Elektromos impedancia paraméterek változása gyümölcsszárítás folyamán
|
|
- Flóra Székely
- 8 évvel ezelőtt
- Látták:
Átírás
1 Összefoglaló Elektromos impedancia paraméterek változása gyümölcsszárítás folyamán Mészáros Péter Vozáry Eszter David Funk BKAE Élelmiszertudományi Kar, Fizika-Automatika Tanszék, Budapest Alma szeletek impedancia spektrumát szakaszos és folyamatos mérési eljárással határoztuk meg. MATLAB program segítségével szimuláltuk az elektródpolarizációs jelenséget a kettő illetve négy elektródás eljárásnál. Megfigyeltük, hogy a négy elektródás eljárásnál a feszültségmérő elektródák között nincs elektródpolarizáció, ezért ajánlatos e módszer alkalmazása a jövőben. Ábrázoltuk a komplex impedancia valós és képzetes része közötti összefüggést. Megállapítottuk, hogy lineáris az összefüggés az elektródtávolság és az impedancia nagysága között az egyes frekvenciáknál. Az impedancia nagysága és fázisszöge a szárítás különböző szakaszaiban különböző értékeket vesz fel, így felhasználhatóak a szárítási folyamat követésére. Bevezetés Az elektromos impedancia mérése egy viszonylag új és hatásos módszer számos anyag elektromos tulajdonságának vizsgálatára. Biológiai anyagok dielektromos tulajdonságai és fiziológiai változásai közötti összefüggések meghatározására használható. Az elmúlt 20 évben jelentek meg olyan kísérletek, amelyek azt vizsgálták, hogyan használhatók az élelmiszerek impedancia paraméterei az élelmiszerekben a tárolás, az utóérés, a melegítés és a fagyasztás során keletkező változások leírására. A mért impedancia paramétereket az idő, a hőmérséklet, a nedvességtartalom függvényében vizsgálták. Növényi szövetek elektromos impedancia spektrumát különböző modell áramkörökkel lehet közelíteni, amelyeknek egyes ellenállásai és kapacitásai a növényi szövet különböző alkotórészei ellenállásának és kapacitásának felel meg (Hayden et al., 1969; Zhang és Willison, 1991; Toyoda, 1994). Gyümölcsök érése során a szövet szerkezete olyan változásokon megy át, amelyek a szövet elektromos impedancia spektrumában is tükröződnek. Például az őszibarack sejtmembránjai az utóérés folyamán átjárhatóvá válnak a sejten belüli folyadék számára, amely az extracelluláris tér ohmos ellenállásának a csökkenéséhez vezet (Harker és Maindonald, 1994). Az almák érése és tárolása során a sejtek közötti állomány ellenállása csökken (Vozáry et al., 1996). Az elektromos impedancia spektrum a gyümölcs-vagy zöldségszövet sérülésénél is megváltozik, például a megnyomott almaszövetben az extracelluláris tér ohmos ellenállása nagyon lecsökken az ép szövetben kapott értékekhez képest (Cox et al., 1993). Különböző zöldségek és gyümölcsök fagyasztása (Toyoda és Tsenkova, 1998) illetve melegítése (Toyoda, 1993) folyamán szintén jelentős változás figyelhető meg az impedancia paraméterekben, amelyek a szerkezet változását tükrözik. A mérés technikáját néhány esetben nem írták le pontosan, de a legtöbb alkalommal kettő illetve négy elektródás módszert alkalmaztak, ahol az elektródákat a növényi szövetbe szúrták (Toyoda és Tsenkova, 1998; Zhang és Willison, 1991; Vozáry, 1996). Két elektródánál elektródpolarizáció lép fel a feszültség mérő elektródák között. A négy 125
2 elektródás kísérleteknél nincs elektródpolarizáció, mivel a feszültség mérő elektródák között nem folyik áram (Schwan, 1968). Célunk egyrészt az volt, hogy megmérjük gyümölcs szeletek elektromos impedancia spektrumát kettő és négy elektródás elrendezésben, másrészt, pedig az, hogy megállapítsuk, hogyan változnak az impedancia spektrumok gyümölcsdarabokban szárítás folyamán. Vizsgált anyag és mérési módszer A méréseket 30mm*25mm*6mm-es Jonathan alma szeleteken végeztük. A szeleteket Venticell 110 típusú laboratóriumi szárítószekrényben szárítottuk 50 és 60 C hőmérsékleten. A szárítás időtartama 500 perc volt 15, ill. 5 percenkénti mintavételezéssel. Minden egyes szelet tömegét megmértük a szárítószekrénybe helyezés előtt (m o ) és közvetlenül az impedancia mérés után (m). A minták nedvességtartalmát (w) a nedves súlyra vonatkoztatva határoztuk meg a tömegcsökkenés értékéből, azzal a feltételezéssel, hogy kiinduláskor az almaszelet nedvességtartalma 89 %: m w = o m ( m m) o Méréseinkhez arannyal bevont 14 mm hosszú 0.6 mm átmérőjű réz tűket használtunk kettő és négy elektródás elrendezésben. Az elektródákat Socapex csatlakozó felhasználásával készítettük. A kéttűs változatnál a két elektróda távolsága, illetve a négytűs változatnál a feszültségmérő elektródák távolsága 1.8, 4.6, 6.8 mm volt. A 3 db kéttűs és a 3 db négytűs elektródák különböző távolságokkal az 1. ábrán láthatóak. Az elektródákat teflon szigetelésű réz huzallal kapcsoltuk a négy BNC csatlakozóhoz, amelyeket egyenként 1m árnyékolt kábellel erősítettük a HP4284A impedancia mérő bemenetére, ahogy ezt a 2. ábra mutatja. 1. ábra. Kettő és négytűs elektródák 2. ábra. A BNC csatlakozó egy négytűs különböző távolságokkal elektródával Az impedancia spektrumokat egy HP4284A típusú precíziós RLC mérővel határoztuk meg 30 Hz és 800 khz frekvencia tartományban. A váltakozó áramú komplex 126
3 impedancia az U=Uo*cosωt + i*uo*sinω komplex feszültség és az I=Io*cosωt + i*sinωt komplex áramerősség hányadosa, ahol i a képzetes egység és ω=2πf, f a mérő frekvencia. A komplex impedancia nagyságát és fázisszögét mértük meg 51 különböző frekvencián, miközben a mintán a feszültség maximális értéke 1 V volt. Eredmények és értékelések A 3. és az 5. ábrán az elektromos potenciál eloszlását szimuláltuk MATLAB program felhasználásával kettő és négy elektródás elrendezésnél. Az elektród polarizáció jól megfigyelhető a két elektródás elrendezésnél, a mérő elektródákon a potenciál különbség nagy. A négyelektródás elrendezésnél a feszültségmérő elektródák között nem folyik áram, így nincs elektród polarizáció, a potenciál különbség kisebb. A 4. és 6. ábrán a két és a négy elektródás elrendezés kapcsolási rajza látható. Ezek az ábrák is azt szemléltetik, hogy a négy elektródás elrendezésnél az elektród polarizációt nem mérjük, csak a szövetre jellemző impedanciát. 3. ábra. Elektromos potenciál eloszlás 4. ábra. Kételektródás elrendezés szimulálása MATLAB programmal kapcsolási vázlata kételektródás elrendezésnél 5. ábra. Elektromos potenciál eloszlás 6. ábra. Négyelektródás elrendezés szimulálása MATLAB programmal kapcsolási vázlata négyelektródás elrendezésnél 127
4 A 7/A és a 7/B ábrán egy-egy almaszelet impedancia spektruma látható a komplex számsíkon különböző feszültségmérő elektróda távolságokkal. Az 7/B ábrán a görbék jobb oldalán az alacsony frekvenciáknál növekvő impedancia értékek figyelhetőek meg. Ezek a nagyobb impedancia értékek az elektródpolarizáció jelenlétére utalnak a két elektródás méréseknél. A négyelektródás mérésnél ezt nem tapasztaltuk (7/A ábra). Az ábrákon jól elkülöníthetőek a különböző elektródtávolságokkal mért impedancia értékek. A feszültségmérő elektródák távolságának növelésével azonos frekvenciánál nagyobb impedancia értékek jelentek meg. A B 7. ábra. Egy-egy almaszelet komplex impedancia spektruma különböző távolságú elektródákkal mérve (A - négy elektródás elrendezés, B - kételektródás elrendezés) A 8. ábrán az impedancia abszolút értékét a feszültségmérő elektródák távolságának függvényében ábrázoltuk egy frekvencia értéknél (10000Hz). Megfigyelhetjük, hogy négy elektródával mért impedancia értékekre nagyobb pontossággal tudunk egyenest illeszteni, mint a két elektródával mért impedancia értékekre mivel itt a két belső elektróda közötti áramsűrűség gyakorlatilag állandó. Hasonló összefüggéseket tapasztaltunk a többi frekvenciánál is. 8. ábra. Impedancia abszolút értéke Hz frekvenciánál a feszültségmérő elektródák távolságának függvényében 128
5 A 9 /A, B, C és D ábrákon különböző nedvességtartalmú almaszeletek impedancia nagysága és fázisszöge látható a frekvencia függvényében 1.8, 4.6 és 6.8 mm feszültségmérő elektróda távolságokkal. Mindegyik mérést négy elektródás elrendezéssel külön almaszeleten végeztük. Az ábrákon az impedancia nagyságát figyelve jól elkülöníthető a különböző elektródatávolságokkal végzett mérések. Azt is megfigyelhetjük, hogy az impedancia nagysága a szárítás előrehaladtával növekszik. A B C D 9. ábra Különböző nedvességtartalmú (89%(A), 59%(B), 50.77%(C), 35.91(D) almaszeletek impedancia nagysága és fázisszöge a frekvencia függvényében különböző elektródatávolságokkal négyelektródás mérésnél A fázisszög, amely leginkább jellemzi az anyagban bekövetkezett változásokat, a nedvességtartalom csökkenésével szintén jelentős változáson megy keresztül. A 89% nedvességtartalmú minta fázisszöge minden elektród távolságnál ugyanolyan spektrális eloszlást mutat. Ez azt jelenti, hogy a minta belseje teljesen homogén, akárhol szúrjuk bele az elektródát, mindenütt ugyanolyan a szerkezete. A fázisszög Hz-nél megfigyelhető minimuma csökken a nedvességtartalom csökkenésével. A 9/B, C és D ábrákon a különböző elektródtávolságoknál mért fázisszög spektrumok különböznek egymástól. Ennek oka lehet az, hogy a száradás folyamán a szelet belsejében különböző nedvességtartalmú tartományok alakulnak ki. A legszárazabb minta már kondenzátorként viselkedik. 129
6 A fázisszög spektrális eloszlása a kételektródás méréseknél hasonlóan változik, mint a négyelektródás méréseknél a nedvességtartalom csökkenésével (10/A, B, C és D ábrán). Az impedancia nagysága két elektródával mért spektrumokban is jelentősen megnőtt a nedvességtartalom csökkenésével. A B C D 10. ábra Különböző nedvességtartalmú (89%(A), 59%(B), 50.77%(C), 35.91(D) almaszeletek impedancia nagysága és fázisszöge a frekvencia függvényében különböző elektródatávolságokkal kételektródás mérésnél Az 11. ábrán a szárítás folyamán felvett komplex impedancia nagyságát ábrázoltuk a tömegcsökkenés függvényében egy frekvencia értéknél (10000 Hz). Az ábrán látható mérést négy elektródával végeztük, ahol a feszültségmérő-elektródák távolsága 6.8 mm volt. Azt tapasztaltuk, hogy a négyelektródás eljárásoknál jóval kisebb az impedancia értékek szórása, mint a kételektródás eljárásoknál. Az impedancia értékek nagyobbak lettek a tömegcsökkenés növekedésével, a száradás előrehaladásával. Minden elektródánál, minden elektródtávolságnál a komplex impedancia növekedését figyeltük meg a nedvességtartalom csökkenésével ezért az impedancia mérése alkalmas a szárítási folyamatok követésére. 130
7 11. ábra. A száradási görbe és az impedancia nagysága Hz frekvenciánál az idő függvényében A 12. ábrán egy almaszelet fázisszög spektrumai láthatóak különböző száradási idő után. Ezeket a spektrumokat úgy határoztuk meg, hogy a szeletbe a szárítás kezdeti pillanatában beleszúrtuk az elektródákat, majd az elektródákkal együtt helyeztük be a szeletet a szárítószekrénybe, és 13 percenként megmértük az impedancia spektrumot (az ábrán nem mindegyik mérés görbéje látható az áttekinthetőség kedvéért). A szárítószekrényben 60 C-s hőmérsékletű levegővel szárítottunk. A spektrumban Hz frekvenciánál levő minimum értéke (-43 ) a szárítószekrénybe helyezést követően növekszik, és helye a nagyobb frekvenciák felé tolódik el. Ebben a szakaszban a szelet hőmérséklete növekszik. Majd perc elteltével a minimum értéke fokozatosan csökken, és közben eltolódik a kisebb frekvenciák felé. 400 perces szárítás után fokozatosan növekedik a fázisszög a nagy frekvenciáknál. 12. ábra Almaszelet impedanciájának fázisszög spektruma a szárítás különböző időpontjaiban A 13. ábrán az impedancia nagyságának spektrumai láthatóak a frekvencia függvényében. A 12. és a 13. ábrán ugyanazon almaszelet impedancia nagyságának és 131
8 fázisszögének értékei láthatóak a szárítás különböző idő pillanataiban. Az impedancia nagysága a száradás előrehaladtával kezdetben csökkent, majd a növekedett. A kezdeti impedancia csökkenést magyarázhatja az, hogy magasabb hőmérsékleten kisebb akár a sejtek közötti, akár a sejteken belüli állomány viszkozitása csökken, és így az ionok mozgékonysága megnő, ami ellenállás csökkenést idéz elő. Ugyancsak az ellenállás csökkenését okozhatja a száradás kezdeti szakaszában a víz eltávozása miatt az ionok koncentrációjának növekedése is. A további szárítás során a víz mennyiségének csökkenése miatt a viszkozitás megnő, és az ionok mozgékonysága csökken. Ez az ellenállás növekedését eredményezi. Következtetés 13. ábra Almaszelet impedanciájának nagysága a frekvencia függvényében a szárítás különböző időpontjaiban Az almaszeletek impedancia nagysága és fázisszöge a szárítás különböző szakaszaiban különböző értékeket vesz fel. A megfigyelt változások alapján kidolgozható az almaszelet elektromos modellje, amely ellenállásainak és kapacitásainak változásaival kvantitatívan leírhatók a szárítás során lejátszódó folyamatok. Köszönetnyilvánítás A jelen munka a T OTKA pályázat támogatásával készült. Irodalomjegyzék Grimmnes and O.G. Martines (2000). Impedance and Bioelectricity Basics,Academic Harker, F.R., Maindonald, J.H., (1994). Ripening of Nectarine Fruit. Plant Physiol (1994) 106: Schwan, P.H., Ferris, D.C., (1968) Four-Electrode Null Techniques for Impedance Measurement with High Resolution. Rev. of Sci. Instr. 1968/ Toyoda, K., Tsenkova, R., (1998). Measurement of freezing process of agricultural products by impedance spectroscopy Control Applications in Post-harvest and Processing Technology (1998).Budapest Vozáry, E., Horváth, D., (1999): Almaszövet elektromos impedanciájának változása szárítás folyamán,3.magyar Szárítási Szimpózium, Nyíregyháza 132
9 Vozáry, E., László P., Firtha, F., Sass, P., (1996).Impedance measurement of apple varieties th World Congr. Food Science and Technology, Budapest Zhang, M.I.N.,Willison J.H.M., Electrical impedance analysis in plant tissue: a double shell model, Exp. Bot
Bevezetés a méréstechinkába, és jelfeldologzásba jegyzőkönyv
Bevezetés a méréstechinkába, és jelfeldologzásba jegyzőkönyv Lódi Péter(D1WBA1) 2015 Március 18. Bevezetés: Mérés helye: PPKE-ITK 3. emeleti 321-es Mérőlabor Mérés ideje: 2015.03.25. 13:15-16:00 Mérés
A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.
A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális
Amit a kapacitív gabona nedvességmérésről tudni kell
Szemestermények korszerű szárítási, tárolási, feldolgozási és mérési technológiái Gödöllő, 2018 Amit a kapacitív gabona nedvességmérésről tudni kell Dr. Gillay Zoltán, adjunktus Szent István Egyetem, Élelmiszertudományi
A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra
A soros RC-kör Az átmeneti jelenségek vizsgálatakor soros RC-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük
Számítási feladatok a 6. fejezethez
Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz
Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk
Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés 2015.05.13. RC tag Bartha András, Dobránszky Márk 1. Tanulmányozza át az ELVIS rendszer rövid leírását! Áttanulmányoztuk. 2. Húzzon a tartóból két
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését
Áramköri elemek mérése ipari módszerekkel
3. aboratóriumi gyakorlat Áramköri elemek mérése ipari módszerekkel. dolgozat célja oltmérők, ampermérők használata áramköri elemek mérésénél, mérési hibák megállapítása és azok függősége a használt mérőműszerek
Számítási feladatok megoldással a 6. fejezethez
Számítási feladatok megoldással a 6. fejezethez. Egy szinuszosan változó áram a polaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T = 4 t = 4 = 4ms 6 f = = =,5 Hz = 5
A II. kategória Fizika OKTV mérési feladatainak megoldása
Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett
6 az 1-ben digitális multiméter AX-190A. Használati útmutató
6 az 1-ben digitális multiméter AX-190A Használati útmutató 1. Biztonsági szabályok SOHA ne használjon a mérőműszernél olyan feszültséget, vagy áramerősséget, amely értéke túllépi a megadott maximális
A soros RC-kör. t, szög [rad]
A soros C-kör Az átmeneti jelenségek vizsgálatakor soros C-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük
ELLENÁLLÁSOK HŐMÉRSÉKLETFÜGGÉSE. Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o
ELLENÁLLÁSO HŐMÉRSÉLETFÜGGÉSE Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o szobahőmérsékleten értelmezett. Ismeretfrissítésként tekintsük át az 1. táblázat adatait:
1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?
.. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.
Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése
Kutatási beszámoló 2015. február Gyüre Balázs BME Fizika tanszék Dr. Simon Ferenc csoportja Tangens delta mérésére alkalmas mérési összeállítás elkészítése A TKI-Ferrit Fejlsztő és Gyártó Kft.-nek munkája
Nanokeménység mérések
Cirkónium Anyagtudományi Kutatások ek Nguyen Quang Chinh, Ugi Dávid ELTE Anyagfizikai Tanszék Kutatási jelentés a Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal támogatásával az NKFI Alapból létrejött
Hőmérsékleti sugárzás
Ideális fekete test sugárzása Hőmérsékleti sugárzás Elméleti háttér Egy ideális fekete test leírható egy egyenletes hőmérsékletű falú üreggel. A fala nemcsak kibocsát, hanem el is nyel energiát, és spektrális
FAM eszközök vizsgálatára vonatkozó szabványok felülvizsgálata
Budapesti Műszaki és Gazdaságtudományi Egyetem Nagyfeszültségű Laboratórium FAM eszközök vizsgálatára vonatkozó szabványok felülvizsgálata Cselkó Richárd Dr. Berta István, Dr. Kiss István, Dr. Németh Bálint,
Gyakorlati Forduló Válaszlap Fizika, Kémia, Biológia
Gyakorlati Forduló Válaszlap Fizika, Kémia, Biológia Töltsd ki az alábbiakat! A DIÁKOK NEVEI: CSOPORT JELE: ORSZÁG: ALÁÍRÁSOK: 1 Milyen változás(oka)t figyeltetek meg az alkoholnak a DNS-oldathoz adása
A soros RL-kör. t, szög [rad] áram feszültség. 1. ábra Feszültség és áramviszonyok az ellenálláson, illetve a tekercsen
A soros L-kör Mint ismeretes, a tekercsen az áram 90 fokot késik a hez képest, ahogyan az az 1. ábrán látható. A valós terhelésen a és az áramerősség azonos fázisú. Lényegében viszonyítás kérdése, de lássuk
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2014. október 13. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. október 13. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
RC tag mérési jegyz könyv
RC tag mérési jegyz könyv Mérést végezte: Csutak Balázs, Farkas Viktória Mérés helye és ideje: ITK 320. terem, 2016.03.09 A mérés célja: Az ELVIS próbapanel és az ELVIS m szerek használatának elsajátítása,
Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat
Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos
2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel!
1.) Hány Coulomb töltést tartalmaz a 72 Ah ás akkumulátor? 2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! a.) alumínium b.) ezüst c.)
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2016. május 18. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 18. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Modern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7)
Jegyzőkönyv a mágneses szuszceptibilitás méréséről (7) Készítette: Tüzes Dániel Mérés ideje: 8-1-1, szerda 14-18 óra Jegyzőkönyv elkészülte: 8-1-8 A mérés célja A feladat egy mágneses térerősségmérő eszköz
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 02 Elektronikai technikus
Elektronikus fekete doboz vizsgálata
Elektronikus fekete doboz vizsgálata 1. Feladatok a) Munkahelyén egy elektronikus fekete dobozt talál, amely egy nem szabványos egyenáramú áramforrást, egy kondenzátort és egy ellenállást tartalmaz. Méréssel
VÁLTAKOZÓ ÁRAMÚ KÖRÖK
Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,
Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek:
3. Gyakorlat 34-5 Egy Ω ellenállású elektromos fűtőtestre 56 V amplitúdójú váltakozó feszültséget kapcsolunk. Mekkora a fűtőtest teljesítménye? Jelölések: R = Ω, U o = 56 V fűtőtestben folyó áram amplitudója
ALÁLLOMÁSI FÖLDELŐHÁLÓ SZÉTTERJEDÉSI ELLENÁLLÁSÁNAK MÉRÉSE
ALÁLLOMÁSI FÖLDELŐHÁLÓ SZÉTTERJEDÉSI ELLENÁLLÁSÁNAK MÉRÉSE Mányoki László alállomási üzletág 2017.10.18. 0 Szabványváltozások MSZ 1610 Létesítési és biztonsági szabályzat 1000 V-nál nagyobb feszültségű
1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2
1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2013. október 14. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2013. október 14. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2015. október 12. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 12. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Mérés és adatgyűjtés
Mérés és adatgyűjtés 4. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 4. óra Verzió: 1.3 Utolsó frissítés: 2011. május 15. 1/51 Tartalom I 1 A/D konverterek alkalmazása
7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?
1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2010. október 18. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk egyenáramú jellemzése és alkalmazásai. Elmélet Az erõsítõ fogalmát valamint az integrált mûveleti erõsítõk szerkezetét és viselkedését
Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 25. A mérés száma és címe: 5. ESR (Elektronspin rezonancia) Értékelés: A beadás dátuma: 2011. nov. 16. A mérést végezte: Szőke Kálmán Benjamin
ELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek középszint 06 ÉRETTSÉGI VIZSG 007. május 5. ELEKTRONIKI LPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTRÁLIS MINISZTÉRIM Teszt jellegű
LABORATÓRIUMI PIROLÍZIS ÉS A PIROLÍZIS-TERMÉKEK NÉHÁNY JELLEMZŐJÉNEK VIZSGÁLATA
LABORATÓRIUMI PIROLÍZIS ÉS A PIROLÍZIS-TERMÉKEK NÉHÁNY JELLEMZŐJÉNEK VIZSGÁLATA TOLNERLászló -CZINKOTAImre -SIMÁNDIPéter RÁCZ Istvánné - SOMOGYI Ferenc Mit vizsgáltunk? TSZH - Települési szilárd hulladék,
EGYFÁZISÚ VÁLTAKOZÓ ÁRAM
VANYSEEŐ KÉPÉS 0 5 EGYFÁSÚ VÁTAKOÓ ÁAM ÖSSEÁÍTOTTA NAGY ÁSÓ MÉNÖKTANÁ - - Tartalomjegyzék Váltakozó áram fogalma és jellemzői...3 Szinuszos lefolyású váltakozó feszültség előállítása...3 A szinuszos lefolyású
X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ
X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel és módszerekkel történik. A feldolgozás előtt az analóg jeleket digitalizálni kell.
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2013. május 23. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. május 23. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Fázisátalakulások vizsgálata
Klasszikus Fizika Laboratórium VI.mérés Fázisátalakulások vizsgálata Mérést végezte: Vanó Lilla VALTAAT.ELTE Mérés időpontja: 2012.10.18.. 1. Mérés leírása A mérés során egy adott minta viselkedését vizsgáljuk
Jelgenerátorok ELEKTRONIKA_2
Jelgenerátorok ELEKTRONIKA_2 TEMATIKA Jelgenerátorok osztályozása. Túlvezérelt erősítők. Feszültségkomparátorok. Visszacsatolt komparátorok. Multivibrátor. Pozitív visszacsatolás. Oszcillátorok. RC oszcillátorok.
Digitális hangszintmérő
Digitális hangszintmérő Modell DM-1358 A jelen használati útmutató másolása, bemutatása és terjesztése a Transfer Multisort Elektronik írásbeli hozzájárulását igényli. Használati útmutató Óvintézkedések
Tájékoztató. Használható segédeszköz: számológép
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított), a 27/2012 (VIII. 27.) NGM rendelet a 29/2016 (III.26.) NMG rendelet által módosított, a 27/2012 (VIII. 27.) NGM rendelet
SZIGETELŐANYAGOK VIZSGÁLATA
SZIGETELŐANYAGOK VIZSGÁLATA Szigetelési ellenállás mérése A villamos szigetelőanyagok és szigetelések egyik legfontosabb jellemzője a szigetelési ellenállás. Szigetelési ellenálláson az anyagra kapcsolt
Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.
Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:
PhD DISSZERTÁCIÓ TÉZISEI
Budapesti Muszaki és Gazdaságtudományi Egyetem Fizikai Kémia Tanszék MTA-BME Lágy Anyagok Laboratóriuma PhD DISSZERTÁCIÓ TÉZISEI Mágneses tér hatása kompozit gélek és elasztomerek rugalmasságára Készítette:
Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör?
Oszcillátorok Párhuzamos rezgőkör L C Miért rezeg a rezgőkör? Töltsük fel az ábrán látható kondenzátor egy megadott U feszültségre, majd zárjuk az áramkört az ábrán látható módon. Mind a tekercsen, mind
a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása
Bolyai Farkas Országos Fizika Tantárgyverseny 2016 Bolyai Farkas Elméleti Líceum, Marosvásárhely XI. Osztály 1. Adott egy alap áramköri elemen a feszültség u=220sin(314t-30 0 )V és az áramerősség i=2sin(314t-30
A biztonsággal kapcsolatos információk. Model AX-C850. Használati útmutató
A biztonsággal kapcsolatos információk Model AX-C850 Használati útmutató Áramütés vagy testi sérülések elkerülése érdekében: Sosem csatlakoztasson két bemeneti csatlakozó aljzatra vagy tetszőleges bemeneti
Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.
El. II. 4. mérés. 1. Áramgenerátorok bipoláris tranzisztorral A mérés célja: Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.
1. Az előlap bemutatása
AX-T2200 1. Az előlap bemutatása 1, 2, 3, 4. Feszültségválasztó kapcsolók (AC750V/500V/250V/1000V) 5. ellenállás tartomány kiválasztása (RANGE) 6. Főkapcsoló: auto-lock főkapcsoló (POWER) 7. Magasfeszültség
Modern fizika laboratórium
Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid
11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét
ELEKTROTECHNIKA (VÁLASZTHATÓ) TANTÁRGY 11-12. évfolyam A tantárgy megnevezése: elektrotechnika Évi óraszám: 69 Tanítási hetek száma: 37 + 32 Tanítási órák száma: 1 óra/hét A képzés célja: Választható tantárgyként
e-gépész.hu >> Szellőztetés hatása a szén-dioxid-koncentrációra lakóépületekben Szerzo: Csáki Imre, tanársegéd, Debreceni Egyetem Műszaki Kar
e-gépész.hu >> Szellőztetés hatása a szén-dioxid-koncentrációra lakóépületekben Szerzo: Csáki Imre, tanársegéd, Debreceni Egyetem Műszaki Kar Az ember zárt térben tölti életének 80-90%-át. Azokban a lakóépületekben,
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2015. október 12. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. október 12. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
ROG4K. EM210 fogyasztásmérő áramérzékelő ( A) Előnyök. Leírás
ROG4K EM210 fogyasztásmérő áramérzékelő (20-4000 A) Leírás Az áramérzékelő működése Rogowski elven alapul, EM210 fogyasztásmérővel együtt kell használni ( EM210 72D MV5 és EM210 72D MV6 verzió) egy-két
Felhasználói kézikönyv
Felhasználói kézikönyv 870F Digitális Lakatfogó Multiméter TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Biztonsági figyelmeztetések... 2 3. Előlap és kezelőszervek... 2 4. Műszaki jellemzők... 3 5. Mérési jellemzők...
Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN
Dr. Gyurcsek István Példafeladatok Helygörbék Bode-diagramok 1 2016.11.11.. Helygörbe szerkesztése VIZSGÁLAT: Mi a következménye annak, ha az áramkör valamelyik jellemző paramétere változik? Helygörbe
Rádiókommunikációval is Az adatokat szabad rádiófrekvencián sugározza az őt lekérdező AQUADAT készüléknek.
- Műszaki adatok - Bekötés - Érzékelők - Levegő tisztítású ph armatúra - Nyomás alatt szerelhető ph armatúra Rádiókommunikációval is Az adatokat szabad rádiófrekvencián sugározza az őt lekérdező AQUADAT
Oktatási Hivatal. A 2008/2009. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja. FIZIKÁBÓL II.
Oktatási Hivatal A 8/9. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja FIZIKÁBÓL II. kategóriában Feladat a Fizika Országos Középiskolai Tanulmányi Verseny harmadik fordulójára.
Modern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. április 20. A mérés száma és címe: 20. Folyadékáramlások 2D-ban Értékelés: A beadás dátuma: 2009. április 28. A mérést végezte: Márton Krisztina Zsigmond
Hőkezelés az élelmiszeriparban
Hőkezelés az élelmiszeriparban A HŐKEZELÉS CÉLJAI A sejtközi gázok eltávolítása, gyümölcsök és zöldségek húzatása Fagyasztás előtt, kellemes íz kialakítása, főtt állomány, enzim bénítás, előfőzés Gyümölcs
BMF, Kandó Kálmán Villamosmérnöki Kar, Híradástechnika Intézet. Aktív Szűrő Mérése - Mérési Útmutató
Aktív Szűrő Mérése - Mérési Útmutató A mérést végezte ( név, neptun kód ): A mérés időpontja: - 1 - A mérés célja, hogy megismerkedjenek a Tina Pro nevű simulációs szoftverrel, és elsajátítsák kezelését.
Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.
Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2009. 2006. május 22. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati
Az Ohm törvény. Ellenállás karakterisztikája. A feszültség és az áramerősség egymással egyenesen arányos, tehát hányadosuk állandó.
Ohm törvénye Az Ohm törvény Az áramkörben folyó áram erőssége függ az alkalmazott áramforrás feszültségétől. Könnyen elvégezhető kísérlettel mérhetjük az áramkörbe kapcsolt fogyasztón a feszültséget és
Villamosságtan szigorlati tételek
Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok
ELEKTRONIKAI ALAPISMERETEK
Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. április 19. ELEKTRONIKAI ALAPISMERETEK DÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 240 perc 2006
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2008. október 20. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. október 20. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS
TORKEL 840 / 860 Akkumulátor terhelőegységek
TORKEL 840 / 860 Akkumulátor terhelőegységek Az erőművekben és transzformátor alállomásokon lévő akkumulátortelepeknek hálózat kiesés esetén készenléti energiát kell szolgáltatniuk. Sajnálatos módon az
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2014. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 20. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
Az állományon belüli és kívüli hőmérséklet különbség alakulása a nappali órákban a koronatér fölötti térben május és október közötti időszak során
Eredmények Részletes jelentésünkben a 2005-ös év adatait dolgoztuk fel. Természetesen a korábbi évek adatait is feldolgoztuk, de a terjedelmi korlátok miatt csak egy évet részletezünk. A tárgyévben az
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Passzív alkatrészek és passzív áramkörök. Elmélet A passzív elektronikai alkatrészek elméleti ismertetése az. prezentációban található. A 2. prezentáció
Tranziens jelenségek rövid összefoglalás
Tranziens jelenségek rövid összefoglalás Átmenet alakul ki akkor, ha van energiatároló (kapacitás vagy induktivitás) a rendszerben, mert ezeken a feszültség vagy áram nem jelenik meg azonnal, mint az ohmos
Modern Fizika Labor. 2. Az elemi töltés meghatározása. Fizika BSc. A mérés dátuma: nov. 29. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. nov. 29. A mérés száma és címe: 2. Az elemi töltés meghatározása Értékelés: A beadás dátuma: 2011. dec. 11. A mérést végezte: Szőke Kálmán Benjamin
Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép- és készülékszerelő
Elektrotechnika. Ballagi Áron
Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:
OP-300 MŰSZAKI ADATOK
OP-300 Félautomata, mikrokontrolleres vezérlésű, hálózati táplálású, asztali készülék fóliatasztatúrával 40 karakter, alfanumerikus LCD, háttérvilágítással i tartományok Felbontás ph 0,000... 14,000 ph
7. Mágneses szuszceptibilitás mérése
7. Mágneses szuszceptibilitás mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Mérés időpontja: 2012. 10. 25. I. A mérés célja: Egy mágneses térerősségmérő műszer
Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 35%.
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
Tesztelések és alkalmazási példák komplex elektromos impedancia mérő eszközzel
Tesztelések és alkalmazási példák komplex elektromos impedancia mérő eszközzel Karotázs Tudományos, Műszaki és Kereskedelmi Kft. Projektbemutató előadás Elektromos Impedancia Mérésére Termékcsoport Fejlesztés
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2011. október 17. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. október 17. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
Kontakt/nem kontakt AC/DC feszültség teszter. AC: V, DC: 1,5-36V
1131 Budapest, Topolya utca 4-8. Tel.: 788-8772; Fax: 783-1196 info.hu@agrolegato.com www.agrolegato.com Extech Cikkszám Megnevezés Leírás Akciós nettó ár (Ft) Kép 39240 Vízhatlan maghőmérő 39272 Összecsukható
Feszültségérzékelők a méréstechnikában
5. Laboratóriumi gyakorlat Feszültségérzékelők a méréstechnikában 1. A gyakorlat célja Az elektronikus mérőműszerekben használatos különböző feszültségdetektoroknak tanulmányozása, átviteli karakterisztika
1. Feladat. Megoldás. Számítsd ki az ellenállás-hálózat eredő ellenállását az A B az A C és a B C pontok között! Mindegyik ellenállás értéke 100 Ω.
1. Feladat Számítsd ki az ellenállás-hálózat eredő ellenállását az A B az A C és a B C pontok között! Mindegyik ellenállás értéke 100 Ω. A 1 2 B 3 4 5 6 7 A B pontok között C 13 = 1 + 3 = 2 = 200 Ω 76
ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK
VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK Szóbeli vizsgarész értékelési táblázata A szóbeli felelet értékelése az alábbi szempontok és alapján történik:
3. Gyakorlat. A soros RLC áramkör tanulmányozása
3. Gyakorla A soros áramkör anlmányozása. A gyakorla célkiőzései Válakozó áramú áramkörökben a ekercsek és kondenzáorok frekvenciafüggı reakív ellenállással ún. reakanciával rendelkeznek. Sajáságos lajdonságaik
A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA JAVÍTÁSI ÚTMUTATÓ. Pohár rezonanciája
Oktatási Hivatal A 017/018. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA JAVÍTÁSI ÚTMUTATÓ Pohár rezonanciája A mérőberendezés leírása: A mérőberendezés egy változtatható
Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató
ÓBUDAI EGYETEM Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató A mérést végezte: Neptun kód: A mérés időpontja: A méréshez szükséges eszközök:
Vezetők elektrosztatikus térben
Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2012. október 15. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. október 15. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
TÁROLÁSI FOLYAMATOK SORÁN FELLÉPŐ MINŐSÉGI VÁLTOZÁSOK MODELLEZÉSE
TÁROLÁSI FOLYAMATOK SORÁN FELLÉPŐ MINŐSÉGI VÁLTOZÁSOK MODELLEZÉSE Bevezetés A Tárolás során fellépő gyümölcsminőség változások modellezése témakörben 25-ben kezdtük el a Leibniz Institut für Agrartechnik,
Mérési hibák 2006.10.04. 1
Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség