1. Az elektronikai termékek és technológiák rendszere. A diszkrét alkatrészek fajtái.
|
|
- Emma Veresné
- 8 évvel ezelőtt
- Látták:
Átírás
1 1. Az elektronikai termékek és technológiák rendszere. A diszkrét alkatrészek fajtái. A technológia az ismereteknek az az ága, amely tudományos és ipari módszerekre és azoknak az iparban való gyakorlati alkalmazására vonatkozik. (Þ az elektronikai iparban) A technológia az anyag (vagy információ) jellemzőinek (paramétereinek) tervezett, maradandó megváltoztatása. A technológia csoportosítása: Összetettség szerint: technológiai rendszerek: termékek szerint alaptechnológiai eljárások: természettudományok szerint Fejlettségi szint alapján: pl. csúcstechnológia Alapanyag szerint: pl. szilíciumtechnológia Alkatrészek: Diszkrét alkatrészek: Furatszerelt, Felületszerelt, Félvezető eszk. és IC chip. Szerlőlemez, hordozó: Nyomtatott huzalozású lemez, Vastag- és vékonyréteg hordoó és IC Moduláramkörök: Nyomtatott huzalozású kártya, Felületszerelt áramkör, Hibrid integrált áramkör, Multichip modul. Készülék: Elektronikai rendszer Egyéb: Tápegység, elem, akku., Mechanikai alkatrész és modul, Elektromechanikai, Optoelektronikai, Mechatronikai, Egyéb. Furatszeretl alkatrészek: Hajlékony vagy merev kivezetések (alkatrészlábak). A hajlékony kivezetéseket a furatok helyzetének megfelelően méretre- vágják és -hajlítják. A merev kivezetésű alkatrészek lábkiosztása kötött. A kivezetéseket a szerelőlemez furataiba illesztik és a másik oldalon forrasztják be. Ezért megkülönböztetünk alkatrész- és forrasztási oldalt. Felületszerelt alkatrészek: Rövid - furatszerelésre alkalmatlan - kivezetésekkel vagy az alkatrész oldalán/alján lévő, kivezetési célú forrasztási felületekkel rendelkeznek. Az alkatrészeket a kötött elrendezésű kivezetéseknek megfelelően kialakított felületi vezetékmintázatra (forrasztási felületekre, pad -ekre) ültetik rá és ugyanazon az oldalon forrasztják be. Chip és chipméretű alkatrészek: 1. Chip: közvetlen ráragasztása a hordozóra és bekötése huzallal. TAB (Tape Automated Bonding): szalagra szerelt fóliakivezetős chip, könnyen automatizálható bekötés 3. Flip chip: a kivezető felületeken bump -ok, fordított helyzetű bekötés 4. CSP: az interposer szétosztja a kivezetéseket a teljes felületre A chipet a felületre ragasztják vagy forrasztják, ezután a chip és a hordozó kivezetési felületeit vékony huzallal kötik össze, vagy a chipet interposer -re szerelik és tokozzák, a méret max. 0%-kal nő. Area array elv: felületi rácspontokra szétosztott kivezetések (bumpok).
2 . Az áramköri hordozók fajtái. Moduláramkörök és készülékek felépítése Hordozók: Nyomtatott huzalozású lemezek Kiinduló anyag: rézfóliával borított, üvegszál erősítésű epoxi lemez. A rézfóliába fotolitográfia, galvanizálás és maratás kombinációjával készítik a mintázatot. Az egymás fölötti vezetékrétegeket furatok, ill. viák átfémezésével kötik össze. Többrétegű lemezek egy-két réteges lemezek összeragasztásával vagy rétegek ráépítésével készíthetők. Vastagréteg hordozók, integrált áramkörök A vastagrétegeket kerámia hordozólemezre szitanyomtatással felvitt paszta beégetésével készítik. A paszta por formájában funkciót meghatározó anyagot (fémet, fémoxidot, titanátot, stb.), üveget és kémiai oldószereket tartalmaz. Beégetés hatására üvegszerű réteg alakul ki. Az integrált áramkörök ellenállás- és vezetékmintázatból épülnek fel. Vékonyréteg áramkörök A vékonyréteg áramköröket üveg hordozólemezre vákuumeljárással felvitt rétegekből fotolitográfiával és maratással állítják elő. Az ellenállásrétegek anyaga rendszerint fémötvözet, pl. Ni-Cr, a vezetékmintázatot aluminiumból vagy Cr+Ni+Au szendvics- rétegből készítik. A nagypontosságú el-lenálláshálózatok ál-talában vékonyréteg technológiával készülnek. Moduláramkörök: Furatszerelt áramkörök A furatszerelhető alkatrészek kivezetéseit kétoldalas, furatfémezett nyomtatott huzalozású lemez furataiba illesztik, és hullámforrasztással a másik oldal vezetékmintázatához forrasztják. Felületszerelt moduláramkörök A felületszerelhető alkatrészek kivezetéseit kétoldalas vagy többrétegű nyomtatott huzalozású lemez felületén kialakított vezetékmintázatra illesztik, és forrasztással ugyanazon oldal vezetékmintázatához kötik. Hibrid integrált áramkörök A hibrid integrált áramkörök általában vastagréteg integrált áramköri - vagyis vezetékezést és integrált formájú ellenállásokat is tartalmazó - hordozókra ráforrasztott felületszerelhető alkatrészekből épülnek fel. Ritkábban vékonyréteg hordozókkal is készítenek hibrid áramköröket. A hibrid elnevezés azt jelenti, hogy integrált formájú elemek (ellenállások) mellett az áramkörök beültetett alkatrészeket (IC-ket) is tartalmaznak. Multichip modulok Multichip moduloknak a több chipet tartalmazó, szerelt áramköröket nevezzük. A MCM-ok legfontosabb tulajdonságai: legalább két tokozatlan vagy chipméretű tokozott alkatrész, nagy vezetéksűrűségű (HDI = High Density Interconnect) hordozó, hatékony hűtési módszer.
3 A MCM-okat a - rendszerint többrétegű - hordozó szigetelő rétegének készítéséhez alkalmazott technológia alapján csoportosítjuk: a laminált multichip modulok (MCM-L) hordozója többrétegű, laminált nyomtatott huzalozású lemez, a többrétegű kerámia hordozójú modulok neve MCM-C (ceramic), a vékonyrétegtechnológiai vákuumeljárásokkal felépített (leválasz-tott) rétegszerkezetű hordozóra szerelt modulokat MCM-D-nek (deposited) nevezzük. Az elektronikus készülékek felépítése A készülékek elektronikus moduláramkörökből és nem, vagy csak részben elektronikus (mechanikai, elektromechanikai, optoelektronikai, mechatronikai, stb.) alkatrészekből és modulokból, valamint tápegységekből, illetve energiaforrásokból épülnek fel. A modulokat anya-kártya (mother board), hátlaphuzalozás vagy többerű kábelezés köti össze. 3. Vákuumtechnikai alapfogalmak. Félvezető egykristály tömb és szelet előállítása A gáz jellemzői: nyomás (p), térfogat (V), hőmérséklet (T, kelvin), tömeg (m), móltömeg (M), részecskék száma (N) Az általános gáztörvény: p V = (m/m) R T = (N/NA) R T, ahol R = 8,31 J/K, az általános gázállandó, NA = 6,0 103, az Avogadro féle szám A részecske-sűrűség (n) és a nyomás (p) kapcsolata: n = N/V = (NA/R) (p/t) = p/(k T), ahol k = R/NA = 1, J/K, a Boltzman állandó Szabad úthossz meghatározása: Egyszerű modell: a gázrészecskék állnak, csak a vizsgált mozog Az L hosszúságú, 4ra átmérőjű hengerben 1 részecske van: n V = 1, ahol V = (ra) p L, innen L» 1/[(ra) p n] Pontosabb modell alapján, ha minden részecske mozog: L = 1/[1/ (ra) p n] = k T/[1/ (ra) p p] = C/p A szabad úthossz (L) és a nyomás (p) kapcsolata: L = C/p, levegőre (ra»0,1nm, T=300K) C» 5, Nm/m A nyomás (p), a szabad úthossz (L) és a részecske-sűrűség (n) értékei vákuumban (csökkentett nyomású levegőben) p, Pa (N/m) L, m n, 1/mm nm, durva vákuum 1 5,3 mm, nagyvákuum m, ultra nagyvákuum km 4
4 A vákuumrendszerek fő részei: Nyitható vákuumedény (alaplap + felemelhető búra), Tömítések (szelepekben, átvezetőkben is), Szelepek, Vákuummérők, Szivattyúk: kifagyasztók (kondenzációs), nagyvákuum szivattyú (diffúziós), elővákuumszivattyú (rotációs) Fontosabb szivattyúfajták és működési elvük Forgólapátos (rotációs) szivattyúk: ciklikusan, adott térfogatnyi gázmennyiség elkülönítése, komprimálása (összenyomása), majd eltávolítása szelepen át Diffúziós és turbomolekuláris szivattyúk: nagy sebességű testtel való ütközés miatt sodródás diffúziós sz.: olajgőz sugárba diffundálnak be a gázrészecskék és a nagysebességű gőzrészecskékkel való ütközés miatt sodródnak turbomolekuláris sz.: forgó lapát felületével ütköznek a gázrészecskék Kifagyasztók: a gőz/gáz részecskék kondenzálódnak a hűtött felületeken, a parciális nyomást zárt térben a leghidegebb felület hőmérséklete korlátozza Getter szivattyúk (egyes gőzökre/gázokra nézve szelektíven): kémiailag lekötik, vagy fizikailag eltemetik a részecskéket (pl. a Ti párologtatáskor leköti - kiszivattyúzza - az oxigént) 4. Félvezető egykristály tömb és szelet előállítása. Vékonyrétegek vákuumpárologtatása. 1. Czochralski-féle tégelyes egykristály-húzási eljárás:. Tégelymentes zónás átkristályosítás
5 A szeletkészítési technológia további lépései: - a kristály orientációjára jellemző sík felület (flat) beköszörülése - fűrészelés ~1 mm-es szeletekké - kémiai maratás - többfokozatú csiszolás - kémiai-mechanikai polírozás A szelet (wafer) végülis egy 0,3 0,6 mm vastag, plánparalel, síkfelületű, ismert orientáltságú, felületi szennyezőket, hibákat csak ppb (parts per billion = 10-9) koncentrációban tartalmazó lemez Vékonyrétegek vákuumpárologtatása. A párologtatás folyamatai: 3. Kondenzáció (lecsapatás): a hordozó melegítésével lassított, szabályozott rétegépítés. Anyagtranszport: a részecskék egyenes vonalú mozgása a sugár-zás törvényei szerint 1. Molekulákra bontás: az anyag gőzfázisba vitele, elpárologtatása melegítéssel Vákuumpárologtatáshoz használt gőzforrások: Árammal fűtött W, Mo csónak melegíti fel a ráhelyezett anyagot. A csónak lehet: huzal (spirál), tégely, tömb, lemez. Elektronsugár hevíti fel az anyagot: Függőcseppes: 180 fokos: Gőzforrások iránykarakterisztikája: dm1/(m1dw) = egy vektor által kijelölt (z-vel j szöget bezáró) irányban dw kicsi térszögben kilépő dm1 gőztömeg relatív értéke
6 Párolgási sebesség (z) z = részecskék száma / (felület idő) = = állandó (A) gőznyomás (p) p = B e -H/(R T) ahol B = állandó, H = párolgási hő, R = ált. gázállandó, T = hőmérséklet (Kelvin) A párolgási készség az 1 Pa gőznyomás eléréséhez szükséges hőmérséklettel jelle-mezhető. E készség különbözősége teszi lehetővé a csónakról való párologtatást, de hátrányos ha ötvözetréteget készítünk. 5. Vákuumporlasztás. Epitaxiás félvezetőrétegek növesztése. Ionimplantáció. A porlasztás folyamata: 1. Gőzállapotba hozás: a. spontán ionizáció > primér elektronok b. az elektronok gyorsulnak > ütközéses ionizáció > ionok és szekundér elektronok c. az ionok gyorsulnak > részecskéket ütnek ki a target-ből (mozgásmennyiség átadás). Anyagtranszport: a porlasztást végző ionok jelenléte miatt a diffúzió törvényei szerint 3. Kondenzáció. A párologtatás-hoz hasonlóan a folyamat: magok > szigetek > a szigetek összeérnek, a folyosók feltöltődnek > összefüggő réteg Katódporlasztás: A félvezetők legfontosabb rétegfelviteli, rétegmódosító és mintázatkészítő eljárásai 1.Epitaxiás rétegnövesztés: gőzfázisú epitaxia (CVD), molekulasugaras epitaxia (MBE = Molecular Beam Epitaxy), folyadékfázisú epitaxia.a felületi rétegtulajdonságok szelektív megváltoztatása: ionimplantáció diffúzió 3.Oxidnövesztés a szilícium szelet felületén
7 4.A szigetelő, vezető, félvezető és passziváló rétegek felviteli eljárásai: kémiai rétegfelvitel gőzfázisból (CVD = Chemical Vapor Deposition) 5.Mintázatkialakítás litográfiával (az eljárást általában nedves vagy száraz kémiai maratás - rétegeltávolítás - követi): fotolitográfia elektronlitográfia röntgenlitográfia Epitaxiás rétegek növesztése 1. CVD (Chemical Vapor Deposition): a félvezető vegyületét (ált. hidridjét v. halidját) gáz v. gőz formában hevítik, a vegyület elbomlik v. redukálódik és kicsapódik a félvezető. Tipikus reakciók: SiCl 4 +H < > Si+4HCl (1300 o -on ) SiH 4 < > Si+H (szilán, 100 o -on ). MBE (Molecular Beam Epitaxy): molekulasugaras epitaxia, t.k. lassú, pontosan szabályozott párologtatás több, szublimáló gőzforrásból 3. Folyadékfázisú epitaxia: alacsony-olvadáspontú fém (ált. Ga) olvadé-kában a félvezető túltelített oldatát hozzák létre, ebből csapatják ki. Ionimplantáció Az ionforrás: -gázból: kisütéssel, r.f.-el, hővel (ívvel) gerjesztve -folyékony vagy szilárd anyagból: porlasztással, párologtatással majd ionizálva -vegyület elbontásával (pl.: BF 3, BCl 3 ) Az ionimplanter felépítése:
8 6. Diffúzió. Oxidnövesztés. Kémiai rétegfelvitel gőzfázisból (CVD). A diffúzió koncentráció és hőmérséklet-függése. Fick I.: J = D gradn Lineáris mintába: N J = D x D = 0 D e H kt J: részecske ármasűrűség ( 1 / m s ) 3 N: koncentráció ( 1/ m ) D: diffúziós állandó ( m / s ) x: helykoordináta ( m ) T: hőmérséklet (K) 3 k: Boltzmann áll.: 1,38 10 J / K H: aktivációs energia (J) t: idő (s) N N Fick II.: = D t x Lejátszódása: -helycsere -vándorlás rácsközti helyeken -vándorlás üres rácspontokon Állandó felületi koncentráció (N 0 ) x N = N0 erfc Dt z erfc z = e u ( ) 1 du 0 π
9 Állandó anyagmennyiség diffúziója. Tranzisztor np és pn átmeneteinek létrehozása Állandó anyagmennyiség (n ; [] 1/ m x n 4Dt N e n = ) N = π Dt n πdt A diffúzió és az ionimplantáció összehasonlítása A réteget alkotó részecskék sűrűségeloszlása (C) a mélység (x) függvényében: Diffúzió: Ionimplantáció:
10 A rétegfelviteli eljárások összehasonlítása A réteget alkotó részecskék mélységi (x) sűrűségeloszlása (N) ionimplantációval, illetve más eljárásokkal készített rétegekben: Szilícium nedves, ill. száraz oxidálása kályhában Szilícium felületére növesztett szilícium-dioxid CVD (Chemical Vapor Deposition) Kémiai rétegfelvitel gőzfázisból SiCl4 + CH 4 SiC + 4HCl MoF6 + 3H Mo + 6HF CH + 4Cl C + 4HCl 4 BME-ETT kunterbunte slideok to grayscale printable version convert by Bagojfalvi Bagoj
ELEKTRONIKAI SZERELÉSTECHNOLÓGIÁK
1 ELEKTRONIKAI SZERELÉSTECHNOLÓGIÁK 1-01 A FURAT ÉS FELÜLET SZERELHETŐ ALKATRÉSZEK MEGJELENÉSI FORMÁI ÉS TÍPUSAI ELEKTRONIKAI TECHNOLÓGIA ÉS ANYAGISMERET VIETAB00 BUDAPEST UNIVERSITY OF TECHNOLOGY AND
SOIC Small outline IC. QFP Quad Flat Pack. PLCC Plastic Leaded Chip Carrier. QFN Quad Flat No-Lead
1. Csoportosítsa az elektronikus alkatrészeket az alábbi szempontok szerint! Funkció: Aktív, passzív Szerelhetőség: furatszerelt, felületszerelt, tokozatlan chip Funkciók száma szerint: - diszkrét alkatrészek
VASTAGRÉTEG TECHNOLÓGIÁK
4 VASTAGRÉTEG TECHNOLÓGIÁK 4-02 POLIMER ALAPÚ VASTAGRÉTEG ÉS TÖBBRÉTEGŰ KERÁMIA TECHNOLÓGIÁK ELEKTRONIKAI TECHNOLÓGIA ÉS ANYAGISMERET VIETAB00 BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke. http://www.eet.bme.hu
Budapesti Műszaki és Gazdaságtudományi Egyetem MIKROELEKTRONIKA, VIEEA306 Technológia: alaplépések, a tanszéki processz http://www.eet.bme.hu/~poppe/miel/hu/02-pmos-technologia.ppt http://www.eet.bme.hu
13. Kétoldalas, furatfémezett nyomtatott huzalozású lemezek szubtraktív előállítási technológiája. Féladditív technológia.
13. Kétoldalas, furatfémezett nyomtatott huzalozású lemezek szubtraktív előállítási technológiája. Féladditív technológia. Szubtraktív technológia (eltávolító eljárás): A felületet teljesen beborító rétegből
FÉLVEZETŐ ALAPÚ ESZKÖZÖK GYÁRTÁSTECHNOLÓGIÁJA
2 FÉLVEZETŐ ALAPÚ ESZKÖZÖK GYÁRTÁSTECHNOLÓGIÁJA 2-04 RÉTEGLEVÁLASZTÁSI, ÉS ADALÉKOLÁSI TECHNOLÓGIÁK ELEKTRONIKAI TECHNOLÓGIA ÉS ANYAGISMERET VIETAB00 BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT
MIKROELEKTRONIKA, VIEEA306
Budapesti Műszaki és Gazdaságtudományi Egyetem MIKROELEKTRONIKA, VIEEA306 Technológia: alaplépések, a tanszéki processz http://www.eet.bme.hu/~poppe/miel/hu/02-pmos-technologia.ppt http://www.eet.bme.hu
FÉLVEZETŐ ALAPÚ ESZKÖZÖK GYÁRTÁSTECHNOLÓGIÁJA
2 FÉLVEZETŐ ALAPÚ ESZKÖZÖK GYÁRTÁSTECHNOLÓGIÁJA 2-03 FÉLVEZETŐ SZELET ELŐÁLLÍTÁSA (ALAPANYAGTÓL A SZELETIG) ELEKTRONIKAI TECHNOLÓGIA ÉS ANYAGISMERET VIETAB00 BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS
NYÁK technológia 2 Többrétegű HDI
NYÁK technológia 2 Többrétegű HDI 1 Többrétegű NYHL pre-preg Hatrétegű pakett rézfólia ónozatlan Cu huzalozás (fekete oxid) Pre-preg: preimpregnated material, félig kikeményített, üvegszövettel erősített
Elektronikai technológia vizsgatematika 2015 Nappali, Táv, Levelező
Elektronikai technológia vizsgatematika 2015 Nappali, Táv, Levelező Témák Kötelező Ajánlott 1. Nyomtatott Huzalozású Lemezek technológiája A NYHL funkciói, előnyei, alaptípusok A NYHL anyagai; hordozók,
NAGYINTEGRÁLTSÁGÚ MODULÁRAMKÖRÖK BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT OF ELECTRONICS TECHNOLOGY
NAGYINTEGRÁLTSÁGÚ MODULÁRAMKÖRÖK BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT OF ELECTRONICS TECHNOLOGY NAGY INTEGRÁLTSÁGÚ MODULÁRAMKÖRÖK Előadók Dr. Berényi Richárd Célkitűzés a nagy alkatrész
Elektronikai technológia vizsgatematika 2016 Táv, Levelező
Elektronikai technológia vizsgatematika 2016 Táv, Levelező Témák Kötelező Ajánlott 1. Nyomtatott Huzalozású Lemezek technológiája A NYHL funkciói, előnyei, alaptípusok A kétoldalas NYHL gyártásának menete
NYOMTATOTT HUZALOZÁSÚ LAPOK GYÁRTÁSTECHNOLÓGIÁJA
NYOMTATOTT HUZALOZÁSÚ LAPOK GYÁRTÁSTECHNOLÓGIÁJA Az elektronikai tervező általában nem gyárt nyomtatott lapokat, mégis kell, hogy legyen némi rálátása a gyártástechnológiára, hogy terve kivitelezhető legyen.
Elektronikai Technológia és Anyagismeret mintakérdések
Elektronikai Technológia és Anyagismeret mintakérdések 1-01 A FURAT- ÉS FELÜLETSZERELHETŐ ALKATRÉSZEK MEGJELENÉSI FORMÁI ÉS TÍPUSAI Mutassa be a furatszerelt alkatrészeket rajzokkal és leírással! Furatszerelt
Hibrid Integrált k, HIC
Hibrid Integrált Áramkörök, k, HIC Az alábbi bemutató egyes ábráit a Dr. Illyefalvi Vitéz Zsolt Dr. Ripka Gábor Dr. Harsányi Gábor: Elektronikai technológia, ill. Dr Ripka Gábor: Hordozók, alkatrészek
Diffúzió. Diffúzió. Diffúzió. Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd
Anyagszerkezettan és anyagvizsgálat 5/6 Diffúzió Dr. Szabó Péter János szpj@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd
VÉKONYRÉTEGEK ÉS ELŐÁLLÍTÁSUK
3 VÉKONYRÉTEGEK ÉS ELŐÁLLÍTÁSUK 3-02 VÁKUUMTECHNIKA ELEKTRONIKAI TECHNOLÓGIA ÉS ANYAGISMERET VIETAB00 BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT OF ELECTRONICS TECHNOLOGY TARTALOM a vákuum
ELLENRZ KÉRDÉSEK 1. Ismertesse a relatív nyújtást 2 dimenziós esetre, és az elemi cella deformációját.
ELLENRZ KÉRDÉSEK 1. Ismertesse a relatív nyújtást 2 dimenziós esetre, és az elemi cella deformációját. 2. Ismertesse az egyszerű deformációkat 3 dimenziós esetre: a húzást és a nyírást. 3. Ismertesse a
Hibrid Integrált k, HIC
Hordozók Hibrid Integrált Áramkörök, k, HIC Az alábbi bemutató egyes ábráit a Dr. Illyefalvi Vitéz Zsolt Dr. Ripka Gábor Dr. Harsányi Gábor: Elektronikai technológia, ill. Dr Ripka Gábor: Hordozók, alkatrészek
Vékonyrétegek - általános követelmények
Vékonyrétegek - általános követelmények egyenletes vastagság a teljes szubsztráton azonos összetétel azonos szerkezet (amorf, polikristályos, epitaxiális) azonos fizikai és kémiai tulajdonságok tömörség
Félvezetők. Félvezető alapanyagok. Egykristály húzás 15/04/2015. Tiszta alapanyag előállítása. Nyersanyag: kvarchomok: SiO 2 Redukció szénnel SiO 2
Félvezetők Az 1. IC: Jack Kilby 1958 Tiszta alapanyag előállítása Kohászati minőségű Si Félvezető tisztaságú Si Egykristály húzás Szelet készítés Elemgyártás Fotolitográfia, maszkolás, maratás, adalékolás,
Fókuszált ionsugaras megmunkálás
1 FEI Quanta 3D SEM/FIB Fókuszált ionsugaras megmunkálás Ratter Kitti 2011. január 19-21. 2 FIB = Focused Ion Beam (Fókuszált ionnyaláb) Miből áll egy SEM/FIB berendezés? elektron oszlop ion oszlop gáz
VÉKONYRÉTEGEK ÉS ELŐÁLLÍTÁSUK
3 VÉKONYRÉTEGEK ÉS ELŐÁLLÍTÁSUK 3-01 VÉKONYRÉTEG TECHNOLÓGIA ELEKTRONIKAI TECHNOLÓGIA ÉS ANYAGISMERET VIETAB00 BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT OF ELECTRONICS TECHNOLOGY TARTALOM
Fókuszált ionsugaras megmunkálás
FEI Quanta 3D SEM/FIB Dankházi Zoltán 2016. március 1 FIB = Focused Ion Beam (Fókuszált ionnyaláb) Miből áll egy SEM/FIB berendezés? elektron oszlop ion oszlop gáz injektorok detektor CDEM (SE, SI) 2 Dual-Beam
Diffúzió 2003 március 28
Diffúzió 3 március 8 Diffúzió: különféle anyagi részecskék (szilárd, folyékony, gáznemű) anyagon belüli helyváltozása. Szilárd anyagban való mozgás Öndiffúzió: a rácsot felépítő saját atomok energiaszint-különbség
ELTE Fizikai Intézet. FEI Quanta 3D FEG kétsugaras pásztázó elektronmikroszkóp
ELTE Fizikai Intézet FEI Quanta 3D FEG kétsugaras pásztázó elektronmikroszkóp mintatartó mikroszkóp nyitott ajtóval Fő egységek 1. Elektron forrás 10-7 Pa 2. Mágneses lencsék 10-5 Pa 3. Pásztázó mágnesek
MEMS, szenzorok. Tóth Tünde Anyagtudomány MSc
MEMS, szenzorok Tóth Tünde Anyagtudomány MSc 2016. 05. 04. 1 Előadás vázlat MEMS Története Előállítása Szenzorok Nyomásmérők Gyorsulásmérők Szögsebességmérők Áramlásmérők Hőmérsékletmérők 2 Mi is az a
A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően
Anyagismeret 2016/17. Diffúzió. Dr. Mészáros István Diffúzió
Anyagismeret 6/7 Diffúzió Dr. Mészáros István meszaros@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd Diffúzió Diffúzió -
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók
Integrált áramkörök/1. Informatika-elekronika előadás 10/20/2007
Integrált áramkörök/1 Informatika-elekronika előadás 10/20/2007 Mai témák Fejlődési tendenciák, roadmap-ek VLSI alapfogalmak A félvezető gyártás alapműveletei A MOS IC gyártás lépései 10/20/2007 2/48 Integrált
0-02 BEVEZETŐ ELŐADÁS
0-02 BEVEZETŐ ELŐADÁS ELEKTRONIKAI TECHNOLÓGIA VIETA302 BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT OF ELECTRONICS TECHNOLOGY 1. AZ ELEKTRONIKAI TECHNOLÓGIA TÁRGYA, CÉLKITŰZÉSEI. AZ ELEKTRONIKUS
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek
Diffúzió. Diffúzió sebessége: gáz > folyadék > szilárd (kötőerő)
Diffúzió Diffúzió - traszportfolyamat (fonon, elektron, atom, ion, hőmennyiség...) Elektromos vezetés (Ohm) töltés áram elektr. potenciál grad. Hővezetés (Fourier) energia áram hőmérséklet különbség Kémiai
09/05/2016. Félvezetők. Az 1. IC: Jack Kilby 1958
Félvezetők Az 1. IC: Jack Kilby 1958 1 Tiszta alapanyag előállítása Kohászati minőségű Si Félvezető tisztaságú Si Egykristály húzás Szelet készítés Elemgyártás Fotolitográfia, maszkolás, maratás, adalékolás,
$% % & #&' ( ,,-."&#& /0, 1!! Félvezetk &2/3 4#+ 5 &675!! "# " $%&"" Az 1. IC: Jack Kilby # + 8 % 9/99: "#+ % ;! %% % 8/</< 4: % !
Félvezetk $ & &' ( )*+,,-.&& /0, 1 &2/3 4+ 56 5 &675 $& Az 1. I: Jack Kilby 1958 4 + 8 9/99: + ; 8/
Ellenállások. Alkalmazás - áramkorlátozás - feszültség beállítás, feszültségosztás - fűtőtest, fűtőellenállás
Ellenállások Alkalmazás - áramkorlátozás - feszültség beállítás, feszültségosztás - fűtőtest, fűtőellenállás Fajtái Ellenállás szerint - állandó értékű - változtatható értékű -speciális (termisztorok,
FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István
Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:
készült az UElektronikai gyártás és minőségbiztosításu c. tárgy előadásainak diáiból bekötési technikájának elvét
készült az UElektronikai gyártás és minőségbiztosításu c. tárgy előadásainak diáiból U21. Chipek beültetése U21-1. Sorolja fel, és ábrán is szemléltesse a chipek négy legfontosabb beültetési és bekötési
Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek
Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok
Vizsga kérdések (Készítette: Denke Ákos, TT1OWV, deeagle001@gmail.com)
Vizsga kérdések (Készítette: Denke Ákos, TT1OWV, deeagle001@gmail.com) Ezek a kérdések vizsgákban megjelentek. Az itteni válasz sokszor nem csak ez effektív választ tartalmazza, hanem néha összefoglalót
1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:
1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:
Jegyzetelési segédlet 8.
Jegyzetelési segédlet 8. Informatikai rendszerelemek tárgyhoz 2009 Szerkesztett változat Géczy László Billentyűzet, billentyűk szabványos elrendezése funkció billentyűk ISO nemzetközi írógép alap billentyűk
Felületmódosító technológiák
ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK Biokompatibilis anyagok 2011. Felületm letmódosító eljárások Dr. Mészáros István 1 Felületmódosító technológiák A leggyakrabban változtatott tulajdonságok a felület
VASTAGRÉTEG TECHNOLÓGIÁK
4 VASTAGRÉTEG TECHNOLÓGIÁK 4-01 KERÁMIA ALAPÚ VASTAGRÉTEG TECHNOLÓGIA ELEKTRONIKAI TECHNOLÓGIA ÉS ANYAGISMERET VIETAB00 BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT OF ELECTRONICS TECHNOLOGY
Vákuumtechnika Bevezetés, történet. Csonka István Frigyes Dávid
Vákuumtechnika Bevezetés, történet Csonka István Frigyes Dávid 1 A speci célja Alapvető vákuumtechnikai ismeretek megszerzése (elmélet/gyakorlat, kvalitatív/kvantitatív ismeretek) Ne féljünk tőle (vö.
Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői
Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői Hőmérséklet Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Celsius-skála: 0 ºC pontja
MÉRÉSI JEGYZŐKÖNYV. A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata
MÉRÉSI JEGYZŐKÖNYV A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata A mérés helye: Irinyi János Szakközépiskola és Kollégium
Összefüggő szakmai gyakorlat témakörei
Összefüggő szakmai gyakorlat témakörei Villamosipar és elektronika ágazat Elektrotechnika gyakorlat 10. évfolyam 10 óra Sorszám Tananyag Óraszám Forrasztási gyakorlat 1 1.. 3.. Forrasztott kötés típusai:
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha
Diszkrét aktív alkatrészek
Aktív alkatrészek Az aktív alkatrészek képesek kapcsolási és erősítési feladatokat ellátni. A digitális elektronika és a teljesítményelektronika gyors kapcsolókra épül, az analóg technikában elsősorban
Kémiai reakciók sebessége
Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását
2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat,
2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás. 2.1. Hőáramlás (konvekció) olyan folyamat, amelynek során a hő a hordozóközeg áramlásával kerül
VIII. BERENDEZÉSORIENTÁLT DIGITÁLIS INTEGRÁLT ÁRAMKÖRÖK (ASIC)
VIII. BERENDEZÉSORIENTÁLT DIGITÁLIS INTEGRÁLT ÁRAMKÖRÖK (ASIC) 1 A korszerű digitális tervezés itt ismertetendő (harmadik) irányára az a jellemző, hogy az adott alkalmazásra céleszközt (ASIC - application
Soroljon fel néhány, a furatszerelt alkatrészek forrasztásánál alkalmazott vizsgálati szempontot!
Sorolja fel a legfontosabb forrasztási vizsgálatokat! Forraszthatósági, nedvesítési vizsgálatok mintavételes Forrasztott kötések formai minsítése Optikai (AOI, mikroszkóp), szemrevételezéses vizsgálatok
FÉLVEZETŐ ALAPÚ ESZKÖZÖK GYÁRTÁSTECHNOLÓGIÁJA
2 FÉLVEZETŐ ALAPÚ ESZKÖZÖK GYÁRTÁSTECHNOLÓGIÁJA 2-01 CHIPEK BEÜLTETÉSI ÉS KÖTÉSI TECHNOLÓGIÁI, TOKOZÁS ELEKTRONIKAI TECHNOLÓGIA ÉS ANYAGISMERET VIETAB00 BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS
Méréstechnika. Hőmérséklet mérése
Méréstechnika Hőmérséklet mérése Hőmérséklet: A hőmérséklet a termikus kölcsönhatáshoz tartozó állapotjelző. A hőmérséklet azt jelzi, hogy egy test hőtartalma milyen szintű. Amennyiben két eltérő hőmérsékletű
A NYOMTATOTT HUZALOZÁSÚ LEMEZEK TECHNOLÓGIÁJA ÉS TERVEZÉSE
5 A NYOMTATOTT HUZALOZÁSÚ LEMEZEK TECHNOLÓGIÁJA ÉS TERVEZÉSE 5-01 EGYOLDALAS ÉS KÉTOLDALAS LEMEZEK GYÁRTÁSTECHNOLÓGIÁJA ELEKTRONIKAI TECHNOLÓGIA ÉS ANYAGISMERET VIETAB00 BUDAPEST UNIVERSITY OF TECHNOLOGY
Halmazállapotok. Gáz, folyadék, szilárd
Halmazállapotok Gáz, folyadék, szilárd A levegővel telt üveghengerbe brómot csepegtetünk. A bróm illékony, azaz könnyen alakul gázhalmazállapotúvá. A hengerben a levegő részecskéi keverednek a bróm részecskéivel
Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek
Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok
Havancsák Károly Az ELTE TTK kétsugaras pásztázó elektronmikroszkópja. Archeometriai műhely ELTE TTK 2013.
Havancsák Károly Az ELTE TTK kétsugaras pásztázó elektronmikroszkópja Archeometriai műhely ELTE TTK 2013. Elektronmikroszkópok TEM SEM Transzmissziós elektronmikroszkóp Átvilágítós vékony minta < 100
Szabadentalpia nyomásfüggése
Égéselmélet Szabadentalpia nyomásfüggése G( p, T ) G( p Θ, T ) = p p Θ Vdp = p p Θ nrt p dp = nrt ln p p Θ Mi az a tűzoltó autó? A tűz helye a világban Égés, tűz Égés: kémiai jelenség a levegő oxigénjével
1. Feladatok a termodinamika tárgyköréből
. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással.. Feladat: (HN 9A-5) Egy épület téglafalának mérete: 4 m 0 m és, a fal 5 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi
A nanotechnológia mikroszkópja
1 Havancsák Károly, ELTE Fizikai Intézet A nanotechnológia mikroszkópja EGIS 2011. június 1. FEI Quanta 3D SEM/FIB 2 Havancsák Károly, ELTE Fizikai Intézet A nanotechnológia mikroszkópja EGIS 2011. június
Légköri termodinamika
Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a
7.3. Plazmasugaras megmunkálások
7.3. Plazmasugaras megmunkálások (Plasma Beam Machining, PBM) Plazma: - nagy energiaállapotú gáz - az anyag negyedik halmazállapota - ionok és elektronok halmaza - egyenáramú ív segítségével állítják elő
Textíliák felületmódosítása és funkcionalizálása nem-egyensúlyi plazmákkal
Óbudai Egyetem Anyagtudományok és Technológiák Doktori Iskola Textíliák felületmódosítása és funkcionalizálása nem-egyensúlyi plazmákkal Balla Andrea Témavezetők: Dr. Klébert Szilvia, Dr. Károly Zoltán
Budapesti Műszaki és Gazdaságtudományi Egyetem. Polimertechnika Tanszék. Polimerfeldolgozás. Melegalakítás
Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék Polimerfeldolgozás Melegalakítás Melegalakítás 2 Melegalakítás: 0,05 15 mm vastagságú lemezek, fóliák formázása termoelasztikus állapotban
Bevezetés az analóg és digitális elektronikába. V. Félvezető diódák
Bevezetés az analóg és digitális elektronikába V. Félvezető diódák Félvezető dióda Félvezetőknek nevezzük azokat az anyagokat, amelyek fajlagos ellenállása a vezetők és a szigetelők közé esik. (Si, Ge)
Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )
Az atom- olvasni 2.1. Az atom felépítése Az atom pozitív töltésű atommagból és negatív töltésű elektronokból áll. Az atom atommagból és elektronburokból álló semleges kémiai részecske. Az atommag pozitív
Folyadékok. Molekulák: Gázok Folyadékok Szilárd anyagok. másodrendű kölcsönhatás növekszik. cseppfolyósíthatók hűtéssel és/vagy nyomással
Folyadékok Molekulák: másodrendű kölcsönhatás növekszik Gázok Folyadékok Szilárd anyagok cseppfolyósíthatók hűtéssel és/vagy nyomással Folyadékok Molekulák közti összetartó erők: Másodlagos kötőerők: apoláris
Betekintés a napelemek világába
Betekintés a napelemek világába (mőködés, fajták, alkalmazások) Nemcsics Ákos Óbudai Egyetem Tartalom Bevezetés energetikai problémák napenergia hasznosítás módjai Napelemrıl nem középiskolás fokon napelem
Szepes László ELTE Kémiai Intézet
Szepes László ELTE Kémiai Intézet Szárnyaló molekulák felületi rétegek ALKÍMIA MA c. előadássorozat 2013. február 14. Az előadás témája és vázlata Téma: felületi gőzfázisú rétegleválasztás (Chemical Vapour
PHYWE Fizikai kémia és az anyagok tulajdonságai
PHYWE Fizikai kémia és az anyagok tulajdonságai Témakörök: Gázok és gáztörvények Felületi feszültség Viszkozitás Sűrűség és hőtágulás Olvadáspont, forráspont, lobbanáspont Hőtan és kalorimetria Mágneses
Havancsák Károly Nagyfelbontású kétsugaras pásztázó elektronmikroszkóp az ELTÉ-n: lehetőségek, eddigi eredmények
Havancsák Károly Nagyfelbontású kétsugaras pásztázó elektronmikroszkóp az ELTÉ-n: lehetőségek, eddigi eredmények Nanoanyagok és nanotechnológiák Albizottság ELTE TTK 2013. Havancsák Károly Nagyfelbontású
A TÖMEGSPEKTROMETRIA ALAPJAI
A TÖMEGSPEKTROMETRIA ALAPJAI web.inc.bme.hu/csonka/csg/oktat/tomegsp.doc alapján tömeg-töltés arány szerinti szétválasztás a legérzékenyebb módszerek közé tartozik (Nagyon kis anyagmennyiség kimutatására
FIZIKA. Ma igazán belemelegszünk! (hőtan) Dr. Seres István
FIZIKA Ma igazán belemelegszünk! (hőtan) Dr. Seres István Hőtágulás, kalorimetria, Halmazállapot változások fft.szie.hu 2 Seres.Istvan@gek.szi.hu Lineáris (vonalmenti) hőtágulás L L L 1 t L L0 t L 0 0
Általános Kémia GY, 2. tantermi gyakorlat
Általános Kémia GY, 2. tantermi gyakorlat Sztöchiometriai számítások -titrálás: ld. : a 2. laborgyakorlat leírásánál Gáztörvények A kémhatás fogalma -ld.: a 2. laborgyakorlat leírásánál Honlap: http://harmatv.web.elte.hu
ELEKTRONIKAI SZERELÉSTECHNOLÓGIÁK
1 ELEKTRONIKAI SZERELÉSTECHNOLÓGIÁK 1-02 FURAT- ÉS FELÜLETSZERELT ALKATRÉSZEK SZERELÉSE- FORRASZTÁSA HULLÁMFORRASZTÁSSAL ELEKTRONIKAI TECHNOLÓGIA ÉS ANYAGISMERET VIETAB00 BUDAPEST UNIVERSITY OF TECHNOLOGY
Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete
Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály
Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés.
Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. A sugárzáson alapuló hőmérsékletmérés (termográfia),azt a fizikai jelenséget használja fel, hogy az abszolút nulla K hőmérséklet (273,16
Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)
Általános kémia képletgyűjtemény (Vizsgára megkövetelt egyenletek a szimbólumok értelmezésével, illetve az egyenletek megfelelő alkalmazása is követelmény) Atomszerkezet Tömegszám (A) A = Z + N Rendszám
Sugárzások és anyag kölcsönhatása
Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció
Reológia Mérési technikák
Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test
Digitális tananyag a fizika tanításához
Digitális tananyag a izika tanításához Gázok állaotjelzői Adott mennyiségű gáz állaotjelzői: Nyomás: []=Pa=N/m Térogat []=m 3 Hőmérséklet [T]=K; A gázok állaotát megadó egyéb mennyiségek: tömeg: [m]=g
1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:
Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál
FÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás
FÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás FÉLVEZETŐ ESZKÖZÖK A leggyakrabban használt félvezető anyagok a germánium (Ge), és a szilícium (Si). Félvezető tulajdonsággal rendelkező elemek: szén (C),
Szilárd testek rugalmassága
Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)
Létrehozásuk a célja: alkatrészek közötti fémes kapcsolat létrehozása
Forrasztott kötések Forrasztási technológiák Alkatrész forrasztások Hordozók Kötések Létrehozásuk a célja: alkatrészek közötti fémes kapcsolat létrehozása hegesztés forrasztás Hegesztés: mindkét összekötendő
Molekuláris dinamika I. 10. előadás
Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,
Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia
Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Potenciális (helyzeti) energia: a részecskék kölcsönhatásából származó energia. Energiamegmaradás
Elektromos áram, egyenáram
Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,
1. SI mértékegységrendszer
I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség
ZH November 27.-én 8:15-től
ZH-2 2017 November 27.-én 8:15-től Érzékelési elvek Érzékelési módszerek Mikrotechnológia http://www.mogi.bme.hu/tamop/mikromechanika/math-index.html 1 Mikrotechnológia alapjai Mikrotechnológia = szerszámkészlet
A HELIOS kémény rendszer. Leírás és összeszerelés
A HELIOS kémény rendszer Leírás és összeszerelés 1. Bemutatás: A HELIOS kémény rendszer" a legújabb kémény rendszer, amely a romániai piacon jelent meg és egy technikusokból álló csapat több éven át tartó
Elektromos áram. Vezetési jelenségek
Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
1. 2:24 Normál Magasabb hőmérsékleten a részecskék nagyobb tágassággal rezegnek, s így távolabb kerülnek egymástól. Magasabb hőmérsékleten a részecskék kisebb tágassággal rezegnek, s így távolabb kerülnek
A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos
Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilád, folyékony vagy
Biofizika szeminárium. Diffúzió, ozmózis
Biofizika szeminárium Diffúzió, ozmózis I. DIFFÚZIÓ ORVOSI BIOFIZIKA tankönyv: III./2 fejezet Részecskék mozgása Brown-mozgás Robert Brown o kísérlet: pollenszuszpenzió mikroszkópos vizsgálata o megfigyelés:
1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont
1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat