Moduláris korszerű szakmai gyakorlatok vegyipari területre

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Moduláris korszerű szakmai gyakorlatok vegyipari területre"

Átírás

1 Moduláris korszerű szakmai gyakorlatok vegyipari területre Műszeres analitika II/14. évfolyam tanulói jegyzet A TISZK rendszer továbbfejlesztése Petrik TISZK TÁMOP /1-2F A projekt az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósult meg.

2 Moduláris korszerű szakmai gyakorlatok vegyipari területre Műszeres analitika TÁMOP /1-2F Műszeres analitika II/14. évfolyam tanulói jegyzet

3 A kiadvány a TÁMOP /1-2F azonosító számú projekt keretében jelenik meg. Szerző: Sőre Ferenc, Tihanyi Péter Lektorálta: Vámos István Borító és tipográfia: Új Magyarország Fejlesztési Terv Arculati kézikönyv alapján A mű egésze vagy annak részletei az üzletszerű felhasználás eseteit ide nem értve oktatási és tudományos célra korlátozás nélkül, szabadon felhasználhatók. A tananyagfejlesztés módszertani irányítása: Observans Kft. Budapest, Igazgató: Bertalan Tamás Tördelés: Király és Társai Kkt. Cégvezető: Király Ildikó

4 Tartalomjegyzék Bevezetés...7 Mérési adatok értékelése...8 A mérési hiba...8 Valódi és várható érték...8 A hibák fajtái...8 A szórás...9 Párhuzamos mérési adatok értékelése...9 Mérési eredmény megadása...10 A relatív hiba...10 Kalibráció Egyenes illesztése mérési pontokhoz Excel programmal Ellenőrző feladatok Optikai mérések elmélete Refraktometria Az Abbe-féle refraktométer...16 Fotometria spektrofotometria Ultraibolya (UV) és látható (VIS) spektrofotometria...17 Fotométer, spektrofotométer...17 A Lambert Beer-törvény...18 Ellenőrző feladatok Optikai mérések gyakorlat 1. ciklus gyakorlat Üdítőital vagy szörp cukortartalmának meghatározása refraktometriás módszerrel gyakorlat Színezékoldat koncentrációjának meghatározása spektrofotometriás módszerrel gyakorlat Acetonoldat abszorpció maximumának és összetételének meghatározása spektrofotometriás módszerrel gyakorlat Nitrition meghatározása spektrofotometriás módszerrel gyakorlat Kétkomponensű minta fotometriás meghatározása gyakorlat Reakciósebesség fotometriás meghatározása...31 Ellenőrző feladatok Optikai mérések elmélete Infravörös spektrometria...34 Készülékek...34 A belső standard használata...36 Fluoreszcens spektrometria (Fluorimetria) A standard addíció használata Ellenőrző feladatok Fotometriás módszer validálása PETRIK TISZK TÁMOP /1-2F

5 A validálás fogalma Mikor van szükség validálásra? Az analitikai módszer teljesítményjellemzői Pontosság, helyesség (Accuracy, Trueness)...43 Precizitás, ismételhetőség és reprodukálhatóság...44 Szelektivitás, specifikusság, azonosság...46 Kimutatási határ (Detection Limit), meghatározási határ (Quantitation Limit)...46 Mérési tartomány, lineáris tartomány...47 Robosztusság, állékonyság (Robustness)...48 Visszanyerési tényező (Recovery)...48 Ellenőrző feladatok...50 Optikai mérések gyakorlat 2. ciklus gyakorlat Csapadékminta ph-jának fotometriás meghatározása gyakorlat Minta CaCO3 tartalmának meghatározása belső standard kalibrációval, IR spektrometriásan gyakorlat Vas meghatározása tiocianátos módszerrel spektrofotometriásan, standard addícióval gyakorlat Üdítőital kinintartalmának fluorimetriás meghatározása gyakorlat Szerves anyag meghatározása FTIR méréssel /A gyakorlat Validálási részfeladat kimutatási és meghatározási határ /B gyakorlat Validálási részfeladat precizitás /C gyakorlat Validálási részfeladat pontosság /D gyakorlat Validálási részfeladat visszanyerés /E gyakorlat Validálási részfeladat mérési tartomány...72 Ellenőrző feladatok Elektrokémiai mérések gyakorlat gyakorlat PH mérés hidrogén érzékeny-üvegelektróddal gyakorlat Jodidiontartalom-meghatározás, jodidérzékeny membránelektróddal, kalibrációs módszerrel gyakorlat Fluoridiontartalom-meghatározás, fluoridérzékeny elektróddal, kalibrációs módszerrel gyakorlat Karbonáttartalom-meghatározás, hidrogénérzékeny üvegelektróddal, automata titrálón gyakorlat Foszforsavtartalom-meghatározás, hidrogénérzékeny üvegelektróddal, sav-bázis titrálással gyakorlat Sósavtartalom-meghatározás pufferaddíciós módszerrel gyakorlat Vastartalom-meghatározás, redoxi titrálással gyakorlat Hidrokinontartalom-meghatározás redoxi titrálással gyakorlat Kénsavtartalom-meghatározás konduktometriás titrálással gyakorlat Kálium-kloridtartalom-meghatározás a vezetőképesség mérésével gyakorlat Víztartalom-meghatározás Karl-Fischer módszerrel gyakorlat Cinktartalommeghatározás stripping polarográfiásan Műszeres analitika tanulói jegyzet II/14. évfolyam

6 Kromatográfiás módszer gyakorlat gyakorlat Minta oldószer tartalmának azonosítása a retenciós idők alapján gyakorlat Minta metanol-etanol tartalmának meghatározása kalibrációs módszerrel gyakorlat Minta-oldószertartalom meghatározása belső standard módszerrel gyakorlat Minta oldószertartalomának meghatározása addíciós módszerrel gyakorlat Oszlop minősítése, felbontóképesség és tányérszám mérése gyakorlat Minta összetevőinek azonosítása tömegspektrometriás detektorral gyakorlat Minta anion-összetételének azonosítása gyakorlat Minta aniontartalmának meghatározása kalibrációs módszerrel gyakorlat Minta szalicilsav-tartalmának meghatározása, kalibrációs módszerrel gyakorlat Parabeneket tartalmazó minta parabentartalmának meghatározása, kalibrációs módszerrel gyakorlat Minta aminosav összetételének azonosítása PETRIK TISZK TÁMOP /1-2F

7

8 Bevezetés A 14. évfolyamon a laboratóriumi gyakorlatok tartalma műszeres analitika. A kémiai elemzésnek ez az ága ma már nélkülözhetetlen a legkülönbözőbb területeken: vegyszerek ellenőrzése, folyamatok szabályozása, gyógyszerek, élelmiszerek, környezeti minták vizsgálata. Ahol csak lehet, ezeket alkalmazzák előnyeik miatt: objektivitás, gyorsaság, automatizálhatóság. A tanév folyamán megismerkedünk a műszeres analitika főbb ágaival, az elméleti ismereteken kívül gyakorlatokon keresztül is. A tananyagcsomag a tanulói jegyzeten kívül a tananyag megértését, szemléltetését segítő tanári prezentációkat is tartalmaz, amik az iskola belső hálózatáról letölthetők. Ismerni kell a fogalmakat, összefüggéseket és tudni kell ezeket alkalmazni. Ezek ellenőrzésére feladatok találhatók a tanulói jegyzetben. Leírás alapján a méréseket egyedül vagy csoportosan el kell végezni. A vizsgálatról mindenkinek egyénileg jegyzőkönyvet kell készíteni (minta a későbbiekben), amiben minden benne van, ami a mérés megismétléséhez kell. A tanulói jegyzetben a tananyag fontos elemeit, a példákat és a tanulási tippeket különböző ikonok jelölik. Ikon Jelentés A fejezet célmeghatározása. Figyelmesen olvassa el, így megismeri a fejezet fókuszpontjait! Az ismeretek elsajátítását megkönnyítik a példák. Az ikon mellett érdekességeket, példákat, gyakorlati életből vett esetleírásokat talál. Az ikon fontos, jól megjegyzendő, megtanulandó ismereteket jelez pl. a mérések elve. Az ikon mellett olyan gondolatébresztő, kérdéseket, felvetéseket, problémákat talál, amelyek megválaszolásával elmélyülhet a témában. Az ikon a házi feladatot, otthoni munkát jelöli. PETRIK TISZK TÁMOP /1-2F

9 Mérési adatok értékelése A témakör célja Ismerje meg az adatfeldolgozás alapfogalmait. Értse a hibák fajtáinak különbségét, összefüggéseit. Tudja a tanult fogalmakat, összefüggéseket önállóan használni az adatai értékelésére. A tanítási egységet befejező tanuló rendelkezzen olyan szakmai készségekkel, képességekkel, szakmai ismeretekkel, attitűdökkel, kompetenciákkal, amelyek lehetővé teszik, hogy a mérési adatokat feldolgozza és dokumentálja. A mérési hiba Valódi és várható érték Egy kémiai elemzés célja mindig valamely vizsgált anyag egy vagy több komponensének minőségi vagy mennyiségi meghatározása. A valódi értéket abszolút pontossággal nem tudjuk megmérni, csak közelíteni a mérésekkel. Több mérést végezve, az átlag reményeink szerint a valódi értéket egyre jobban közelíti. A mért értékek átlaga a várható érték ( x ), ami nem azonos a valódi értékkel: x n i = = 1 n x i A hibák fajtái A hiba a valódi és a mért érték eltérése, különbsége. Több párhuzamos mérést végezve a várható érték egyre kevésbé ingadozik, ezt láttuk az előző ábrán. A várható értéket rendszeres és véletlen hibák terhelhetik. Ezek viszonyát mutatja a következő ábra: 1.1. ábra. A hibák fajtái A véletlen hiba, aminek az okát nem ismerjük, általunk figyelembe nem vett tényezők okozzák. Ilyenek: a hőmérséklet változása, a hálózati feszültség ingadozása, súrlódás, huzat, stb. Ezek ingadozása több mérésnél kiegyenlítődik. 8 Műszeres analitika tanulói jegyzet II/14. évfolyam

10 A rendszeres hibák oka felderíthető, így ezek csökkenthetők. Gyakori rendszeres hiba az arányos hiba: pl. egy óra minden nap 1 percet siet. Rendszeres hiba pl. a parallaxis hiba (ld. ábra), az elmozduló skála okozta eltérés. Felülről vízszintesen alulról kevesebbnek látjuk. a helyes értéket, többnek látjuk, 1.2. ábra. A parallaxis hiba Egy másik csoportosítás szerint van objektív és szubjektív hiba. Szubjektív hiba, amiről a mérést végző személy tehet (ilyen a parallaxis hiba is). Objektív, amiről a mérő személy nem tehet, a készülék, eszköz hibája, pontatlansága (pontatlan büretta vagy óra, stb.). A szórás A szórás (σ) a párhuzamos mérési eredmények közötti eltérés jellemzésére szolgál; a várható értékek körüli mérési eredmények szoros vagy laza csoportosulását jellemzi. Gyakorlatban a korrigált tapasztalati szórással (s, sd) becsüljük. A korrigált tapasztalati szórás (s, más néven standard deviáció, sd) számítása: A szórás jelentése s = n i = 1 2 ( x x ) i n ábra. A normális eloszlás sűrűségfüggvénye x ±s határok közé esik a mért értékek kb. 2/3-a (68,2%-a) x ±2 s határok közé esik a mért értékek 95,5%-a x ±3 s határok közé esik a mért értékek 99,7%-a A szórás alkalmazása: a méréseknek az átlagtól való eltérését, ez által a mérések megbízhatóságát jellemezzük vele. Párhuzamos mérési adatok értékelése Az előbbiek alapján belátható, hogy egy méréshez tartozó adatok közül azok, amelyek ± 3 s tartományon kívül esnek, durva mérési hibákból erednek, valószínűleg jobb, ha elhagyjuk azokat. 1. mintafeladat Egy mérésre a következő számértékek adódtak: 11,2; 11,3; 11,1; 10,4. Számítsa ki az átlagot, a szórást, ha kell, hagyjon el adatot! PETRIK TISZK TÁMOP /1-2F

11 x = 11,0 s = 0,41. Az utolsó adat gyanúsan messze van az átlagtól. Számítsuk ki az átlagot és a szórást annak elhagyásával! x = 11,2 s = 0,10. Az utolsó adat a x ±3 s tartományon kívül van, helyes volt az elhagyás. Mérési eredmény megadása A mérési eredmény számértékén és mértékegységén kívül a megbízhatósága is fontos lehet. Mennyi a mérésünk megbízhatósága? Attól függ, milyen biztonsággal/valószínűséggel szeretnénk, hogy a tényleges érték a megadott tartományba essék. Általában a 95%-os biztonság megfelelő. Ebben az esetben általánosan: x ±2 s az eredmény. 2. mintafeladat Az előző mérési adatokból (11,2; 11,3; 11,1; 10,4) adjuk meg az eredményt a megbízhatóság jelölésével! Az átlag és a szórás értéke: x = 11,2 s = 0,10. x = 11,2 ± 0,2 (95%-os szinten) Ebből adódik, hogy nincs is értelme több tizedesre megadni, hiszen a mérés megbízhatósága nem indokolja. A relatív hiba A relatív hiba az abszolút hiba eredményhez viszonyított értéke. Legtöbb esetben ez fontosabb, mint az abszolút hiba. A relatív hiba mértékeként a tapasztalati szórásnak (s, sd) az átlaghoz viszonyított %-os értékét használjuk: sd rsd = 100% x 3. mintafeladat Az előbbi feladat esetében: x = 11,2 s = 0,10 x = 11,2 ± 0,2 (95%). Számítsuk ki a relatív szórást, és az eredményt adjuk meg azzal: rsd = 1,8 % Az eredmény tehát: x = 11,2 ± 1,8% (95%-os szinten). Kalibráció Az analitikai jel és a koncentráció összefüggése általában nem adható meg elméleti alapon egzakt módon, így tapasztalati összefüggéseket használunk. A leggyakoribb módszer, hogy ismert koncentrációjú oldatokat készítünk, azokat a műszerrel megmérjük, a kapott értékeket analitikai jel koncentráció diagramon ábrázoljuk, a pontokhoz görbét (egyszerű esetben egyenest) illesztünk. 10 Műszeres analitika tanulói jegyzet II/14. évfolyam

12 Az így kapott tapasztalati összefüggést nevezzük analitikai mérőgörbének (kalibrációs diagramnak). Az ábrázolás és görbe (függvény) illesztése történhet kézi módszerrel, mm-papíron vagy egy erre alkalmas számítógépes szoftverrel. Egyenes illesztése mérési pontokhoz Excel programmal A következőkhöz számítógépre van szükség, a kipróbálás, illetve a begyakorlás e nélkül nem lehetséges. 4. mintafeladat Az oldatsorozat tagjai: 20, 40, 60, 80 és 100 mg/dm 3 koncentrációjúak. Ezekre és az ismeretlenre rendre a következő jel értékeket kaptuk: 0,156; 0,302; 0,468; 0,620; 0,768; 0,555. Illesszünk egyenest a mérési adatokhoz és határozzuk meg az ismeretlent! Az Excel program elindítása után beírjuk az adatainkat két oszlopba: c, mg/dm 3 analitikai jel 20 0, , , , ,768??? 0,555 A kalibrációs adatokat kijelöljük (az ábrán szürke mezőben) és elindítjuk a diagramvarázslót. A lépések a következők: 1. A pontdiagramból az első altípust választjuk. Tovább gomb. 2. A Tovább gombot megnyomjuk. 3. Beírjuk a diagramcímet és a koordináták neveit, mértékegységeit. 4. (diagram a munkalapon) Befejezés. 5. Kattintsunk duplán a szürke területre és a területnél a nincs -et jelöljük be, majd OK. 6. Bökjünk az Adatsor 1 feliratra, majd a Delete gombbal töröljük. 7. Az egér jobb gombjával kattintsunk valamelyik mérési pontra és a legördülő menüből válasszuk a Trendvonal felvételét. 8. Válasszuk a Lineárist, az Egyebeknél jelöljük be az Egyenlet látszik a diagramon-t és az R 2 értéke látszik a diagramon-t, majd OK. PETRIK TISZK TÁMOP /1-2F

13 A kész diagram: Leolvasás a diagramról kb. 72 mg/dm ábra. Az analitikai mérőgörbe (egyenes) illesztése Az ismeretlen koncentrációjának meghatározása történhet: grafikusan (ld. az ábrán) vagy az egyenes egyenletéből számítva. Az analitikai mérőgörbén a következőket látjuk: analitikai jel = 0,0077 c+0,0002 és R 2 = 0,9996 Behelyettesítve az ismeretlenre kapott jelet (0,555) az egyenletből c kiszámítható: 0,555 = 0,0077 c+0,0002 c = 72,05 mg/l 72 mg/dm 3 R 2 értéke azt jellemzi, hogy az egyenes mennyire szorosan illeszkedik a pontokhoz, minél közelebb van 1-hez, annál jobb. Ellenőrző feladatok 1. Mi a tényleges és a várható érték, a mérési hiba? 2. Mi a különbség a véletlen és a rendszeres hiba között? 12 Műszeres analitika tanulói jegyzet II/14. évfolyam

14 3. Miből látszik a rendszeres hiba a kalibrációs egyenesen/görbén? 4. A valódi érték meghatározását zavarja-e a rendszeres hiba a kalibrációs görbe felvétele esetén? Válaszát indokolja! 5. A mérés során a következő értékeket kapta: 9,8; 9,7; 9,5; 10,2. Számoljon átlagot és szórást, ha kell, hagyjon el adatot! Adja meg az eredményt a megbízhatósági tartomány jelölésével 95%-os megbízhatóság esetére! 6. A következő mérési hibákat sorolja be a táblázat rovataiba (csak a számát írja be)! 1. parallaxis hiba 2. elcsúszott hőmérőskála 3. változó hőmérséklet 4. ingadozó hálózati feszültség 5. siető óra objektív szubjektív rendszeres véletlen PETRIK TISZK TÁMOP /1-2F

15 7. A kalibráció során az oldatsorozat tagjaira (2, 4, 6, 8 és 10 mg/dm 3 koncentráció) és az ismeretlenre rendre a következő analitikai jel értékeket kapta: 0,149; 0,312; 0,453; 0,596; 0,754; 0,543. Számológéppel, vagy, ha van, számítógéppel készítse el a kalibrációs egyenest! Számítsa ki az eredményt a kapott képletből! Az ebben a fejezetben tanultakat a mérések csaknem mindegyikénél használni fogjuk. A tananyag részletesebben megtalálható a szakirodalom-jegyzék 1. pontja alatti könyvben a oldalakon: Sőre, Tihanyi, Vámos (1999): Laboratóriumi gyakorlatok, Budapest: Képzőművészeti Kiadó. 14 Műszeres analitika tanulói jegyzet II/14. évfolyam

16 Optikai mérések elmélete 1. A témakör célja Ismerje meg az optikai mérések alapvető fogalmait. Értse meg az optikai jelenségeket összefüggéseikben. Tudja, hogy a jelenségek az összefüggések alapján milyen gyakorlati feladatok megoldására használhatók. Refraktometria A fény-anyag kölcsönhatásokon belül alapvetően két nagy területről kell beszélnünk: 1. a fény az anyagon kívülről érkezik valamilyen fényforrásból; 2. a fény az anyagi közegben keletkezik: emissziós jelenségek. Nézzük az 1. esetet! A fény másik homogén közeg határához érve két részre oszlik: 2.1. ábra. Fényvisszaverődés és fénytörés A törésmutató (n) egy hányados, a törési szög (β) és a beesési szög (α) sinusának hányadosa (Snellius Descartestörvény), és a két közegben mérhető fényterjedési sebesség hányadosa: Általánosságban az n 2,1 a második közegnek az első közegre vonatkoztatott törésmutatója. A vákuum törésmutatója 1, de rendszerint a levegőre vonatkoztatott törésmutatót adunk meg, ami majdnem megegyezik a vákuumra vonatkoztatott értékkel. Ha optikailag sűrűbb közegből a fénysugár optikailag ritkább közegbe lép, akkor a beesési szög meghatározott értékén túl a határfelületről teljesen visszaverődik. Azt a beesési szöget, amelynél a fénysugár éppen érintőlegesen halad, a teljes reflexió határszögének nevezzük (α H ). Ekkor a törési szög 90. Mivel sin 90 = 1, a Snellius Descartestör vény a következőképpen egyszerűsödik: n 2,1 = 1/sin α H. A teljes visszaverődés az alapja a délibáb jelenségének, ez teszi lehetővé a fény vezetését (üvegszálas fénykábel) és a törésmutató mérését is.. PETRIK TISZK TÁMOP /1-2F

17 Az Abbe-féle refraktométer Az Abbe-féle refraktométer legfontosabb része a termosztálható prizmatest. Ez két azonos, nagy törésmutatójú ólomüvegből készült prizma, melyek közé rétegezzük a mérendő anyagot. A tulajdonképpeni mérés a felső prizmával történik. Méréskor billenthető tükör segítségével fénynyalábot irányítunk a prizmákra. A második prizmából kilépő és a távcsőbe jutó fénynyalábban a teljes visszaverődés határszögének a látótér sötét és világos része közti határvonal felel meg. Ha a prizmát úgy állítjuk be, hogy a látótér sötét és világos részének határvonala a távcső fonálkeresztjére essék, a skálán közvetlenül leolvashatjuk a törésmutatót (n = 1,3 1,7). A másik skálája cukoroldat %-os szárazanyag tartalmát mutatja ábra. Abbe-féle refraktométer vázlata Az Abbe-féle refraktométert általában fehér fénnyel világítjuk meg. Ilyenkor azonban a sötét határvonal nem éles, hanem a színszóródás miatt szivárványszínű spektrumsávból áll. Ennek megszüntetésére a készülékbe kompenzátort (Amici prizmák) építenek be, ami megszünteti ezt. Fotometria spektrofotometria A fény elektromágneses hullám. Ebből az emberi szem által érzékelhető tartomány a látható fény (VIS). Az ultraibolya (UV) tartományt szemünk nem érzékeli. Az elektromágneses hullámok jellemzésére a hullámhosszt (λ, nm), frekvenciát (ν, Hz) használjuk. Az elektromágneses hullámok csökkenő frekvencia és energia, növekvő hullámhossz szerint: kozmikus sugárzás, γ-sugárzás, Röntgen-sugárzás, UV, VIS, IR, mikrohullám, rádióhullám fény. Az abszorpciós spektrofotometria (fotometria) az anyagok fényelnyelő képességét vizsgálja. 16 Műszeres analitika tanulói jegyzet II/14. évfolyam

18 Ultraibolya (UV) és látható (VIS) spektrofotometria A következőkben csak a spektrofotometria molekula-spektroszkópiai módszerével foglalkozunk. Az UV- VIS tartományban a molekulák kötő elektronjai gerjesztődnek. Az elnyelési színkép jellemző az anyagra és annak szerkezetére, de a széles sávok miatt minőségi azonosításra egymagában nem alkalmas. Transzmittancia (T): az áteresztett fény hányada: T = I/I 0 Abszorbancia (A): I A = I 0 1 = T = 100 T % Fotométer, spektrofotométer Egy- és kétfényutas spektrofotométereket használunk ábra. Egyfényutas spektrofotométer elvi vázlata Jelmagyarázat: M monokromátor, D detektor Az egyfényutas spektrofotométerben csak egy küvetta helyezhető el, így egymás után mérhető a vakpróba és a minta által áteresztett fény intenzitása. Fényforrás: látható fény tartományára többnyire wolfram lámpa, UV tartományban deutérium-lámpa. Monokromátor: az összetett fényt hullámhossz szerint felbontja. Régebben prizmákat, ma főként optikai rácsot (egyszerű készülékben esetleg színszűrőt) használnak. Küvetta: mintatartó eszköz. Többnyire 1 cm-es fényút hossz. Látható tartományban üvegből vagy műanyagból készül, UV-tartományban kvarc küvettát használunk. Detektor: a fénysugárzást elektromos jellé alakítja fotocella, fotodióda (diódasor), fotoelektronsokszorozó. A kétfényutas spektrofotométerben két küvetta helyezhető el, így majdnem egyszerre mérhető a minta és a vakpróba által áteresztett fény intenzitása ábra. Kétfényutas spektrofotométer elvi vázlata Jelmagyarázat: M monokromátor, D detektor A spektrofotométerben folytonosan tudjuk változtatni a mintára jutó fény hullámhosszát. A fotométerekben csak meghatározott hullámhosszak állíthatók be (színszűrők, LED [fényemittáló dióda] fényforrás). PETRIK TISZK TÁMOP /1-2F

19 A Lambert Beer-törvény A Lambert Beer-törvény szerint az abszorbancia egyenesen arányos a koncentrációval: I 0 = A = ε c, I ahol ε a moláris abszorpciós együttható, l az úthossz (rétegvastagság), c a vizsgált oldat koncentrációja. Fényáteresztéssel kifejezve: A = lgt; T=I/I 0, ahol I 0 és I rendre a beeső és az átbocsátott fény intenzitása, T pedig a transzmittancia (többnyire %-ban adják meg). A Lambert Beer-törvénytől eltéréseket okozhat: a fényszóródás, kis fényfelbontó képesség, kémiai okok (túl tömény oldat, ph-hatás). Ellenőrző feladatok 1. Mi a törésmutató (vázlat, képlet, a betűk jelentése)? 2. Mire használható a törésmutató mérése? 3. Rajzolja fel egy abszorpciós fotométer elvi vázlatát, nevezze meg részeit! 4. Soroljon fel fotometriás detektorokat! 18 Műszeres analitika tanulói jegyzet II/14. évfolyam

20 5. Mi az előnye a diódasoros detektornak? 6. A spektrumban mi hordozza a minőségi információt és mi a mennyiségit? 7. Ismertesse a Lambert Beer-tövényt (képlet, a betűk jelentésével)! 8. Egy spektrofotométert használ két diák. Egyikük észreveszi, hogy transzmittancia üzemmódban van és javasolja, kapcsoljanak abszorbanciára. Átkapcsolnak és ugyanannyit jelez a műszer. Lehet, hogy elromlott, mondja egyikük. Lehet-e ugyanannyi a transzmittancia és az abszorbancia? Válaszát számítással igazolja! Az ebben a fejezetben tárgyalt ismereteket használjuk az Optikai mérési gyakorlatok 1. ciklus során, de a későbbiekben is. A tananyag bővebben megtalálható a szakirodalom-jegyzék 1. pontja alatti könyvben a oldalakon: Sőre, Tihanyi, Vámos (1999): Laboratóriumi gyakorlatok, Budapest: Képzőművészeti Kiadó. PETRIK TISZK TÁMOP /1-2F

21 Optikai mérések gyakorlat 1. ciklus A témakör célja Mérések, gyakorlatok végzése: a refraktometriás, fotometriás, spektrofotometriás mérések köréből, hogy ismerje a műszerek működését és képes legyen használni azokat. Mérési adatok feldolgozása, eredmény értékelése. Az így szerzett tudás készíti fel: egy általános laboratóriumi mérés (vegyipari munkahelyen) végzésére, annak dokumentálására. Az első ciklus során 6 mérést kell elvégezni és egy elmaradt vagy rosszul sikerült mérés pótlására van mód. 20 Műszeres analitika tanulói jegyzet II/14. évfolyam

22 1. gyakorlat Üdítőital vagy szörp cukortartalmának meghatározása refraktometriás módszerrel Feladat A laboratóriumban üdítőitalok cukortartalmát ellenőrzik. Az Ön feladata, hogy refraktometriás módszerrel hasonlítsa össze és ellenőrizze különböző márkájú üdítők cukortartalmát. A munkájáról készült jegyzőkönyvben adja meg a mérési eredményei alapján az egyes minták cukortartalmát és ezt vesse össze a címkén feltüntetett cukortartalommal. Információs lap A gyakorlat elvégzésére rendelkezésére álló idő: 3 óra (3 45 perc). A beadás határideje: legkésőbb a következő alkalom (általában a következő hét). Szükséges anyagok: cukor törzsoldat (500 g/dm 3 szacharóz), ioncserélt víz. Szükséges eszközök: büretták fogóval, állvánnyal, kb. 20 cm 3 -es kémcsövek dugóval, kémcsőállvány, refraktométer. A mérés elve: az üdítőital vagy szörp oldott anyag tartalma nagyrészt a cukorból adódik, a törésmutatót az határozza meg. Vizsgálandó minta: személyenként egy tiszta, száraz, névvel ellátott kb. 20 cm 3 -es kémcsövet adjon be, a visszakapott kémcső tartalmát homogenizálja. A vizsgálat menete 1. Öttagú kalibrálóoldat-sorozatot kell készíteni. Egy-egy kb. 20 cm 3 -es tiszta, száraz kémcsőbe 1,0; 2,0; 3,0; 4,0; illetve 5,0 cm 3 törzsoldatot mérjen bürettából. A kémcsövek tartalmát ioncserélt vízzel 10,0 cm 3 -re egészítse ki, ledugaszolva homogenizálja! 2. a refraktométert szükség esetén tisztítsa meg, a kezelési útmutató alapján állítsa be, az ioncserélt víz törésmutatóját mérje meg! 3. az oldatsorozat tagjainak és az ismeretlen(ek)nek a törésmutatóját mérje meg, a mérési adatokat táblázatba (összetétel, törésmutató) jegyezze fel! 4. A készüléket tisztítsa meg, és a többi eszközt is tisztán tegye el! Számítások A mérési adataiból készítsen kalibrációs diagramot, vízszintesen a koncentrációk g/l-ben (kiszámítandók!), függőlegesen a törésmutatók (skálabeosztás!) legyenek! Kézi egyenes illesztés esetén (mm-papír), a leolvasás grafikusan történik. Ha számítógépes programmal (pl. MS Excel) végzi, elsőfokú (egyenes) trendvonalat illesszen, írassa ki az egyenletet és az R 2 értékét is! Ebben az esetben az eredményt az egyenes egyenletéből számítsa (vagy a programmal számíttassa) ki! A mérés dokumentálása a jegyzőkönyv tartalmazza: a mérés elvét, vázlatos leírását; a szükséges anyagokat az R- és S-mondatokkal; a szükséges eszközöket, műszert; a mérési beállításokat és adatokat; a számításokat (pontosság, áttekinthetőség); az eredményeket táblázatosan, a mérés pontosságának megfelelően kerekítve. Minta megnevezése Minta megnevezése 1. A minta elemzés szerinti cukortartalma Az üdítő címkéjén feltüntetett cukortartalom Eltérés %-a 2. A diagramot mellékelje a jegyzőkönyvhöz. PETRIK TISZK TÁMOP /1-2F

23 Megjegyzés: A munka során használt anyagok nem mérgezőek, de nagyon ragadósak, ügyeljen a tiszta munkakörnyezetre! Értékelési szempontok: az eredmény helyessége (pontosság, kerekítés, mértékegység) 60%; a munkavégzés szakszerűsége, biztonsága 10%; a jegyzőkönyv tartalma, áttekinthetősége 10%; a kiértékelés minősége 10%; határidőre való beadás 10%. A házi feladat teljesítése javíthat az érdemjegyen (10%). Az üdítőital vagy szörp cukortartalma fontos adat, az energiatartalom nagy részét ez adja, cukorbetegek számára is fontos információ. A termékek cukortartalmát refraktometriásan szokták meghatározni, erre utal a refr.%. Házi feladat: üdítős és szörpös palackokon keressen adatokat üdítők, illetve szörpök öszszetételére, cukortartalmára vonatkozóan, a címkéket tegye el, hozza be az iskolába! 22 Műszeres analitika tanulói jegyzet II/14. évfolyam

24 2. gyakorlat Színezékoldat koncentrációjának meghatározása spektrofotometriás módszerrel Feladat A laboratóriumban textilipari színezékfürdők színezéktartalmát ellenőrzik. Az Ön feladata, hogy spektrofotometriás módszerrel ellenőrizze, illetve mérje meg különböző színezékfürdők színezéktartalmát. A munkájáról készült jegyzőkönyvben adja meg a mérési eredményei alapján az egyes minták színezéktartalmát és ezt vesse össze az előírás szerinti színezéktartalommal. Információs lap A gyakorlat elvégzésére rendelkezésére álló idő: 3 óra (3 45 perc). A beadás határideje: legkésőbb a következő alkalom (általában a következő hét). Szükséges anyagok: színezék, ioncserélt víz. Szükséges eszközök: gyorsmérleg, 100 és 250 cm 3 -es mérőlombikok, kis tölcsér, büretta, fogóval, állvánnyal, üveg vagy műanyag küvetta, spektrofotométer. A mérés elve: a színezék látható (VIS) tartományban található elnyelési maximumán az oldat abszorbanciája arányos a színezéktartalommal. Vizsgálandó minta: egy névvel ellátott 100 cm 3 -es mérőlombikot adjon be (a bürettába töltött színezék törzsoldattal együtt), a visszakapott lombik tartalmát ioncserélt vízzel állítsa jelre, homogenizálja! A vizsgálat menete 1. A színezékből készítsen 250 cm 3 törzsoldatot (0,4 g/dm 3 színezék)! 2. Öttagú oldatsorozatot készítsen: 2, 4, 6, 8, illetve 10 cm 3 törzsoldatot mérjen bürettából egy-egy 100 cm 3 -es mérőlombikba! A lombikokat ioncserélt vízzel töltse jelig, homogenizálja! 3. a spektrofotométert kapcsolja be, bemelegedés után a kezelési útmutató segítségével végezze el a mérést! 4. a küvettába ioncserélt vizet töltve vegyen fel alapvonalat! 5. a legtöményebb oldattal átöblítve, majd megtöltve a küvettát vegye fel a színezék oldat elnyelési spektrumát látható tartományban 400 és 750 nm között! 6. Keresse meg az elnyelési maximumot a spektrumban, a hullámhosszat jegyezze fel! 7. az oldatsorozat tagjainak és az ismeretlen(ek)nek az abszorbanciáját az elnyelési maximum hullámhosszán mérje meg, a mérési adatokat jegyezze fel vagy nyomtassa ki! 8. A készüléket tisztítsa meg, és a többi eszközt is tisztán tegye el! Számítások A mérési adataiból készítsen kalibrációs diagramot, vízszintesen a koncentrációk g/dm 3 -ben (kiszámítandók!), függőlegesen az abszorbanciák legyenek! Kézi egyenes illesztés esetén (mm-papír), a leolvasás grafikusan történik. Ha számítógépes programmal (pl. MS Excel) végzi, elsőfokú (egyenes) trendvonalat illesszen, írassa ki az egyenletet és az R 2 értékét is! Ebben az esetben az eredményt az egyenes egyenletéből számítsa (vagy a programmal számíttassa) ki! Az eredményt (g/dm 3 ) számítsa át az eredeti, hígítás előtti térfogatra, és a tanultaknak megfelelő kerekítse! PETRIK TISZK TÁMOP /1-2F

25 A mérés dokumentálása a jegyzőkönyv tartalmazza: a mérés elvét, vázlatos leírását, a szükséges anyagokat az R- és S-mondatokkal, a szükséges eszközöket, műszert, a mérési beállításokat és adatokat, a számításokat (pontosság, áttekinthetőség), az eredményeket táblázatosan, a mérés pontosságának megfelelően kerekítve. Minta megnevezése Minta megnevezése 1. A minta elemzés szerinti színezék tartalma, g/l Az előírás szerinti színezéktartalom, g/l Eltérés %-a 2. A diagramot mellékelje a jegyzőkönyvhöz! Megjegyzés: a színezékek között lehetnek mérgezőek, egyéni védőeszköz használata (gumikesztyű) kötelező. Értékelési szempontok az eredmény helyessége (pontosság, kerekítés, mértékegység) 60%; a munkavégzés szakszerűsége, biztonsága 10%; a jegyzőkönyv tartalma, áttekinthetősége 10%; a kiértékelés minősége 10%; határidőre való beadás 10%. A házi feladat teljesítése javíthat az érdemjegyen (10%). Különböző (pl. textil) festési eljárások során vízoldható színezék(ek)et alkalmaznak. Az oldat hatóanyag tartalma a használat során csökken. A megfelelő festési eredmény eléréséhez az oldat színezéktartalmát be kell állítani, ezért szükséges a koncentráció meghatározása. Házi feladat: az interneten keresse meg néhány színezék abszorpciós spektrumát, a képet mentse el, az URL címet jegyezze fel! 24 Műszeres analitika tanulói jegyzet II/14. évfolyam

Természetvédő 1., 3. csoport tervezett időbeosztás

Természetvédő 1., 3. csoport tervezett időbeosztás Természetvédő 1., 3. csoport tervezett időbeosztás 4. ciklus: 2012. március 08. Optikai mérések elmélet. A ciklus mérései: 1. nitrit, 2. ammónium, 3. refraktometriax2, mérőbőrönd. Forgatási terv: Csoport

Részletesebben

9 gyak. Acél mangán tartalmának meghatározása UV-látható spektrofotometriás módszerrel

9 gyak. Acél mangán tartalmának meghatározása UV-látható spektrofotometriás módszerrel 9 gyak. Acél mangán tartalmának meghatározása UV-látható spektrofotometriás módszerrel A gyakorlat célja: Megismerkedni az UV-látható spektrofotometria elvével, alkalmazásával a kationok, anionok analízisére.

Részletesebben

UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA

UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA SPF UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA A GYAKORLAT CÉLJA: AZ UV-látható abszorpciós spektrofotométer működésének megismerése és a Lambert-Beer törvény alkalmazása. Szalicilsav meghatározása egy vizes

Részletesebben

Szakképesítés-ráépülés: 55 524 03 Műszeres analitikus Szóbeli vizsgatevékenység A vizsgafeladat megnevezése: Analitikai elemző módszerek

Szakképesítés-ráépülés: 55 524 03 Műszeres analitikus Szóbeli vizsgatevékenység A vizsgafeladat megnevezése: Analitikai elemző módszerek A vizsgafeladat ismertetése: A szóbeli központilag összeállított vizsga kérdései a 4. Szakmai követelmények fejezetben megadott modulhoz tartozó témakörök mindegyikét tartalmazzák. Amennyiben a tétel kidolgozásához

Részletesebben

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic Abszorpciós spektroszkópia Abszorpciós spektrofotometria 29.2.2. Az abszorpciós spektroszkópia a fényabszorpció jelenségét használja fel híg oldatok minőségi és mennyiségi vizsgálatára. Abszorpció Az elektromágneses

Részletesebben

Molekulaspektroszkópiai módszerek UV-VIS; IR

Molekulaspektroszkópiai módszerek UV-VIS; IR Molekulaspektroszkópiai módszerek UV-VIS; IR Fény és anyag kölcsönhatása! Optikai módszerek Fényelnyelés mérése (Abszorpción alapul) Fénykibocsátás mérése (Emisszión alapul) Atomspektroszkópiai módszerek

Részletesebben

Rácsvonalak parancsot. Válasszuk az Elsődleges függőleges rácsvonalak parancs Segédrácsok parancsát!

Rácsvonalak parancsot. Válasszuk az Elsődleges függőleges rácsvonalak parancs Segédrácsok parancsát! Konduktometriás titrálás kiértékelése Excel program segítségével (Office 2007) Alapszint 1. A mérési adatokat írjuk be a táblázat egymás melletti oszlopaiba. Az első oszlopba kerül a fogyás, a másodikba

Részletesebben

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása

Részletesebben

Indikátor izobesztikus pontjának és koncentrációjának meghatározása

Indikátor izobesztikus pontjának és koncentrációjának meghatározása Indikátor izobesztikus pontjának és koncentrációjának meghatározása Mérési elv: a sav-bázis indikátorok savas és lúgos formájának spektruma metszi egymást. Ez az izobesztikus pont. Ezen a hullámhosszon

Részletesebben

VIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola

VIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola VIDÉKFEJLESZTÉSI MINISZTÉRIUM Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola Budapest, Thököly út 48-54. XV. KÖRNYEZETVÉDELMI ÉS VÍZÜGYI ORSZÁGOS SZAKMAI TANULMÁNYI

Részletesebben

1. feladat Összesen: 7 pont. 2. feladat Összesen: 8 pont

1. feladat Összesen: 7 pont. 2. feladat Összesen: 8 pont 1. feladat Összesen: 7 pont Hét egymást követő titrálás fogyásai a következők: Sorszám: 1. 2. 3. 4. 5. 6. 7. Fogyások (cm 3 ) 20,25 20,30 20,40 20,35 20,80 20,30 20,20 A) Keresse meg és húzza át a szemmel

Részletesebben

VIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola

VIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola A versenyző kódja:... VIDÉKFEJLESZTÉSI MINISZTÉRIUM Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola Budapest, Thököly út 48-54. XV. KÖRNYEZETVÉDELMI ÉS VÍZÜGYI

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ. Orvosi laboratóriumi technikai asszisztens szakképesítés. 2446-06 Műszer és méréstechnika modul. 1.

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ. Orvosi laboratóriumi technikai asszisztens szakképesítés. 2446-06 Műszer és méréstechnika modul. 1. Emberi Erőforrások Minisztériuma Korlátozott terjesztésű! Érvényességi idő: az írásbeli vizsgatevékenység befejezésének időpontjáig A minősítő neve: Rauh Edit A minősítő beosztása: mb. főigazgató-helyettes

Részletesebben

UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA

UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA SPP UV-LÁTHATÓ ABSZORPCIÓS SPEKTROFOTOMETRIA A GYAKORLAT CÉLJA: AZ UV-látható abszorpciós spektrofotométer működésének megismerése és a Lambert-Beer törvény alkalmazása. Foszfátionok meghatározása vizes

Részletesebben

FLUORESZCENCIA SPEKTROSZKÓPIA

FLUORESZCENCIA SPEKTROSZKÓPIA FLS FLUORESZCENCIA SPEKTROSZKÓPIA A GYAKORLAT CÉLJA: A fluoreszcencia spektroszkópia módszerének megismerése és alkalmazása kininszulfát meghatározására vizes közegű oldatmintákban. A MÉRÉSI MÓDSZER ELVE

Részletesebben

GEOMETRIAI OPTIKA I.

GEOMETRIAI OPTIKA I. Elméleti háttér GEOMETRIAI OPTIKA I. Törésmutató meghatározása a törési törvény alapján Snellius-Descartes törvény Az új közeg határához érkező fény egy része behatol az új közegbe, és eközben általában

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Titrimetria - Térfogatos kémiai analízis -

Titrimetria - Térfogatos kémiai analízis - Titrimetria - Térfogatos kémiai analízis - Alapfogalmak Elv (ismert térfogatú anyag oldatához annyi ismert konc. oldatot adnak, amely azzal maradéktalanul reagál) Titrálás végpontja (egyenértékpont) Törzsoldat,

Részletesebben

SPEKTROFOTOMETRIAI MÉRÉSEK

SPEKTROFOTOMETRIAI MÉRÉSEK SPEKTROFOTOMETRIAI MÉRÉSEK Elméleti bevezetés A spektroszkópia, spektrofotometria az egyik legelterjedtebb anyagvizsgálati módszer. Az igen sokféle mérési technika közös alapja az, hogy az anyagok molekuláris,-

Részletesebben

1.1. Reakciósebességet befolyásoló tényezők, a tioszulfát bomlása

1.1. Reakciósebességet befolyásoló tényezők, a tioszulfát bomlása 2. Laboratóriumi gyakorlat A laborgyakorlatok anyagát összeállította: dr. Pasinszki Tibor egyetemi tanár 1.1. Reakciósebességet befolyásoló tényezők, a tioszulfát bomlása A reakciósebesség növelhető a

Részletesebben

NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS. Mérési feladatok

NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS. Mérési feladatok Hidrodinamikai Rendszerek Tanszék Készítette:... kurzus Elfogadva: Dátum:...év...hó...nap NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS Mérési feladatok 1. Csővezetékben áramló levegő nyomásveszteségének mérése U-csöves

Részletesebben

V átlag = (V 1 + V 2 +V 3 )/3. A szórás V = ((V átlag -V 1 ) 2 + ((V átlag -V 2 ) 2 ((V átlag -V 3 ) 2 ) 0,5 / 3

V átlag = (V 1 + V 2 +V 3 )/3. A szórás V = ((V átlag -V 1 ) 2 + ((V átlag -V 2 ) 2 ((V átlag -V 3 ) 2 ) 0,5 / 3 5. gyakorlat. Tömegmérés, térfogatmérés, pipettázás gyakorlása tömegméréssel kombinálva. A mérési eredmények megadása. Sóoldat sőrőségének meghatározása, koncentrációjának megadása a mért sőrőség alapján.

Részletesebben

Környezetvédelmi mérések fotoakusztikus FTIR műszerrel

Környezetvédelmi mérések fotoakusztikus FTIR műszerrel Környezetvédelmi mérések fotoakusztikus FTIR műszerrel A légszennyezés mérése nem könnyű méréstechnikai feladat. Az eszközök széles skáláját fejlesztették ki, hagyományosan az emissziómérésre, ezen belül

Részletesebben

SPEKTROFOTOMETRIAI MÉRÉSEK

SPEKTROFOTOMETRIAI MÉRÉSEK SPEKTROFOTOMETRIAI MÉRÉSEK Elméleti bevezetés Ha egy anyagot a kezünkbe veszünk (valamilyen technológiai céllal alkalmazni szeretnénk), elsı kérdésünk valószínőleg az lesz, hogy mi ez az anyag, milyen

Részletesebben

Mérőlombik kalibrálás. Mérőlombik kalibrálás. Név: Dátum: 2015. Név: Dátum: 2015.

Mérőlombik kalibrálás. Mérőlombik kalibrálás. Név: Dátum: 2015. Név: Dátum: 2015. Név: Dátum: 2015. Név: Dátum: 2015. Mérőlombik kalibrálás Mérőlombik kalibrálás A mérőlombik névleges térfogata: Mérési adatok cm 3. Jele: A víz hőmérséklete: ⁰C, sűrűsége g/cm 3. A tiszta, SZÁRAZ, üres

Részletesebben

Az infravörös spektroszkópia analitikai alkalmazása

Az infravörös spektroszkópia analitikai alkalmazása Az infravörös spektroszkópia analitikai alkalmazása Egy molekula nemcsak haladó mozgást végez, de az atomjai (atomcsoportjai) egymáshoz képest is állandó mozgásban vannak. Tételezzünk fel egy olyan mechanikai

Részletesebben

Engedélyszám: 18211-2/2011-EAHUF Verziószám: 1. 2446-06 Műszer és méréstechnika követelménymodul szóbeli vizsgafeladatai

Engedélyszám: 18211-2/2011-EAHUF Verziószám: 1. 2446-06 Műszer és méréstechnika követelménymodul szóbeli vizsgafeladatai 1. feladat Csoporttársával szóbeli beszámolóra készülnek spektrofotometria témakörből. Ismertesse a mai kémiai automatákba épített fotométerek fő részeit, a lehetséges mérési tartományt! Ismertetőjében

Részletesebben

7. gyak. Szilárd minta S tartalmának meghatározása égetést követően jodometriásan

7. gyak. Szilárd minta S tartalmának meghatározása égetést követően jodometriásan 7. gyak. Szilárd minta S tartalmának meghatározása égetést követően jodometriásan A gyakorlat célja: Megismerkedni az analízis azon eljárásaival, amelyik adott komponens meghatározását a minta elégetése

Részletesebben

1.1 Emisszió, reflexió, transzmisszió

1.1 Emisszió, reflexió, transzmisszió 1.1 Emisszió, reflexió, transzmisszió A hőkamera által észlelt hosszú hullámú sugárzás - amit a hőkamera a látómezejében érzékel - a felület emissziójának, reflexiójának és transzmissziójának függvénye.

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt

Részletesebben

Vizes oldatok ph-jának mérése

Vizes oldatok ph-jának mérése Vizes oldatok ph-jának mérése Név: Neptun-kód: Labor elızetes feladat Mennyi lesz annak a hangyasav oldatnak a ph-ja, amelynek koncentrációja 0,330 mol/dm 3? (K s = 1,77 10-4 mol/dm 3 ) Mekkora a disszociációfok?

Részletesebben

ph-számítás A víz gyenge elektrolit. Kismértékben disszociál hidrogénionokra (helyesebben hidroxónium-ionokra) és hidroxid-ionokra :

ph-számítás A víz gyenge elektrolit. Kismértékben disszociál hidrogénionokra (helyesebben hidroxónium-ionokra) és hidroxid-ionokra : ph-számítás A víz gyenge elektrolit. Kismértékben disszociál hidrogénionokra (helyesebben hidroxónium-ionokra) és hidroxid-ionokra : H 2 O H + + OH -, (2 H 2 O H 3 O + + 2 OH - ). Semleges oldatban a hidrogén-ion

Részletesebben

Optika fejezet felosztása

Optika fejezet felosztása Optika Optika fejezet felosztása Optika Geometriai optika vagy sugároptika Fizikai optika vagy hullámoptika Geometriai optika A közeg abszolút törésmutatója: c: a fény terjedési sebessége vákuumban, v:

Részletesebben

VIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola

VIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola A versenyző kódja:... VIDÉKFEJLESZTÉSI MINISZTÉRIUM Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola Budapest, Thököly út 48-54. XV. KÖRNYEZETVÉDELMI ÉS VÍZÜGYI

Részletesebben

Természetvédő 1., 3. csoport tervezett időbeosztás. A ciklus mérései: lángfotometria, AAS, Ca + Ök, lúgosság

Természetvédő 1., 3. csoport tervezett időbeosztás. A ciklus mérései: lángfotometria, AAS, Ca + Ök, lúgosság Természetvédő 1., 3. csoport tervezett időbeosztás 1. ciklus: 2011. október 06 november 27. A ciklus mérései: lángfotometria, AAS, Ca + Ök, lúgosság Forgatási terv: 10. 06. 10. 13. 10. 20. 10. 27. 1. csoport

Részletesebben

Víztechnológiai mérőgyakorlat 2. Klórferőtlenítés törésponti görbe felvétele. Jegyzőkönyv

Víztechnológiai mérőgyakorlat 2. Klórferőtlenítés törésponti görbe felvétele. Jegyzőkönyv A mérést végezte: NEPTUNkód: Víztechnológiai mérőgyakorlat 2. Klórferőtlenítés törésponti görbe felvétele Jegyzőkönyv Név: Szak: Tagozat: Évfolyam, tankör: AABB11 D. Miklós Környezetmérnöki Levlező III.,

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint ÉRETTSÉGI VIZSGA 0. október 7. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint,

Részletesebben

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS OPTIKA Geometriai optika Snellius Descartes-törvény A fényhullám a geometriai optika szempontjából párhuzamos fénysugarakból áll. A vákuumban haladó fénysugár a geometriai egyenes fizikai megfelelője.

Részletesebben

2.2.24. ABSZORPCIÓS SPEKTROFOTOMETRIA AZ INFRAVÖRÖS SZÍNKÉPTARTOMÁNYBAN

2.2.24. ABSZORPCIÓS SPEKTROFOTOMETRIA AZ INFRAVÖRÖS SZÍNKÉPTARTOMÁNYBAN 1 2.2.24. ABSZORPCIÓS SPEKTROFOTOMETRIA AZ INFRAVÖRÖS SZÍNKÉPTARTOMÁNYBAN 01/2005:20224 Az infravörös spektrofotométereket a 4000 650 cm -1 (2,5 15,4 µm) közti, illetve néhány esetben egészen a 200 cm

Részletesebben

Felkészítés szakmai vizsgára. 1163-06 modulhoz. II/14. évfolyam

Felkészítés szakmai vizsgára. 1163-06 modulhoz. II/14. évfolyam Felkészítés szakmai vizsgára informatika területre Felkészítés szakmai vizsgára informatika területre 1163-06 modulhoz II/14. évfolyam tanári kézikönyv A TISZK rendszer továbbfejlesztése Petrik TISZK TÁMOP-2.2.3-07/1-2F-2008-0011

Részletesebben

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz!

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz! Összefoglalás Víz Természetes víz. Melyik anyagcsoportba tartozik? Sorolj fel természetes vizeket. Mitől kemény, mitől lágy a víz? Milyen okokból kell a vizet tisztítani? Kémiailag tiszta víz a... Sorold

Részletesebben

SPEKTROFOTOMETRIAI MÉRÉSEK

SPEKTROFOTOMETRIAI MÉRÉSEK SPEKTROFOTOMETRIAI MÉRÉSEK Elméleti bevezetés Ha egy anyagot a kezünkbe veszünk (valamilyen technológiai céllal alkalmazni szeretnénk), első kérdésünk valószínűleg az lesz, hogy mi ez az anyag, milyen

Részletesebben

Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés

Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés A gyakorlatra vigyenek magukkal pendrive-ot, amire a mérési adatokat átvehetik. Ajánlott irodalom: P. W. Atkins: Fizikai

Részletesebben

Fény, mint elektromágneses hullám, geometriai optika

Fény, mint elektromágneses hullám, geometriai optika Fény, mint elektromágneses hullám, geometriai optika Az elektromágneses hullámok egyik fajtája a szemünk által látható fény. Látható fény (400 nm 800 nm) (vörös ibolyakék) A látható fehér fény a különböző

Részletesebben

Beadandó: A szacharóz fajlagos forgatóképessége és az ismeretlen minta százalékos szacharóz-tartalma.

Beadandó: A szacharóz fajlagos forgatóképessége és az ismeretlen minta százalékos szacharóz-tartalma. Szacharóztartalom meghatározása Lippich féle (félárnyék) polariméterrel Eszközök: 2 db 100 cm 3 -es mérőlombik, kis tölcsér, beméréshez főzőpohár, gyorsmérleg, polariméter, szacharóz 1. Gyorsmérlegen lemérünk

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

Felkészítés szakmai vizsgára. 1144-06 modulhoz. II/14. évfolyam

Felkészítés szakmai vizsgára. 1144-06 modulhoz. II/14. évfolyam Felkészítés szakmai vizsgára informatika területre Felkészítés szakmai vizsgára informatika területre 1144-06 modulhoz II/14. évfolyam tanári kézikönyv A TISZK rendszer továbbfejlesztése Petrik TISZK TÁMOP-2.2.3-07/1-2F-2008-0011

Részletesebben

8. Gőz-folyadék egyensúly tanulmányozása kétkomponensű elegyekben. Előkészítő előadás 2015.02.09.

8. Gőz-folyadék egyensúly tanulmányozása kétkomponensű elegyekben. Előkészítő előadás 2015.02.09. 8. Gőz-folyadék egyensúly tanulmányozása kétkomponensű elegyekben Előkészítő előadás 2015.02.09. Elméleti áttekintés Gőznyomás: adott hőmérsékleten egy anyag folyadék fázisával egyensúlyt tartó gőzének

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Történeti áttekintés

Történeti áttekintés A fény Történeti áttekintés Arkhimédész tükrök segítségével gyújtotta fel a római hajókat. A fény hullámtermészetét Cristian Huygens holland fizikus alapozta meg a 17. században. A fénysebességet először

Részletesebben

www.testiny.hu Mark-X Használati utasítás

www.testiny.hu Mark-X Használati utasítás Mark-X Használati utasítás Kérjük, hogy a készülék használata előtt figyelmesen olvassa el a használati utasítást. Az Alcovisor Mark X digitális alkoholszonda elektrokémiai érzékelőt használva határozza

Részletesebben

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1995 JAVÍTÁSI ÚTMUTATÓ

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1995 JAVÍTÁSI ÚTMUTATÓ 1 oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1995 JAVÍTÁSI ÚTMUTATÓ I A VÍZ - A víz molekulája V-alakú, kötésszöge 109,5 fok, poláris kovalens kötések; - a jég molekularácsos, tetraéderes elrendeződés,

Részletesebben

Optikai alapmérések. Mivel több mérésről van szó, egyesével írom le és értékelem ki őket. 1. Törésmutató meghatározása a törési törvény alapján

Optikai alapmérések. Mivel több mérésről van szó, egyesével írom le és értékelem ki őket. 1. Törésmutató meghatározása a törési törvény alapján Optikai alapmérések Mérést végezte: Enyingi Vera Atala Mérőtárs neve: Fábián Gábor (7. mérőpár) Mérés időpontja: 2010. október 15. (12:00-14:00) Jegyzőkönyv leadásának időpontja: 2010. október 22. A mérés

Részletesebben

Oldatkészítés, ph- és sűrűségmérés

Oldatkészítés, ph- és sűrűségmérés Oldatkészítés, ph- és sűrűségmérés A laboratóriumi gyakorlat során elvégzendő feladat: Oldatok hígítása, adott ph-jú pufferoldat készítése és vizsgálata, valamint egy oldat sűrűségének mérése. Felkészülés

Részletesebben

KÖNYEZETI ANALITIKA BEUGRÓK I.

KÖNYEZETI ANALITIKA BEUGRÓK I. KÖNYEZETI ANALITIKA BEUGRÓK I. 1.Mit nevezünk egy mérőműszert illetően jelnek és zajnak? jel az, amit a műszer mutat, amikor a meghatározandó komponenst mérjük vele zaj az, amit a műszer akkor mutat, amikor

Részletesebben

2. Fotometriás mérések II.

2. Fotometriás mérések II. 2. Fotometriás mérések II. 2008 október 31. 1. Ammónia-nitrogén mérése alacsony mérési tartományban és szabad ammónia becslése 1.1. Háttér A módszer alkalmas kis ammónia-nitrogén koncentrációk meghatározására;

Részletesebben

Kiegészítő tudnivalók a fizikai mérésekhez

Kiegészítő tudnivalók a fizikai mérésekhez Kiegészítő tudnivalók a fizikai mérésekhez A mérési gyakorlatokra való felkészüléshez a Fizika Gyakorlatok c. jegyzet használható (Nagy P. Fizika gyakorlatok az általános és gazdasági agrármérnök hallgatók

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6. Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az

Részletesebben

Ismerje meg a természettudomány törvényeit élőben 10 hasznos tanács Tanuljon könnyedén

Ismerje meg a természettudomány törvényeit élőben 10 hasznos tanács Tanuljon könnyedén Vegyipar Iskolai kísérletek Törésmutató-mérés Ismertető 10 hasznos tanács a Törésmutató-méréshez Ismerje meg a természettudomány törvényeit élőben Tanuljon könnyedén Kedves Olvasó! Először is köszönjük,

Részletesebben

Ellenállásmérés Ohm törvénye alapján

Ellenállásmérés Ohm törvénye alapján Ellenállásmérés Ohm törvénye alapján A mérés elmélete Egy fémes vezetőn átfolyó áram I erőssége egyenesen arányos a vezető végpontjai közt mérhető U feszültséggel: ahol a G arányossági tényező az elektromos

Részletesebben

Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés.

Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. A sugárzáson alapuló hőmérsékletmérés (termográfia),azt a fizikai jelenséget használja fel, hogy az abszolút nulla K hőmérséklet (273,16

Részletesebben

Az 56. sorszámú Környezetvédelmi-mérés szaktechnikus megnevezésű szakképesítés-ráépülés szakmai és vizsgakövetelménye

Az 56. sorszámú Környezetvédelmi-mérés szaktechnikus megnevezésű szakképesítés-ráépülés szakmai és vizsgakövetelménye Az 56. sorszámú Környezetvédelmi-mérés szaktechnikus megnevezésű szakképesítés-ráépülés szakmai és vizsgakövetelménye 1. AZ ORSZÁGOS KÉPZÉSI JEGYZÉKBEN SZEREPLŐ ADATOK 1.1. A szakképesítés-ráépülés azonosító

Részletesebben

1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont

1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont 1. feladat Összesen: 15 pont Vizsgálja meg a hidrogén-klorid (vagy vizes oldata) reakciót különböző szervetlen és szerves anyagokkal! Ha nem játszódik le reakció, akkor ezt írja be! protonátmenettel járó

Részletesebben

2.4.27. VIZSGÁLAT NEHÉZFÉMEKRE NÖVÉNYI DROGOKBAN ÉS NÖVÉNYI DROGKÉSZÍTMÉNYEKBEN

2.4.27. VIZSGÁLAT NEHÉZFÉMEKRE NÖVÉNYI DROGOKBAN ÉS NÖVÉNYI DROGKÉSZÍTMÉNYEKBEN Ph.Hg.VIII. - Ph.Eur.8.2.-1 07/2014:20427 2.4.27. VIZSGÁLAT NEHÉZFÉMEKRE NÖVÉNYI DROGOKBAN ÉS NÖVÉNYI DROGKÉSZÍTMÉNYEKBEN Figyelmeztetés: a zárt, nagynyomású roncsolóedények és a mikrohullámú laboratóriumi

Részletesebben

7. Festékelegyek elválasztása oszlopkromatográfiás módszerrel. Előkészítő előadás 2015.03.09.

7. Festékelegyek elválasztása oszlopkromatográfiás módszerrel. Előkészítő előadás 2015.03.09. 7. Festékelegyek elválasztása oszlopkromatográfiás módszerrel Előkészítő előadás 2015.03.09. A kromatográfia A módszer során az elválasztandó anyagot áthajtjuk egy mozgó fázisban egy álló fázison keresztül

Részletesebben

NÉHÁNY FONTOS ALAPFOGALOM A MŰSZERES ANALITIKAI KÉMIÁBAN

NÉHÁNY FONTOS ALAPFOGALOM A MŰSZERES ANALITIKAI KÉMIÁBAN NÉHÁNY FONTOS ALAPFOGALOM A MŰSZERES ANALITIKAI KÉMIÁBAN KALIBRÁCIÓ A kalibráció folyamata során a műszer válaszjele és a mérendő koncentrációja közötti összefüggést határozzuk meg. A kísérletileg meghatározott

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid

Részletesebben

INFRA HŐMÉRŐ (PIROMÉTER) AX-6520. Használati útmutató

INFRA HŐMÉRŐ (PIROMÉTER) AX-6520. Használati útmutató INFRA HŐMÉRŐ (PIROMÉTER) AX-6520 Használati útmutató TARTALOMJEGYZÉK 1. Biztonsági szabályok... 3 2. Megjegyzések... 3 3. A mérőműszer leírása... 3 4. LCD kijelző leírása... 4 5. Mérési mód...4 6. A pirométer

Részletesebben

Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm.

Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

B TÉTEL A cukor, ammónium-klorid, nátrium-karbonát kémhatásának vizsgálata A túró nitrogéntartalmának kimutatása A hamisított tejföl kimutatása

B TÉTEL A cukor, ammónium-klorid, nátrium-karbonát kémhatásának vizsgálata A túró nitrogéntartalmának kimutatása A hamisított tejföl kimutatása 2014/2015. B TÉTEL A cukor, ammónium-klorid, nátrium-karbonát kémhatásának vizsgálata A kísérleti tálcán lévő sorszámozott eken három fehér port talál. Ezek: cukor, ammónium-klorid, ill. nátrium-karbonát

Részletesebben

Elektronikus fekete doboz vizsgálata

Elektronikus fekete doboz vizsgálata Elektronikus fekete doboz vizsgálata 1. Feladatok a) Munkahelyén egy elektronikus fekete dobozt talál, amely egy nem szabványos egyenáramú áramforrást, egy kondenzátort és egy ellenállást tartalmaz. Méréssel

Részletesebben

Szervetlen komponensek analízise. A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.

Szervetlen komponensek analízise. A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb. Szervetlen komponensek analízise A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.) A fény λ i( k r ωt + φ0 ) Elektromágneses sugárzás E( r,

Részletesebben

MŰSZERES ANALÍZIS. ( a jelképzés és jelfeldologozás tudománya)

MŰSZERES ANALÍZIS. ( a jelképzés és jelfeldologozás tudománya) MŰSZERES ANALÍZIS ( a jelképzés és jelfeldologozás tudománya) Az vizsgált mintában fizikai kölcsönhatás vagy kémiai átalakulás során végbemenő fizikai-kémiai változásokból műszerek segítségével következtetünk

Részletesebben

A tisztítandó szennyvíz jellemző paraméterei

A tisztítandó szennyvíz jellemző paraméterei A tisztítandó szennyvíz jellemző paraméterei A Debreceni Szennyvíztisztító telep a kommunális szennyvizeken kívül, időszakosan jelentős mennyiségű, ipari eredetű vizet is fogad. A magas szervesanyag koncentrációjú

Részletesebben

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni? 1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

A fény visszaverődése

A fény visszaverődése I. Bevezető - A fény tulajdonságai kölcsönhatásokra képes egyenes vonalban terjed terjedési sebessége függ a közeg anyagától (vákuumban 300.000 km/s; gyémántban 150.000 km/s) hullám tulajdonságai vannak

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Szervetlen és Analitikai Kémia Tanszék

Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Szervetlen és Analitikai Kémia Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Szervetlen és Analitikai Kémia Tanszék Szerkesztette: POKOL GYÖRGY Írta: POKOL GYÖRGY, GYURCSÁNYI E. RÓBERT, SIMON ANDRÁS,

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 00. május-június MATEMATIKA KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ Vizsgafejlesztő Központ Kedves Kolléga! Kérjük, hogy a dolgozatok javítását a javítási útmutató alapján végezze, a következők figyelembevételével.

Részletesebben

Módszer az ASEA-ban található reaktív molekulák ellenőrzésére

Módszer az ASEA-ban található reaktív molekulák ellenőrzésére Módszer az ASEA-ban található reaktív molekulák ellenőrzésére Az ASEA-ban található reaktív molekulák egy komplex szabadalmaztatott elektrokémiai folyamat, mely csökkenti és oxidálja az alap sóoldatot,

Részletesebben

SERTRALINI HYDROCHLORIDUM. Szertralin-hidroklorid

SERTRALINI HYDROCHLORIDUM. Szertralin-hidroklorid Sertralini hydrochloridum Ph.Hg.VIII. Ph.Eur.7.1-1 SERTRALINI HYDROCHLORIDUM Szertralin-hidroklorid 01/2011:1705 javított 7.1 C 17 H 18 Cl 3 N M r 342,7 [79559-97-0] DEFINÍCIÓ [(1S,4S)-4-(3,4-Diklórfenil)-N-metil-1,2,3,4-tetrahidronaftalin-1-amin]

Részletesebben

EPS-1-60 és EPS-1-120 HASZNÁLATI ÚTMUTATÓ

EPS-1-60 és EPS-1-120 HASZNÁLATI ÚTMUTATÓ EPS-1-60 és EPS-1-120 HASZNÁLATI ÚTMUTATÓ BILLENTYŰZET 1) ON/OFF gomb: a mérleg ki- és bekapcsolása 2) TARE gomb: tárázás/nullázás 3) MODE gomb: mértékegység váltás MŰSZAKI PARAMÉTEREK 1) Méréshatár: 60.00kg

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria A fény Abszorpciós fotometria Barkó Szilvia PTE ÁOK Biofizikai ntézet 2011. február E A fény elektromos térerősségvektor hullámhossz A fény kettős termzete: Hullám (terjedkor) Rzecske (kölcsönhatáskor)

Részletesebben

Színképelemzés. Romsics Imre 2014. április 11.

Színképelemzés. Romsics Imre 2014. április 11. Színképelemzés Romsics Imre 2014. április 11. 1 Más néven: Spektrofotometria A színképből kinyert információkból megállapítható: az atomok elektronszerkezete az elektronállapotokat jellemző kvantumszámok

Részletesebben

Támogatás / Excel / Excel 2010 súgó és útmutató / Diagramok / Diagramok formázása Hibasáv felvétele, módosítása és eltávolítása diagramban

Támogatás / Excel / Excel 2010 súgó és útmutató / Diagramok / Diagramok formázása Hibasáv felvétele, módosítása és eltávolítása diagramban Page 1 of 6 Támogatás / Excel / Excel 2010 súgó és útmutató / Diagramok / Diagramok formázása Hibasáv felvétele, módosítása és eltávolítása diagramban Hatókör: Microsoft Excel 2010, Outlook 2010, PowerPoint

Részletesebben

QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése

QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése Szegény Zsigmond WESSLING Közhasznú Nonprofit Kft., Jártassági Vizsgálati Osztály szegeny.zsigmond@qualcoduna.hu 2014.01.21. 2013.

Részletesebben

OKTATÁSI SEGÉDLET Környezeti analízis II. c.

OKTATÁSI SEGÉDLET Környezeti analízis II. c. OKTATÁSI SEGÉDLET a Környezeti analízis II. c. tantárgyhoz kapcsolódó laboratóriumi gyakorlat feladataihoz Nappali és levelező tagozatos környezetmérnök (BSc) szakos hallgatók számára Készítette: Dr. Bodnár

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Mikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv

Mikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv (-as számú mérés) mérési jegyzõkönyv Készítette:, II. éves fizikus... Beadás ideje:... / A mérés leírása: A mérés során egy mikroszkóp különbözõ nagyítású objektívjeinek nagyítását, ezek fókusztávolságát

Részletesebben

Modern Fizika Laboratórium Fizika és Matematika BSc 14. Holográfia

Modern Fizika Laboratórium Fizika és Matematika BSc 14. Holográfia Modern Fizika Laboratórium Fizika és Matematika BSc 14. Holográfia Mérést végezték: Bodó Ágnes Márkus Bence Gábor Kedd délelőtti csoport Mérés ideje: 03/06/2012 Beadás ideje: 05/22/2012 (javítás) Érdemjegy:

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint ÉRETTSÉGI VIZSGA 2005. november 5. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint, jól követhetően

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8. EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2009. június 8. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

2. Szerves anyagok oldatának fotolumineszcencia színképének meghatározása

2. Szerves anyagok oldatának fotolumineszcencia színképének meghatározása Spektroszkópiai mérések. Fizikus MSc. Alkalmazott fizikus szakirány Környezettudományi MSc, Környezetfizika szakirány 2. Szerves anyagok oldatának fotolumineszcencia színképének meghatározása 1. Elméleti

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

AX-5003 KÉTCSATORNÁS HŐMÉRSÉKLET MÉRŐ

AX-5003 KÉTCSATORNÁS HŐMÉRSÉKLET MÉRŐ Használati útmutató AX-5003 KÉTCSATORNÁS HŐMÉRSÉKLET MÉRŐ Bevezetés Köszönjük, hogy megvásárolta ezt a kétcsatornás hőmérsékletet mérő készüléket. Szánjon rá néhány percet, hogy elolvassa a használati

Részletesebben

A feladatokat írta: Kódszám: Harkai Jánosné, Szeged Kálnay Istvánné, Nyíregyháza Lektorálta: .. Kozma Lászlóné, Sajószenpéter

A feladatokat írta: Kódszám: Harkai Jánosné, Szeged Kálnay Istvánné, Nyíregyháza Lektorálta: .. Kozma Lászlóné, Sajószenpéter A feladatokat írta: Harkai Jánosné, Szeged Kálnay Istvánné, Nyíregyháza Lektorálta: Kódszám:.. Kozma Lászlóné, Sajószenpéter 2011. május 14. Curie Kémia Emlékverseny 8. évfolyam Országos döntő 2010/2011.

Részletesebben

Kémiai technológia laboratóriumi gyakorlatok M É R É S I J E G Y Z Ő K Ö N Y V. című gyakorlathoz

Kémiai technológia laboratóriumi gyakorlatok M É R É S I J E G Y Z Ő K Ö N Y V. című gyakorlathoz Kémiai technológia laboratóriumi gyakorlatok M É R É S I J E G Y Z Ő K Ö N Y V a A KEMÉNYÍTŐ IZOLÁLÁSA ÉS ENZIMATIKUS HIDROLÍZISÉNEK VIZSGÁLATA I-II. című gyakorlathoz Nevek: Mérés helye: Mérés ideje Gyakorlatvezető:

Részletesebben

AN900 D választható frekvenciájú négysugaras infrasorompó Telepítési útmutató 1. A készülék főbb részei

AN900 D választható frekvenciájú négysugaras infrasorompó Telepítési útmutató 1. A készülék főbb részei AN900 D választható frekvenciájú négysugaras infrasorompó Telepítési útmutató 1. A készülék főbb részei 2. Telepítési szempontok Az érzékelő telepítési helyének kiválasztásakor kerülje az alábbi területeket:

Részletesebben

d) A gömbtükör csak domború tükröző felület lehet.

d) A gömbtükör csak domború tükröző felület lehet. Optika tesztek 1. Melyik állítás nem helyes? a) A Hold másodlagos fényforrás. b) A foszforeszkáló jel másodlagos fényforrás. c) A gyertya lángja elsődleges fényforrás. d) A szentjánosbogár megfelelő potrohszelvénye

Részletesebben