben

A Laboratórium tevékenységi köre:

A Laboratórium tevékenységi köre: Budapesti Mőszaki és Gazdaságtudományi Egyetem Építészmérnöki Kar Épületenergetikai és Épületgépészeti Tanszék Hıfizikai Laboratórium Cím: 1111 Mőegyetem rkp. 3. 3.em. 95. Tel.: +36 1 463-1331 Web: http://www.hofizlab.bme.hu

Részletesebben

DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK MŰSZAKI MECHANIKA II. HÁZIFELADAT

DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK MŰSZAKI MECHANIKA II. HÁZIFELADAT DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK MŰSZAKI MECHANIKA II. HÁZIFELADAT 2013 Feladat: Adott az ábrán látható kéttámaszú tartó, amely melegen hengerelt I idomacélokból és melegen hengerelt

Részletesebben

SZÁMÍTÁSOS FELADATOK

SZÁMÍTÁSOS FELADATOK 2015 SZÁMÍTÁSOS FELADATOK A következő négy feladatot tetszőleges sorrendben oldhatod meg, de minden feladat megoldását külön lapra írd! Csak a kiosztott, számozott lapokon dolgozhatsz. Az eredmény puszta

Részletesebben

3. Az Sn-Pb ötvözetek termikus analízise, fázisdiagram megszerkesztése. Előkészítő előadás

3. Az Sn-Pb ötvözetek termikus analízise, fázisdiagram megszerkesztése. Előkészítő előadás 3. Az Sn-Pb ötvözetek termikus analízise, fázisdiagram megszerkesztése. Előkészítő előadás 2018.02.05. A gyakorlat célja Ismerkedés a Fizikai Kémia II. laboratóriumi gyakorlatok légkörével A jegyzőkönyv

Részletesebben

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése KLASSZIKUS FIZIKA LABORATÓRIUM 7. MÉRÉS Mágneses szuszceptibilitás mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 5. Szerda délelőtti csoport 1. A mérés célja Az

Részletesebben

Allotróp módosulatok

Allotróp módosulatok Allotróp módosulatok Egy elem azonos halmazállapotú, de eltérő molekula- vagy kristályszerkezetű változatai. Created by Michael Ströck (mstroeck) CC BY-SA 3.0 A szén allotróp módosulatai: a) Gyémánt b)

Részletesebben

VEGYÉSZ ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

VEGYÉSZ ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Vegyész ismeretek emelt szint 1712 ÉRETTSÉGI VIZSGA 2019. május 15. VEGYÉSZ ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Útmutató a vizsgázók teljesítményének

Részletesebben

FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 1712 ÉRETTSÉGI VIZSGA 2017. május 22. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útmutató utasításai szerint, jól

Részletesebben

Modern Fizika Labor. 2. Elemi töltés meghatározása

Modern Fizika Labor. 2. Elemi töltés meghatározása Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely

Részletesebben

V átlag = (V 1 + V 2 +V 3 )/3. A szórás V = ((V átlag -V 1 ) 2 + ((V átlag -V 2 ) 2 ((V átlag -V 3 ) 2 ) 0,5 / 3

V átlag = (V 1 + V 2 +V 3 )/3. A szórás V = ((V átlag -V 1 ) 2 + ((V átlag -V 2 ) 2 ((V átlag -V 3 ) 2 ) 0,5 / 3 5. gyakorlat. Tömegmérés, térfogatmérés, pipettázás gyakorlása tömegméréssel kombinálva. A mérési eredmények megadása. Sóoldat sőrőségének meghatározása, koncentrációjának megadása a mért sőrőség alapján.

Részletesebben

Természetvédő 1., 3. csoport tervezett időbeosztás

Természetvédő 1., 3. csoport tervezett időbeosztás Természetvédő 1., 3. csoport tervezett időbeosztás 3. ciklus: 2012. január 05. Elektro-analitika elmélet. 2012. január 12. Titrimetria elmélet 2012. január 19. március 01. A ciklus mérései: 1. ph-mérés,

Részletesebben

Folyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel

Folyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel Folyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel Név: Neptun kód: _ mérőhely: _ Labor előzetes feladatok 20 C-on különböző töménységű ecetsav-oldatok sűrűségét megmérve az

Részletesebben

Hőmérséklet mérése Termisztor és termoelem hitelesítése

Hőmérséklet mérése Termisztor és termoelem hitelesítése Hőmérséklet mérése Termisztor és termoelem hitelesítése Mit nevezünk hőmérsékletnek? A hőmérséklet fogalma hőérzetünkből származik: valamit melegebbnek, hűvösebbnek érzünk tapintással. A hőmérséklet fizikai

Részletesebben

Feladatlap X. osztály

Feladatlap X. osztály Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

1. Feladatok a termodinamika tárgyköréből

1. Feladatok a termodinamika tárgyköréből . Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással.. Feladat: (HN 9A-5) Egy épület téglafalának mérete: 4 m 0 m és, a fal 5 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi

Részletesebben

Termikus interface anyag teszter szimulációja MATLAB-ban

Termikus interface anyag teszter szimulációja MATLAB-ban Termikus interface anyag teszter szimulációja MATLAB-ban Név: Somlay Gergely A feladat célkitőzése Termikus interface anyag vizsgálatára alkalmas elrendezés 2D-s termikus szimulációja véges differencia

Részletesebben

Az éjszakai rovarok repüléséről

Az éjszakai rovarok repüléséről Erről ezt olvashatjuk [ ] - ben: Az éjszakai rovarok repüléséről Az a kijelentés, miszerint a repülés pályája logaritmikus spirális, a következőképpen igazolható [ 2 ].. ábra Az állandó v nagyságú sebességgel

Részletesebben

Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz

Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz A házi feladatok beadhatóak vagy papír alapon (ez a preferált), vagy e-mail formájában is az rkinhazi@gmail.com címre. E-mail esetén ügyeljetek a

Részletesebben

17/1. Négypólusok átviteli függvényének ábrázolása. Nyquist diagram.

17/1. Négypólusok átviteli függvényének ábrázolása. Nyquist diagram. 7/. Négypólusok átviteli függvényének ábrázolása. Nyquist diagram. A szinuszos áramú hálózatok vizsgálatánál gyakran alkalmazunk különbözı komplex átviteli függvényeket. Végezzük ezt a hálózat valamilyen

Részletesebben

AZ ALUMINUM KORRÓZIÓJÁNAK VIZSGÁLATA LÚGOS KÖZEGBEN

AZ ALUMINUM KORRÓZIÓJÁNAK VIZSGÁLATA LÚGOS KÖZEGBEN Laboratóriumi gyakorlat AZ ALUMINUM KORRÓZIÓJÁNAK VIZSGÁLATA LÚGOS KÖZEGBEN Az alumínium - mivel tipikusan amfoter sajátságú elem - mind savakban, mind pedig lúgokban H 2 fejldés közben oldódik. A fémoldódási

Részletesebben

A levegő termodinamikája

A levegő termodinamikája A levegő termodinamikája A nedves levegő tulajdonságai Összeállította dr. Zana János, 2004 (módosítva 2014) Richard Mollier A levegő termodinamikája 2 Richard Mollier 1863 november 30 Trieszt, Ausztria

Részletesebben

Spontaneitás, entrópia

Spontaneitás, entrópia Spontaneitás, entrópia 6-1 Spontán folyamat 6-2 Entrópia 6-3 Az entrópia kiszámítása 6-4 Spontán folyamat: a termodinamika második főtétele 6-5 Standard szabadentalpia változás, ΔG 6-6 Szabadentalpia változás

Részletesebben

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 051 ÉRETTSÉGI VIZSGA 007. május 14. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útmutató utasításai

Részletesebben

KERÁMIATAN I. MISKOLCI EGYETEM. Mőszaki Anyagtudományi Kar Kerámia-és Szilikátmérnöki Tanszék. gyakorlati segédlet

KERÁMIATAN I. MISKOLCI EGYETEM. Mőszaki Anyagtudományi Kar Kerámia-és Szilikátmérnöki Tanszék. gyakorlati segédlet MISKOLCI EGYETEM Mőszaki Anyagtudományi Kar Kerámia-és Szilikátmérnöki Tanszék KERÁMIATAN I. gyakorlati segédlet : Égetési veszteség meghatározása Összeállította: Dr. Simon Andrea Géber Róbert 1. A gyakorlat

Részletesebben

Oldatok - elegyek. Többkomponensű homogén (egyfázisú) rendszerek. Elegyek: komponensek mennyisége azonos nagyságrendű

Oldatok - elegyek. Többkomponensű homogén (egyfázisú) rendszerek. Elegyek: komponensek mennyisége azonos nagyságrendű Oldatok - elegyek Többkomponensű homogén (egyfázisú) rendszerek Elegyek: komponensek mennyisége azonos nagyságrendű Oldatok: egyik komponens mennyisége nagy (oldószer) a másik, vagy a többihez (oldott

Részletesebben

1. feladat Összesen: 7 pont. 2. feladat Összesen: 16 pont

1. feladat Összesen: 7 pont. 2. feladat Összesen: 16 pont 1. feladat Összesen: 7 pont Gyógyszergyártás során képződött oldatból 7 mintát vettünk. Egy analitikai mérés kiértékelésének eredményeként a következő tömegkoncentrációkat határoztuk meg: A minta sorszáma:

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

f = n - F ELTE II. Fizikus 2005/2006 I. félév

f = n - F ELTE II. Fizikus 2005/2006 I. félév ELTE II. Fizikus 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 2. (X. 25) Gibbs féle fázisszabály (0-dik fıtétel alkalmazása) Intenzív állapotothatározók száma közötti összefüggés: A szabad intenzív paraméterek

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

Kinetika. Általános Kémia, kinetika Dia: 1 /53

Kinetika. Általános Kémia, kinetika Dia: 1 /53 Kinetika 15-1 A reakciók sebessége 15-2 Reakciósebesség mérése 15-3 A koncentráció hatása: a sebességtörvény 15-4 Nulladrendű reakció 15-5 Elsőrendű reakció 15-6 Másodrendű reakció 15-7 A reakció kinetika

Részletesebben

Művelettan 3 fejezete

Művelettan 3 fejezete Művelettan 3 fejezete Impulzusátadás Hőátszármaztatás mechanikai műveletek áramlástani műveletek termikus műveletek aprítás, osztályozás ülepítés, szűrés hűtés, sterilizálás, hőcsere Komponensátadás anyagátadási

Részletesebben

Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53

Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53 Reakciókinetika 9-1 A reakciók sebessége 9-2 A reakciósebesség mérése 9-3 A koncentráció hatása: a sebességtörvény 9-4 Nulladrendű reakció 9-5 Elsőrendű reakció 9-6 Másodrendű reakció 9-7 A reakciókinetika

Részletesebben

1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont

1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont 1. feladat Összesen: 15 pont Vizsgálja meg a hidrogén-klorid (vagy vizes oldata) reakciót különböző szervetlen és szerves anyagokkal! Ha nem játszódik le reakció, akkor ezt írja be! protonátmenettel járó

Részletesebben

Sók oldékonysági szorzatának és oldáshőjének meghatározása vezetés méréssel

Sók oldékonysági szorzatának és oldáshőjének meghatározása vezetés méréssel Sók oldékonysági szorzatának és oldáshőjének meghatározása vezetés méréssel 1. Bevezetés Az elektromos ellenállás anyagi tulajdonság, melyen -definíció szerint- az anyagon áthaladó 1 amper intenzitású

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 1413 ÉRETTSÉGI VIZSGA 014. május 19. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útmutató utasításai szerint,

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia II. kategória 2. forduló Megoldások

Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia II. kategória 2. forduló Megoldások ktatási Hivatal rszágos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia II. kategória 2. forduló Megoldások I. FELADATSR 1. C 6. C 11. E 16. C 2. D 7. B 12. E 17. C 3. B 8. C 13. D 18. C 4. D 9.

Részletesebben

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV.

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV. TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV. TÖBBFÁZISÚ, TÖBBKOMPONENS RENDSZEREK Kétkomponens szilárd-folyadék egyensúlyok Néhány fogalom: - olvadék - ötvözetek - amorf anyagok Állapotok feltüntetése:

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása

Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása Oktatási Hivatal I. FELADATSOR Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása 1. B 6. E 11. A 16. E 2. A 7. D 12. A 17. C 3. B 8. A 13. A 18. C

Részletesebben

zeléstechnikában elfoglalt szerepe

zeléstechnikában elfoglalt szerepe A földgf ldgáz z eltüzel zelésének egyetemes alapismeretei és s a modern tüzelt zeléstechnikában elfoglalt szerepe Dr. Palotás Árpád d Bence egyetemi tanár Épületenergetikai Napok - HUNGAROTHERM, Budapest,

Részletesebben

Általános Kémia GY tantermi gyakorlat 1.

Általános Kémia GY tantermi gyakorlat 1. Általános Kémia GY tantermi gyakorlat 1. Oxidációs számok Redoxiegyenletek rendezése Oldatkészítés, koncentrációegységek átváltása Honlap: http://harmatv.web.elte.hu Példatárak: Villányi Attila: Ötösöm

Részletesebben

Rugalmas állandók mérése

Rugalmas állandók mérése Rugalmas állandók mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. április 23. (hétfő délelőtti csoport) 1. Young-modulus mérése behajlásból 1.1. A mérés menete A mérés elméleti háttere megtalálható a jegyzetben

Részletesebben

6 Ionszelektív elektródok. elektródokat kiterjedten alkalmazzák a klinikai gyakorlatban: az automata analizátorokban

6 Ionszelektív elektródok. elektródokat kiterjedten alkalmazzák a klinikai gyakorlatban: az automata analizátorokban 6. Szelektivitási együttható meghatározása 6.1. Bevezetés Az ionszelektív elektródok olyan potenciometriás érzékelők, melyek valamely ion aktivitásának többé-kevésbé szelektív meghatározását teszik lehetővé.

Részletesebben

Spontaneitás, entrópia

Spontaneitás, entrópia Spontaneitás, entrópia 11-1 Spontán és nem spontán folyamat 11-2 Entrópia 11-3 Az entrópia kiszámítása 11-4 Spontán folyamat: a termodinamika második főtétele 11-5 Standard szabadentalpia változás, ΔG

Részletesebben