A Mátyás-hegyi barlang átfogó gravitációs modellezése. Éget Csaba - Tóth Gyula BME Általános- és Fels geodézia Tanszék

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A Mátyás-hegyi barlang átfogó gravitációs modellezése. Éget Csaba - Tóth Gyula BME Általános- és Fels geodézia Tanszék"

Átírás

1 A Mátyás-hegyi barlang átfogó gravitációs modellezése Éget Csaba - Tóth Gyula BME Általános- és Fels geodézia Tanszék

2 Témák Bevezetés, el zmények A tömegmodell elkészítése geodéziai felmérés, 3D modellezés Gravitációs hatás számítása V, grad V, E Pontosságvizsgálatok További tervek 2

3 Bevezetés, el zmények Földfizikai kutatások a Mátyás-barlangban ELGI Gravitációs Laboratóriuma (gravitációs f alappont, mikrohálózati VG és Eötvös-inga mérések) Geodinamikai állomás (extenzométeres mérések) a Mátyás-hegy korábbi geodéziai felmérése megbízás alapján (Varga J.) küls tömegmodell készítése (Ultmann Z., TDK és diplomaterv) extenzométeres üreghatás modellezés (Kiss M. Detzky G., ELGI) 3

4 Mátyás-hegyi barlang K zet: fels -eocén korú nummulitiszes mészk és briozoás márga 4

5 Geodéziai felmérés (Varga J.) 5

6 3D tömegmodell (Ultmann Z.) Mér állomás + digitális fotogrammetria (Photo Modeller) 1:10000-es digitális topográfiai térképek Csak küls felmérés 6

7 Extenzométeres üreghatás modellezés (Kiss M., Detzky G.) 3D végeselem modellezés 7

8 A tömegmodell elkészítése Bels felmérés mér állomással Küls terület felmérése RTK-val Beillesztés EOV-be (GPS + MOM Gi-B3) Pontok ellen rzése, pótmérés Pontok összekötése 3D modellez szoftverben (Blender) poliéder tömegmodell Ponttisztítás, a modell ellen rzése zárt, vízhatlan modell lapok helyes irányításának ellen rzése (Laplace egy.) 8

9 Barlang üregek geodéziai felmérése AUTOCAD DXF állomány több mint 1200 pont felmérése geodéziai eszközökkel (mér állomás, távmér, szalag, stb.) 9

10 Barlang üregek geodéziai felmérése AutoCAD DXF állomány -> drótváz készítése 10

11 Küls terület felmérése RTK-val 356 mért új pont WGS84 EOV transzformáció 11

12 Küls terület felmérése RTK-val 12

13 Beillesztés országos rendszerbe Giró azimut mérés a barlangban és barlangon kívül (MOM Gi-B3) RTK GPS mérés a barlangon kívül A helyi rendszer tájékozása és bekapcsolása országos (EOV) rendszerbe 13

14 Giroteodolitos mérés (MOM Gi-B3) 2 ponton (bels : 82, küls : 821-es ponton) mért azimutból a hálózat tájékozása számítható 14

15 Giroteodolitos mérés (MOM Gi-B3) 15

16 GPS mérések meghatározott pontok: 821, H1, C1, C2 (Ultmann Z.) transzformáció EOV-be barlang bejárat Psz. EOV_Y EOV_X HBalti C C H

17 Tömegmodell készítése sokszöglapokkal határolt poliéder test alapmodell (referencia) hegy modell (üregek nélkül) üregmodell (negatív s r ség!) Probléma: a mért ponthalmaz pontjait ( mákostészta ) hogyan kössük össze? pont vízálló test legyen (küls bels térrész) a lapokon az élek körbejárási iránya lényeges 17

18 Térbeli modellezés Blender-ben A Blender egy nyílt forrású térbeli modellez szoftver ( Nem csak játékfigurák modellezésére! 18

19 A modell lapjainak kialakítása... Minden világos? 19

20 Szerkesztés Blenderben 20

21 A lapok normálvektorai szerkesztés közben 21

22 Hogyan ellen rizzük az elkészült modellt? Duplikált pontok, élek, nem záródó felületek ellen rzése MeshLab-ban A test lapjainak egyez irányítását ellen rizhetjük a Laplace-összefüggés kiszámításával: V xx + V yy + V zz = 0 22

23 Els ellen rzés - MeshLab 23

24 Poliéder gravitációs hatásának P számítása n i r i r 2ij j. él r 1ij n i b ij ortonormális bázis: (h ij, t ij,n i ) i. lap h ij r ij t ij h ij = t ij n i potenciál tömegv. erı gravitációs gradiensek V = V 1 2 V Gρ = Gρ = Gρ ri ni i ni i ni i j b j j ij b b r ij ij ij r ij H. Holstein (1996) képletei 24

25 Ellen rzés a Laplace-egyenlettel Ahol nemzérus értékeket kapunk, annak a helynek a közelében kell keresni a hibát a modellben! 25

26 Az elkészült modell részei referencia modell (110 pont, 216 lap) Mátyás-hegy (küls : 714 pont, 1424 lap) üregek (bels : 1224 pont, 2430 lap) kiegészítések (pillérek, ajtók, stb : 284 pont, 444 lap) összesen: 2332 pont, 4514 lap 26

27 Mátyás-hegy modell (küls ) 27

28 Referencia modell 28

29 Üreg modell (bels ) 29

30 Kiegészít modell (bels ) 30

31 Teljes modell 31

32 Teljes modell (nagyítás) 32

33 Gravitációs hatás számítása az összetett tömegmodellre Mátyás-hegy (küls modell) Referencia modell (peremhatás eltávolítása) Barlang üregei (bels modell és kiegészítés) küls - referencia + bels 33

34 PolyGrav programmal számítható: gravitációs potenciál (V) gravitációs er (g = grad V) vektora Eötvös-tenzor (E), tetsz leges ponthalmaz pontjaira ill. egyenl köz térbeli rácspontokra, és akárhány részb l álló összetett testre is Fortran 90 programkód (1100 sor, 4 modul) 34

35 PolyGrav program állományai input: GeomView off formátum output: ASCII (ponthalmaz) VTK (rácspontok) # Point DataFile # Eötvös tensor of polyhedra E # NPOINTS 22 # id, x, y, z, Exx, Exy, Exz, Exy, Eyy, Eyz, Exz, Eyz, Ezz OFF # vtk DataFile Version 3.0 Eötvös tensor of polyhedra E ASCII DATASET STRUCTURED_POINTS DIMENSIONS ORIGIN SPACING POINT_DATA TENSORS Eötvös float

36 VG változása a magassággal Vizsgálat a 82-es számú gravitációs f alappont függ legesében ( = 2710 kg/m 3 ) 2800 gravitációs f alappont VG (Eötvös) a változás nem lineáris módon közel 800 E / 4 m (mért: 2519 E) magasság (m) 36

37 , % % ( $ $! 2 4 / % $#(! 0 4 / % ' $ $! % $#'! % & $ $! % $#&! 2 0 / % " $ $! 0 0 / % $#"! / ' ' # ' $ 37 Eötvös-tenzor változása a magassággal. * - * + ' ) " % ' $ ' ' " % ' $ ' ) & % ' $ ' ' & % ' $ ' ) ' % ' $ ' ' ' % ' $ ' ) ( % ' $ $ $ $ $ $ $ / $ $ / $ $ / $ $ $ $ $ $ 2 3

38 Átfogó gravitációs modellezés Az összes gravitációs paraméter modellezése: gravitációs potenciál, V ( J/kg) tömegvonzási er, g ( Gal) Eötvös tenzor, E (Eötvös, E) S r ség értékek változtatása Térbeli rácspontokra végzett számítás = pontban (1 1 1 m-es rács) számított érték 38

39 Tömegvonzási potenciál, V H = m 1000 J/kg = 0.1 mm szintfelület eltérés 39

40 Tömegvonzási er H = m 40

41 V zy gradiens H = m 41

42 Vertikális gradiens, VG (V zz ) H = m 42

43 Hibavizsgálatok A meghatározott modell pontok koordináta hibáit vizsgáltuk minden mennyiségre: gravitációs potenciál, V ( J/kg) tömegvonzási er, g ( Gal) Eötvös tenzor, E (Eötvös, E) Monte-Carlo szimuláció (500 ismétlés; Laky S.) Normális eloszlású, 1,3,5,10 cm-es pont középhibák Átlag értékek és szórások számítása 43

44 Szórások eloszlása a modellben 1 cm-es ponthiba, VG H = m átlagos szórás: 31 E 44

45 Szórások eloszlása a modellben 5 cm-es ponthiba, VG H = m átlagos szórás: 76 E 45

46 Szórások hisztogramja VG értékek hisztogramja 1 cm-es ponthiba esetén 46

47 Kivágó értékek a modellben az Eötvös-tenzor különböz elemeire 47

48 g-értékek hisztogramja 1 cm-es pont középhiba esetén szabályos, nincsenek túlzottan kivágó értékek Gal 48

49 Összefoglalás Sikeresen modelleztük a Mátyás-hegy összetett tömegének, különösen a barlang üregeknek a gravitációs hatását Az egyik legnehezebb lépés volt a gravitációs modellezés szempontjából helyes modell elkészítése Hibavizsgálatot végeztünk Monte-Carlo szimulációval minden gravitációs paraméterre 49

50 További tervek Részletes vizsgálat a mikrobázis pontjain, összevetve a tényleges mérésekkel Hibavizsgálat során a s r ségi határfelületen átugró pontok kizárása Inhomogén s r ség eloszlás, nem modellezett üregek hatása 50

51 Köszönöm a figyelmet! 51

Magasságos GPS. avagy továbbra is

Magasságos GPS. avagy továbbra is Magasságos GPS avagy továbbra is Tisztázatlan kérdések az RTK-technológiával végzett magasságmeghatározás területén? http://www.sgo.fomi.hu/files/magassagi_problemak.pdf Takács Bence BME Általános- és

Részletesebben

NEHÉZSÉGI GRADIENSEK LINEARITÁS-VIZSGÁLATA A MÁTYÁS-BARLANGBAN

NEHÉZSÉGI GRADIENSEK LINEARITÁS-VIZSGÁLATA A MÁTYÁS-BARLANGBAN NEHÉZSÉGI GRADIENSEK LINEARITÁS-VIZSGÁLATA A MÁTYÁS-BARLANGBAN Völgyesi Lajos,, Ultmann Zita Question of linearity of the gravity gradients in the Mátyás-cave Linear changing between the adjoining network

Részletesebben

A kivitelezés geodéziai munkái II. Magasépítés

A kivitelezés geodéziai munkái II. Magasépítés A kivitelezés geodéziai munkái II. Magasépítés Építésirányítási feladatok Kitűzési terv: a tervezési térkép másolatán Az elkészítése a tervező felelőssége Nehézségek: Gyakorlatban a geodéta bogarássza

Részletesebben

A PPP. a vonatkoztatási rendszer, az elmélet és gyakorlat összefüggése egy Fehérvár környéki kísérleti GNSS-mérés tapasztalatai alapján

A PPP. a vonatkoztatási rendszer, az elmélet és gyakorlat összefüggése egy Fehérvár környéki kísérleti GNSS-mérés tapasztalatai alapján GISopen konferencia, Székesfehérvár, 2017. 04. 11-13. A PPP a vonatkoztatási rendszer, az elmélet és gyakorlat összefüggése egy Fehérvár környéki kísérleti GNSS-mérés tapasztalatai alapján Busics György

Részletesebben

LOKÁLIS IONOSZFÉRA MODELLEZÉS ÉS ALKALMAZÁSA A GNSS HELYMEGHATÁROZÁSBAN

LOKÁLIS IONOSZFÉRA MODELLEZÉS ÉS ALKALMAZÁSA A GNSS HELYMEGHATÁROZÁSBAN LOKÁLIS IONOSZFÉRA MODELLEZÉS ÉS ALKALMAZÁSA A GNSS HELYMEGHATÁROZÁSBAN Juni Ildikó Budapesti Műszaki és Gazdaságtudományi Egyetem BSc IV. évfolyam Konzulens: Dr. Rózsa Szabolcs MFTT 29. Vándorgyűlés,

Részletesebben

Mérnökgeodéziai hálózatok feldolgozása

Mérnökgeodéziai hálózatok feldolgozása Mérnökgeodéziai hálózatok feldolgozása dr. Siki Zoltán siki@agt.bme.hu XIV. Földmérő Találkozó Gyergyószentmiklós 2013.05.09-12. Mérnökgeodéziai hálózatok nagy relatív pontosságú hálózatok (1/100 000,

Részletesebben

A GNSS infrastruktúrára támaszkodó műholdas helymeghatározás. Borza Tibor (FÖMI KGO) Busics György (NyME GEO)

A GNSS infrastruktúrára támaszkodó műholdas helymeghatározás. Borza Tibor (FÖMI KGO) Busics György (NyME GEO) A GNSS infrastruktúrára támaszkodó műholdas helymeghatározás Borza Tibor (FÖMI KGO) Busics György (NyME GEO) Tartalom Mi a GNSS, a GNSS infrastruktúra? Melyek az infrastruktúra szintjei? Mi a hazai helyzet?

Részletesebben

UAS rendszerekkel végzett légi felmérés kiértékelési és pontossági kérdései

UAS rendszerekkel végzett légi felmérés kiértékelési és pontossági kérdései UAS rendszerekkel végzett légi felmérés kiértékelési és pontossági kérdései Dr. habil. Jancsó Tamás Óbudai Egyetem, Alba Regia Műszaki Kar, Geoinformatikai Intézet E-mail: jancso.tamas@amk.uni-obuda.hu

Részletesebben

Mérnökgeodéziai hálózatok dr. Siki Zoltán

Mérnökgeodéziai hálózatok dr. Siki Zoltán Mérnökgeodéziai hálózatok dr. Siki Zoltán siki@agt.bme.hu Mérnökgeodézia BSc Mérnökgeodéziai hálózatok nagy relatív pontosságú hálózatok (1/1, 1/1), pontok távolsága néhány tíz, száz méter, Homogén hálózat:

Részletesebben

7. GRAVITÁCIÓS ALAPFOGALMAK

7. GRAVITÁCIÓS ALAPFOGALMAK 7. GRAVITÁCIÓS ALAPFOGALMAK A földi nehézségi erőtérnek alapvetően fontos szerepe van a geodéziában és a geofizikában. A geofizikában a Föld szerkezetének tanulmányozásában és különféle ásványi nyersanyagok

Részletesebben

Geofizikai kutatómódszerek I.

Geofizikai kutatómódszerek I. Geofizikai kutatómódszerek I. A gravitációs és mágneses kutatómódszer Dr. Szabó Norbert Péter egyetemi docens Miskolci Egyetem Geofizikai Intézeti Tanszék e-mail: norbert.szabo.phd@gmail.com 1. A gravitációs

Részletesebben

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A INFORMATIKA ÁGAZATI ALKALMAZÁSAI Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 14. GIS feldolgozás, méréselőkészítés Desktop méréselőkészítés Méréselőkészítés a kontrolleren

Részletesebben

A nehézségi erőtér gradienseinek függőleges irányú változása

A nehézségi erőtér gradienseinek függőleges irányú változása A nehézségi erőtér gradienseinek függőleges irányú változása Dr. Völgyesi Lajos egyetemi docens BME Általános- és Felsőgeodézia Tanszék, MTA-BME Fizikai Geodéziai és Geodinamikai Kutatócsoport Ultmann

Részletesebben

Milyen északi irány található a tájfutótérképen?

Milyen északi irány található a tájfutótérképen? Milyen északi irány található a tájfutótérképen? A felmérést a Hárshegy :000 méretarányú tájfutótérképén végeztem. Olyan pontokat választottam ki, amik a terepen és a térképen is jól azonosíthatók. ezeket

Részletesebben

A Föld alakja TRANSZFORMÁCIÓ. Magyarországon még használatban lévő vetületi rendszerek. Miért kell transzformálni? Főbb transzformációs lehetőségek

A Föld alakja TRANSZFORMÁCIÓ. Magyarországon még használatban lévő vetületi rendszerek. Miért kell transzformálni? Főbb transzformációs lehetőségek TRANSZFORMÁCIÓ A Föld alakja -A föld alakja: geoid (az a felület, amelyen a nehézségi gyorsulás értéke állandó) szabálytalan alak, kezelése nehéz -A geoidot ellipszoiddal közelítjük -A földfelszíni pontokat

Részletesebben

A GNSS technika szerepe az autópálya tervezési térképek készítésénél

A GNSS technika szerepe az autópálya tervezési térképek készítésénél A GNSS technika szerepe az autópálya tervezési térképek készítésénél Készítette: Szászvári János Továbbképző Tagozat-Földügyi Informatikus Szak-Építési Geodézia Szakirány A témaválasztás indoklása, a dolgozat

Részletesebben

Óbudai Egyetem Alba Regia Műszaki Kar Szakdolgozat védés 2015. január 2. GNSS technika alkalmazása tervezési alaptérképek készítésekor

Óbudai Egyetem Alba Regia Műszaki Kar Szakdolgozat védés 2015. január 2. GNSS technika alkalmazása tervezési alaptérképek készítésekor Óbudai Egyetem Alba Regia Műszaki Kar Szakdolgozat védés 2015. január 2. GNSS technika alkalmazása tervezési alaptérképek készítésekor Péter Tamás Földmérő földrendező mérnök BSc. Szak, V. évfolyam Dr.

Részletesebben

3 Technology Ltd Budapest, XI. Hengermalom 14 3/24 1117. Végeselem alkalmazások a tűzvédelmi tervezésben

3 Technology Ltd Budapest, XI. Hengermalom 14 3/24 1117. Végeselem alkalmazások a tűzvédelmi tervezésben 1117 Végeselem alkalmazások a tűzvédelmi tervezésben 1117 NASTRAN végeselem rendszer Általános végeselemes szoftver, ami azt jelenti, hogy nem specializálták, nincsenek kimondottam valamely terület számára

Részletesebben

Leica SmartPole. Geopro Kft Horváth Zsolt

Leica SmartPole. Geopro Kft Horváth Zsolt Szabadság TÉRBEN és s IDŐBEN! Leica SmartPole Geopro Kft Horváth Zsolt Útmutató megoldások a GEODÉZIÁBAN 1921 - WILD T2 az első 1 teodolit 1923 - WILD A1 az első sztereografikus autográf 1925 - WILD C2

Részletesebben

Kéregmozgás-vizsgálatok a karon: múlt és jelen

Kéregmozgás-vizsgálatok a karon: múlt és jelen Kéregmozgás-vizsgálatok a karon: múlt és jelen Busics György Nyugat-magyarországi Egyetem, Geoinformatikai Kar Geomatikai Intézet, Geodézia Tanszék MTA GTB ülés, Székesfehérvár, 2009. november27. Tartalom

Részletesebben

Elveszett m²-ek? (Az akaratlanul elveszett információ)

Elveszett m²-ek? (Az akaratlanul elveszett információ) Elveszett m²-ek? (Az akaratlanul elveszett információ) A mérés és a térkép I. A földrészletek elméleti határvonalait definiáló geodéziai/geometriai pontok (mint térképi objektumok) 0[null] dimenziósak,

Részletesebben

Nyílt forrású, webes WGS84-EOV transzformáció

Nyílt forrású, webes WGS84-EOV transzformáció Nyílt forrású, webes WGS84-EOV transzformáció Faludi Zoltán UniGIS 2007 Faludi Zoltán UniGIS 2007 http://wgseov.sf.net 1/17 Nyílt forrású rendszerek a térinformatikában Szerver oldali szoftverek Kliens

Részletesebben

UAS rendszerekkel végzett légi felmérés kiértékelési és pontossági kérdései

UAS rendszerekkel végzett légi felmérés kiértékelési és pontossági kérdései UAS rendszerekkel végzett légi felmérés kiértékelési és pontossági kérdései DR. HABIL. JANCSÓ TAMÁS ÓBUDAI EGYETEM, ALBA REGIA MŰSZAKI KAR, GEOINFORMATIKAI INTÉZET FÖLDMÉRŐK VILÁGNAPJA ÉS AZ EURÓPAI FÖLDMÉRŐK

Részletesebben

Funkcionális modellek vizsgálata és pontosítása a geodéziai mérések feldolgozásához. Égető Csaba

Funkcionális modellek vizsgálata és pontosítása a geodéziai mérések feldolgozásához. Égető Csaba Budapesti Műszaki és Gazdaságtudományi Egyetem Építőmérnöki Kar Általános- és Felsőgeodézia Tanszék Funkcionális modellek vizsgálata és pontosítása a geodéziai mérések feldolgozásához PhD értekezés tézisei

Részletesebben

A FÖLDMINŐSÍTÉS GEOMETRIAI ALAPJAI

A FÖLDMINŐSÍTÉS GEOMETRIAI ALAPJAI A FÖLDMINŐSÍTÉS GEOMETRIAI ALAPJAI Detrekői Ákos Keszthely, 2003. 12. 11. TARTALOM 1 Bevezetés 2 Milyen geometriai adatok szükségesek? 3 Néhány szó a referencia rendszerekről 4 Geometriai adatok forrásai

Részletesebben

KÍSÉRLETI MÉRÉSEK EÖTVÖS-INGÁVAL ÉS GRAVIMÉTEREKKEL AZ EÖTVÖS-INGA MÉRÉSEK EREDMÉNYEI GEODÉZIAI CÉLÚ HASZNOSÍTÁSÁNAK VIZSGÁLATA CÉLJÁBÓL

KÍSÉRLETI MÉRÉSEK EÖTVÖS-INGÁVAL ÉS GRAVIMÉTEREKKEL AZ EÖTVÖS-INGA MÉRÉSEK EREDMÉNYEI GEODÉZIAI CÉLÚ HASZNOSÍTÁSÁNAK VIZSGÁLATA CÉLJÁBÓL KÍSÉRLETI MÉRÉSEK EÖTVÖS-INGÁVAL ÉS GRAVIMÉTEREKKEL AZ EÖTVÖS-INGA MÉRÉSEK EREDMÉNYEI GEODÉZIAI CÉLÚ HASZNOSÍTÁSÁNAK VIZSGÁLATA CÉLJÁBÓL Csapó Géza * Tóth Gyula **,*** Laky Sándor *** Völgyesi Lajos **,***

Részletesebben

A jogszabályi változások és a hazai infrastruktúrában történt fejlesztések hatása a GNSS mérésekre

A jogszabályi változások és a hazai infrastruktúrában történt fejlesztések hatása a GNSS mérésekre A jogszabályi változások és a hazai infrastruktúrában történt fejlesztések hatása a GNSS mérésekre Braunmüller Péter Galambos István MFTTT 29. Vándorgyűlés, Sopron 2013. Július 11. Földmérési és Távérzékelési

Részletesebben

Az Eötvös-ingától a GOCE műholdig

Az Eötvös-ingától a GOCE műholdig Az Eötvös-ingától a GOCE műholdig Földváry Lóránt BME Általános- és Felsőgeodézia Tanszék Elhangzott előadás a Magyar Mérnök Kamara, Geodéziai és Geoinformatikai Tagozatának taggyűlésén, Budapesti Műszaki

Részletesebben

GeoCalc 3 Bemutatása

GeoCalc 3 Bemutatása 3 Bemutatása Gyenes Róbert & Kulcsár Attila 1 A 3 egy geodéziai programcsomag, ami a terepen felmért, manuálisan és/vagy adatrögzítővel tárolt adatok feldolgozására szolgál. Adatrögzítő A modul a felmérési

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

Abszolút folytonos valószín ségi változó (4. el adás)

Abszolút folytonos valószín ségi változó (4. el adás) Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t

Részletesebben

Paksi Atomerőmű II. blokk lokalizációs torony deformáció mérése

Paksi Atomerőmű II. blokk lokalizációs torony deformáció mérése Siki Zoltán, Dede Károly, Homolya András, Kiss Antal (BME-ÁFGT) Paksi Atomerőmű II. blokk lokalizációs torony deformáció mérése siki@agt.bme.hu http://www.agt.bme.hu Geomatikai Szeminárium, 2008 Sopron

Részletesebben

Statisztikai módszerek a skálafüggetlen hálózatok

Statisztikai módszerek a skálafüggetlen hálózatok Statisztikai módszerek a skálafüggetlen hálózatok vizsgálatára Gyenge Ádám1 1 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Számítástudományi és Információelméleti

Részletesebben

Matematikai geodéziai számítások 10.

Matematikai geodéziai számítások 10. Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László

Részletesebben

Magyarországi geodéziai vonatkozási rendszerek és vetületi síkkoordináta-rendszerek vizsgálata

Magyarországi geodéziai vonatkozási rendszerek és vetületi síkkoordináta-rendszerek vizsgálata Magyarországi geodéziai vonatkozási rendszerek és vetületi síkkoordináta-rendszerek vizsgálata Az elmúlt 150 év során Magyarországon a történelmi helyzet sajátos alakulása következtében több alkalommal

Részletesebben

Rédey István Geodéziai Szeminárium

Rédey István Geodéziai Szeminárium Rédey István Geodéziai Szeminárium Nagyberendezések mérnökgeodéziai ellenorzési feladatai Németh András Geodéziai csoportvezeto anemeth@npp.hu Általános áttekintés Mérnökgeodézia helye a mérnöki szakterületek

Részletesebben

Térinformatikai DGPS NTRIP vétel és feldolgozás

Térinformatikai DGPS NTRIP vétel és feldolgozás Térinformatikai DGPS NTRIP vétel és feldolgozás Méréseinkhez a Thales Mobile Mapper CE térinformatikai GPS vevıt használtunk. A mérést a Szegedi Tudományegyetem Egyetem utcai épületének tetején található

Részletesebben

A méretaránytényező kérdése a földmérésben és néhány szakmai következménye

A méretaránytényező kérdése a földmérésben és néhány szakmai következménye A méretaránytényező kérdése a földmérésben és néhány szakmai következménye Dr. Busics György c. egyetemi tanár Óbudai Egyetem Alba Regia Műszaki Kar Székesfehérvár MFTTT Vándorgyűlés, Békéscsaba, 2019.

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

A vasbetonszerkezetes lakóépületek geodéziai munkái

A vasbetonszerkezetes lakóépületek geodéziai munkái A vasbetonszerkezetes lakóépületek geodéziai munkái SZAKDOLGOZAT SOMLÓ CSABA Geodéziai feladatok az építıipar területein Alapadatok beszerzése Alappontok Digitális földmérési nyilvántartási térkép Digitális

Részletesebben

Matematikai geodéziai számítások 8.

Matematikai geodéziai számítások 8. Matematikai geodéziai számítások 8 Szintezési hálózat kiegyenlítése Dr Bácsatyai, László Matematikai geodéziai számítások 8: Szintezési hálózat kiegyenlítése Dr Bácsatyai, László Lektor: Dr Benedek, Judit

Részletesebben

Matematikai geodéziai számítások 8.

Matematikai geodéziai számítások 8. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 8 MGS8 modul Szintezési hálózat kiegyenlítése SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői

Részletesebben

Troposzféra modellezés. Braunmüller Péter április 12

Troposzféra modellezés. Braunmüller Péter április 12 Troposzféra modellezés Braunmüller Péter Tartalom Légkör Troposzféra modellezés Elvégzett vizsgálatok Eredmények Légkör A légkör jelterjedése a GNSS jelekre gyakorolt hatásuk szempontjából két részre osztható

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

TÉRINFORMATIKA I. Dr. Kulcsár Balázs egyetemi docens. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék

TÉRINFORMATIKA I. Dr. Kulcsár Balázs egyetemi docens. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék TÉRINFORMATIKA I. Dr. Kulcsár Balázs egyetemi docens Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék TÁJÉKOZTATÁS TANTÁRGYI TEMATIKA 1 Előadás 1. Bevezetés a térinformatikába. Kartográfia történet.

Részletesebben

Űrfelvételek térinformatikai rendszerbe integrálása

Űrfelvételek térinformatikai rendszerbe integrálása Budapest, 2005. október 18. Űrfelvételek térinformatikai rendszerbe integrálása Molnár Gábor ELTE Geofizikai Tanszék Űrkutató Csoport Témavezető: Dr. Ferencz Csaba Eötvös Loránd Tudományegyetem Geofizikai

Részletesebben

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű

Részletesebben

Automatikus irányzás digitális képek. feldolgozásával TURÁK BENCE DR. ÉGETŐ CSABA

Automatikus irányzás digitális képek. feldolgozásával TURÁK BENCE DR. ÉGETŐ CSABA Automatikus irányzás digitális képek feldolgozásával TURÁK BENCE DR. ÉGETŐ CSABA Koncepció Robotmérőállomásra távcsővére rögzített kamera Képek alapján a cél automatikus detektálása És az irányzás elvégzése

Részletesebben

Molekuláris dinamika I. 10. előadás

Molekuláris dinamika I. 10. előadás Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,

Részletesebben

A fotogrammetria ismeretek és a szakmai tudás fontossága

A fotogrammetria ismeretek és a szakmai tudás fontossága Óbudai Egyetem Alba Regia Műszaki Kar Geoinformatikai Intézet A fotogrammetria ismeretek és a szakmai tudás fontossága 3. Légifotó Nap, Székesfehérvár, 2018. február 7. A fotogrammetria fogalma A fotogrammetria

Részletesebben

TÉRINFORMATIKA II. Dr. Kulcsár Balázs főiskolai docens. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék

TÉRINFORMATIKA II. Dr. Kulcsár Balázs főiskolai docens. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék TÉRINFORMATIKA II. Dr. Kulcsár Balázs főiskolai docens Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék TÁJÉKOZTATÁS TANTÁRGYI TEMATIKA 1 Előadás 1. GPS műszerek és kapcsolódó szoftvereik bemutatása

Részletesebben

UAV felmérés tapasztalatai

UAV felmérés tapasztalatai Mérnökgeodézia Konferencia 2018. UAV felmérés tapasztalatai Multikopteres térképezés kis méretű munkaterületeken Felmérések pontossága, megbízhatósága Budapest, 2018. 10. 27. Lennert József - Lehoczky

Részletesebben

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba

Részletesebben

Feladatok. Tervek alapján látvány terv készítése. Irodai munka Test modellezés. Létező objektum számítógépes modelljének elkészítése

Feladatok. Tervek alapján látvány terv készítése. Irodai munka Test modellezés. Létező objektum számítógépes modelljének elkészítése Virtuális valóság Feladatok Tervek alapján látvány terv készítése Irodai munka Test modellezés Létező objektum számítógépes modelljének elkészítése Geodéziai mérések Fotogrammetriai feldolgozás Egyszerű

Részletesebben

FANUC Robotics Roboguide

FANUC Robotics Roboguide FANUC Robotics Roboguide 2010. február 9. Mi Mi az az a ROBOGUIDE Robot rendszer animációs eszköz ROBOGUIDE is an off-line eszköz a robot rendszer beállításához és karbantartásához ROBOGUIDE is an on-line

Részletesebben

A GNSS Szolgáltató Központ 2009-ben www.gnssnet.hu. Galambos István FÖMI Kozmikus Geodéziai Obszervatórium

A GNSS Szolgáltató Központ 2009-ben www.gnssnet.hu. Galambos István FÖMI Kozmikus Geodéziai Obszervatórium A GNSS Szolgáltató Központ 2009-ben www.gnssnet.hu Galambos István FÖMI Kozmikus Geodéziai Obszervatórium Tartalom: A FÖMI GNSSnet.hu hálózata 2008 év végén Modernizáció a hálózatban 2009-ben A szolgáltatások

Részletesebben

A feszültség alatti munkavégzés (FAM) élettani hatásai

A feszültség alatti munkavégzés (FAM) élettani hatásai Budapesti Műszaki és Gazdaságtudományi Egyetem Nagyfeszültségű Laboratórium A feszültség alatti munkavégzés (FAM) élettani hatásai Göcsei Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Villamos Energetika

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 15. Digitális Alakzatrekonstrukció Méréstechnológia, Ponthalmazok regisztrációja http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav54

Részletesebben

Ingatlan felmérési technológiák

Ingatlan felmérési technológiák Ingatlan felmérési technológiák Fekete Attila okl. földmérő és térinformatikai mérnök Photo.metric Kft. www.photometric.hu geodézia. épületfelmérés. térinformatika Áttekintés Mérési módszerek, technológiák

Részletesebben

Környezeti informatika

Környezeti informatika Környezeti informatika Alkalmazható természettudományok oktatása a tudásalapú társadalomban TÁMOP-4.1.2.A/1-11/1-2011-0038 Eger, 2012. november 22. Utasi Zoltán Eszterházy Károly Főiskola, Földrajz Tanszék

Részletesebben

A felszínközeli szélsebesség XXI. században várható változása az ALADIN-Climate regionális éghajlati modell alapján

A felszínközeli szélsebesség XXI. században várható változása az ALADIN-Climate regionális éghajlati modell alapján A felszínközeli szélsebesség XXI. században várható változása az ALADIN-Climate regionális éghajlati modell alapján Illy Tamás Országos Meteorológiai Szolgálat A felszínközeli szélsebesség XXI. században

Részletesebben

Hálózat kiegyenlítés dr. Siki Zoltán

Hálózat kiegyenlítés dr. Siki Zoltán Hálózat kiegyenlítés dr. Siki Zoltán siki.zoltan@epito.bme.hu 2017-09-26 MMK-GGT Továbbképzési tananyag 2016-2017 1 Legkisebb négyzetek módszere Közvetítő egyenletek, kapcsolat az ismeretlenek és a mérési

Részletesebben

Széladatok homogenizálása és korrekciója

Széladatok homogenizálása és korrekciója Széladatok homogenizálása és korrekciója Péliné Németh Csilla 1 Prof. Dr. Bartholy Judit 2 Dr. Pongrácz Rita 2 Dr. Radics Kornélia 3 1 MH Geoinformációs Szolgálat pelinenemeth.csilla@mhtehi.gov.hu 2 Eötvös

Részletesebben

Rugalmas állandók mérése

Rugalmas állandók mérése KLASSZIKUS FIZIKA LABORATÓRIUM 2. MÉRÉS Rugalmas állandók mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 16. Szerda délelőtti csoport 1. A mérés rövid leírása Mérésem

Részletesebben

Digitális képek feldolgozása Előfeldolgozás Radiometriai korrekció Geometriai korrekció Képjavítás Szűrők Sávok közötti műveletek Képosztályozás Utófe

Digitális képek feldolgozása Előfeldolgozás Radiometriai korrekció Geometriai korrekció Képjavítás Szűrők Sávok közötti műveletek Képosztályozás Utófe Távérzékelés Digitális felvételek előfeldolgozása (EENAFOTOTV, ETNATAVERV) Erdőmérnöki szak, Környezettudós szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési

Részletesebben

Takács Bence: Geodéziai Műszaki Ellenőrzés. Fővárosi és Pest Megyei Földmérő Nap és Továbbképzés március 22.

Takács Bence: Geodéziai Műszaki Ellenőrzés. Fővárosi és Pest Megyei Földmérő Nap és Továbbképzés március 22. Takács Bence: Geodéziai Műszaki Ellenőrzés Fővárosi és Pest Megyei Földmérő Nap és Továbbképzés 2018. március 22. VÁZLAT Mit jelent a geodéziai műszaki ellenőrzés? Példák: Ki? Mit? Miért ellenőriz? résfal

Részletesebben

A fizikai geodéziában alkalmazott szoftverek áttekintése. Fizikai geodézia és gravimetria MSc 2015/16

A fizikai geodéziában alkalmazott szoftverek áttekintése. Fizikai geodézia és gravimetria MSc 2015/16 A fizikai geodéziában alkalmazott szoftverek áttekintése Fizikai geodézia és gravimetria MSc 201/16 Áttekintés Számítások geopotenciális modellekkel Spektrális eljárásokon alapuló szoftverek LKN kollokáció

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

Mozgásvizsgálatok. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán

Mozgásvizsgálatok. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Célja: Várható elmozdulások előrejelzése (erőhatások alatt, Siógemenci árvízkapu) Már bekövetkezett mozgások okainak vizsgálata (Pl. kulcsi löszpart) Laboratóriumi

Részletesebben

TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS

TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve FIZIKAI GEODÉZIAI ÉS GRAVIMETRIA 1.2 Azonosító (tantárgykód) BMEOAFM61 1.3 A tantárgy jellege kontaktórás tanegység 1.4 Óraszámok típus

Részletesebben

3D számítógépes geometria és alakzatrekonstrukció

3D számítógépes geometria és alakzatrekonstrukció 3D számítógépes geometria és alakzatrekonstrukció 14. Digitális Alakzatrekonstrukció - Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr.

Részletesebben

Tervezési célú geodéziai feladatok és az állami térképi adatbázisok kapcsolata, azok felhasználhatósága III. rész

Tervezési célú geodéziai feladatok és az állami térképi adatbázisok kapcsolata, azok felhasználhatósága III. rész Tervezési célú geodéziai feladatok és az állami térképi adatbázisok kapcsolata, azok felhasználhatósága III. rész Herczeg Ferenc Székesfehérvár, 2016. szeptember 16. HATÁLYON KÍVÜLI UTASÍTÁSOK száma típusa

Részletesebben

Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE

Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE Tartalomjegyzék 5 Tartalomjegyzék Előszó I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE 1. fejezet: Kontrollált kísérletek 21 1. A Salk-oltás kipróbálása 21 2. A porta-cava sönt 25 3. Történeti kontrollok 27 4. Összefoglalás

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

Rugalmas állandók mérése

Rugalmas állandók mérése Rugalmas állandók mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. április 23. (hétfő délelőtti csoport) 1. Young-modulus mérése behajlásból 1.1. A mérés menete A mérés elméleti háttere megtalálható a jegyzetben

Részletesebben

47/2010. (IV. 27.) FVM rendelet

47/2010. (IV. 27.) FVM rendelet 47/2010. (IV. 27.) FVM rendelet a globális műholdas helymeghatározó rendszerek alkalmazásával végzett pontmeghatározások végrehajtásáról, dokumentálásáról, ellenőrzéséről, vizsgálatáról és átvételéről

Részletesebben

MOBIL TÉRKÉPEZŐ RENDSZER PROJEKT TAPASZTALATOK

MOBIL TÉRKÉPEZŐ RENDSZER PROJEKT TAPASZTALATOK MOBIL TÉRKÉPEZŐ RENDSZER PROJEKT TAPASZTALATOK GISopen 2011 2011. március 16-18. Konasoft Project Tanácsadó Kft. Maros Olivér - projektvezető MIÉRT MOBIL TÉRKÉPEZÉS? A mobil térképezés egyetlen rendszerben

Részletesebben

Síklapokból álló üvegoszlopok laboratóriumi. vizsgálata. Jakab András, doktorandusz. BME, Építőanyagok és Magasépítés Tanszék

Síklapokból álló üvegoszlopok laboratóriumi. vizsgálata. Jakab András, doktorandusz. BME, Építőanyagok és Magasépítés Tanszék Síklapokból álló üvegoszlopok laboratóriumi vizsgálata Előadó: Jakab András, doktorandusz BME, Építőanyagok és Magasépítés Tanszék Nehme Kinga, Nehme Salem Georges Szilikátipari Tudományos Egyesület Üvegipari

Részletesebben

MIKROFYN GÉPVEZÉRLÉSEK. 2D megoldások:

MIKROFYN GÉPVEZÉRLÉSEK. 2D megoldások: MIKROFYN GÉPVEZÉRLÉSEK Néhány szó a gyártóról: Az 1987-es kezdés óta a Mikrofyn A/S a világ öt legnagyobb precíziós lézer és gépvezérlés gyártója közé lépett. A profitot visszaforgatta az új termékek fejlesztésébe

Részletesebben

Végeselem analízis. 1. el adás

Végeselem analízis. 1. el adás Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)

Részletesebben

Forgalomtechnikai helyszínrajz

Forgalomtechnikai helyszínrajz Forgalomtechnikai helyszínrajz Szakdolgozat védés Székesfehérvár 2008 Készítette: Skerhák Szabolcs Feladat A szakdolgozat célja bemutatni egy forgalomtechnikai helyszínrajz elkészítésének munkafolyamatát.

Részletesebben

Matematikai geodéziai számítások 5.

Matematikai geodéziai számítások 5. Matematikai geodéziai számítások 5 Hibaterjedési feladatok Dr Bácsatyai László Matematikai geodéziai számítások 5: Hibaterjedési feladatok Dr Bácsatyai László Lektor: Dr Benedek Judit Ez a modul a TÁMOP

Részletesebben

Mobil térinformatikai feladatmegoldások támogatása GNSS szolgáltatással

Mobil térinformatikai feladatmegoldások támogatása GNSS szolgáltatással Mobil térinformatikai feladatmegoldások támogatása GNSS szolgáltatással Horváth Tamás FÖMI Kozmikus Geodéziai Obszervatórium horvath@gnssnet.hu www.gnssnet.hu Tel.: 06-27-200-930 Mobil: 06-30-867-2570

Részletesebben

PhD DISSZERTÁCIÓ TÉZISEI

PhD DISSZERTÁCIÓ TÉZISEI Budapesti Muszaki és Gazdaságtudományi Egyetem Fizikai Kémia Tanszék MTA-BME Lágy Anyagok Laboratóriuma PhD DISSZERTÁCIÓ TÉZISEI Mágneses tér hatása kompozit gélek és elasztomerek rugalmasságára Készítette:

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi

Részletesebben

Molekuláris dinamika. 10. előadás

Molekuláris dinamika. 10. előadás Molekuláris dinamika 10. előadás Mirőlis szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten? Hogyan tudjuk megérteni a folyadékok, gázok, szilárdtestek makroszkópikus

Részletesebben

3D számítógépes geometria és alakzatrekonstrukció

3D számítógépes geometria és alakzatrekonstrukció 3D számítógépes geometria és alakzatrekonstrukció 15. Digitális Alakzatrekonstrukció Méréstechnológia, Ponthalmazok regisztrációja http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01

Részletesebben

Ejtési teszt modellezése a tervezés fázisában

Ejtési teszt modellezése a tervezés fázisában Antal Dániel, doktorandusz, Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szabó Tamás, egyetemi docens, Ph.D., Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szilágyi Attila, egyetemi adjunktus,

Részletesebben

A diplomaterv keretében megvalósítandó feladatok összefoglalása

A diplomaterv keretében megvalósítandó feladatok összefoglalása A diplomaterv keretében megvalósítandó feladatok összefoglalása Diplomaterv céljai: 1 Sclieren résoptikai módszer numerikus szimulációk validálására való felhasználhatóságának vizsgálata 2 Lamináris előkevert

Részletesebben

Sokkia gyártmányú RTK GPS rendszer

Sokkia gyártmányú RTK GPS rendszer Sokkia gyártmányú RTK GPS rendszer A leírást készítette: Deákvári József, intézeti mérnök Az FVM Mezőgazdasági Gépesítési Intézet 2005-ben újabb műszerekkel gyarapodott. Beszerzésre került egy Sokkia gyártmányú

Részletesebben

Matematikai geodéziai számítások 7.

Matematikai geodéziai számítások 7. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 7. MGS7 modul Súlyozott számtani közép számítása és záróhibák elosztása SZÉKESFEHÉRVÁR 2010 Jelen

Részletesebben

SKÁLAFÜGGŐ LÉGSZENNYEZETTSÉG ELŐREJELZÉSEK

SKÁLAFÜGGŐ LÉGSZENNYEZETTSÉG ELŐREJELZÉSEK SKÁLAFÜGGŐ LÉGSZENNYEZETTSÉG ELŐREJELZÉSEK Mészáros Róbert 1, Lagzi István László 1, Ferenczi Zita 2, Steib Roland 2 és Kristóf Gergely 3 1 Eötvös Loránd Tudományegyetem, Földrajz- és Földtudományi Intézet,

Részletesebben

Korrodált acélszerkezetek vizsgálata

Korrodált acélszerkezetek vizsgálata Korrodált acélszerkezetek vizsgálata 1. Szerkezeti példák és laboratóriumi alapkutatás Oszvald Katalin Témavezető : Dr. Dunai László Budapest, 2009.12.08. 1 Általános célkitűzések Korrózió miatt károsodott

Részletesebben

A projekt bemutatása és jelentősége a célvárosok számára. Unger János SZTE Éghajlattani és Tájföldrajzi Tanszék

A projekt bemutatása és jelentősége a célvárosok számára. Unger János SZTE Éghajlattani és Tájföldrajzi Tanszék AZ EMBERI HŐTERHELÉS VÁROSON BELÜLI ELOSZLÁSÁNAK KIÉRTÉKELÉSE ÉS NYILVÁNOS BEMUTATÁSA HUSRB/1203/122/166 A projekt bemutatása és jelentősége a célvárosok számára Unger János SZTE Éghajlattani és Tájföldrajzi

Részletesebben

Magyarország nagyfelbontású digitális domborzatmodellje

Magyarország nagyfelbontású digitális domborzatmodellje Magyarország nagyfelbontású digitális domborzatmodellje Iván Gyula Földmérési és Távérzékelési Intézet Földminősítés, földértékelés és földhasználati információ A környezetbarát gazdálkodás versenyképességének

Részletesebben

Gépészeti berendezések szerelésének geodéziai feladatai. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán

Gépészeti berendezések szerelésének geodéziai feladatai. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Gépészeti berendezések szerelésének geodéziai feladatai Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Gépészeti berendezések szerelésének geodéziai feladatai '80 Geodéziai elvű módszerek gépészeti alkalmazások

Részletesebben

Példa: Háromszög síkidom másodrendű nyomatékainak számítása

Példa: Háromszög síkidom másodrendű nyomatékainak számítása Példa: Háromszög síkidom másodrendű nyomatékainak számítása Készítette: Dr. Kossa Attila kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék. február 6. Határozzuk meg az alábbi ábrán látható derékszögű háromszög

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK 1. tétel Hibaelméleti alapismertek Ön egy földmérési tevékenységet folytató vállalkozásnál a mérési eredmények ellenőrzésével

Részletesebben

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36 Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás

Részletesebben

Városi környezet vizsgálata távérzékelési adatok osztályozásával

Városi környezet vizsgálata távérzékelési adatok osztályozásával Városi környezet vizsgálata távérzékelési adatok osztályozásával Verőné Dr. Wojtaszek Małgorzata Óbudai Egyetem AMK Goeinformatika Intézet 20 éves a Térinformatika Tanszék 2014. december. 15 Felvetések

Részletesebben