Problémamegoldó szeminárium Témavezető: Pataki Péter ARH Zrt. ELTE-TTK 2013
Tartalomjegyzék 1 Bevezetés 2 Út a megoldás felé 3 Felmerült problémák 4 Alkalmazott matematika 5 További lehetőségek
Motiváció Motiváció Beléptetőrendszerek automatizálása Statisztika készítése Úthasználat kiszámítása Valós idejű forgalomirányítás Közúti szabálysértési nyomozások megkönnyítése Szúrópróbaszerű ellenőrzések
Motiváció Motiváció Beléptetőrendszerek automatizálása Statisztika készítése Úthasználat kiszámítása Valós idejű forgalomirányítás Közúti szabálysértési nyomozások megkönnyítése Szúrópróbaszerű ellenőrzések
Motiváció Motiváció Beléptetőrendszerek automatizálása Statisztika készítése Úthasználat kiszámítása Valós idejű forgalomirányítás Közúti szabálysértési nyomozások megkönnyítése Szúrópróbaszerű ellenőrzések
Motiváció Motiváció Beléptetőrendszerek automatizálása Statisztika készítése Úthasználat kiszámítása Valós idejű forgalomirányítás Közúti szabálysértési nyomozások megkönnyítése Szúrópróbaszerű ellenőrzések
Motiváció Motiváció Beléptetőrendszerek automatizálása Statisztika készítése Úthasználat kiszámítása Valós idejű forgalomirányítás Közúti szabálysértési nyomozások megkönnyítése Szúrópróbaszerű ellenőrzések
Motiváció Motiváció Beléptetőrendszerek automatizálása Statisztika készítése Úthasználat kiszámítása Valós idejű forgalomirányítás Közúti szabálysértési nyomozások megkönnyítése Szúrópróbaszerű ellenőrzések
A probléma leírása A probléma leírása Rendszám(ok) megtalálása a képen Karakterek detektálása Karakterjellegű foltok kiszűrése (szennyeződések, hibák, matricák figyelmen kívül hagyása) Karakterek felismerése A rendszámtábla szövegének összeálĺıtása
A probléma leírása A probléma leírása Rendszám(ok) megtalálása a képen Karakterek detektálása Karakterjellegű foltok kiszűrése (szennyeződések, hibák, matricák figyelmen kívül hagyása) Karakterek felismerése A rendszámtábla szövegének összeálĺıtása
A probléma leírása A probléma leírása Rendszám(ok) megtalálása a képen Karakterek detektálása Karakterjellegű foltok kiszűrése (szennyeződések, hibák, matricák figyelmen kívül hagyása) Karakterek felismerése A rendszámtábla szövegének összeálĺıtása
A probléma leírása A probléma leírása Rendszám(ok) megtalálása a képen Karakterek detektálása Karakterjellegű foltok kiszűrése (szennyeződések, hibák, matricák figyelmen kívül hagyása) Karakterek felismerése A rendszámtábla szövegének összeálĺıtása
A probléma leírása A probléma leírása Rendszám(ok) megtalálása a képen Karakterek detektálása Karakterjellegű foltok kiszűrése (szennyeződések, hibák, matricák figyelmen kívül hagyása) Karakterek felismerése A rendszámtábla szövegének összeálĺıtása
Elkészült program Elkészült program Elkészült egy implementáció C#-ban Egyelőre felhasználói beavatkozást igényel Jól paraméterezett, automatizálásra alkalmas
Elkészült program Elkészült program Elkészült egy implementáció C#-ban Egyelőre felhasználói beavatkozást igényel Jól paraméterezett, automatizálásra alkalmas
Elkészült program Elkészült program Elkészült egy implementáció C#-ban Egyelőre felhasználói beavatkozást igényel Jól paraméterezett, automatizálásra alkalmas
A program lépései 1 Bemenet kezelése A bemeneti kép: nagy méretű, színes kép (RGB) Kicsinyítés, szürkeárnyalatossá konvertálás. Kép, mint mátrix, ahol az értékek [0, 255].
A program lépései 1 Bemenet kezelése A bemeneti kép: nagy méretű, színes kép (RGB) Kicsinyítés, szürkeárnyalatossá konvertálás. Kép, mint mátrix, ahol az értékek [0, 255].
A program lépései 1 Bemenet kezelése A bemeneti kép: nagy méretű, színes kép (RGB) Kicsinyítés, szürkeárnyalatossá konvertálás. Kép, mint mátrix, ahol az értékek [0, 255].
A program lépései 2 A karakterek keresése A rendszámtábla karaktereinek keresése Soronként haladva, keretet tolva adott érték fölötti intenzitáskülönbséget keresünk Hisztogramot kapunk: sorok sötét/világos váltakozások száma A kapott hisztogramból kivágjuk a megfelelő részt. A kivágott sor oszlopain keresünk tovább. Hol a rendszám? Új hisztogram készül ahol sűrű tüskéket keresünk Középről indulunk jobbra-balra, újra és újra bővítünk
A program lépései 2 A karakterek keresése A rendszámtábla karaktereinek keresése Soronként haladva, keretet tolva adott érték fölötti intenzitáskülönbséget keresünk Hisztogramot kapunk: sorok sötét/világos váltakozások száma A kapott hisztogramból kivágjuk a megfelelő részt. A kivágott sor oszlopain keresünk tovább. Hol a rendszám? Új hisztogram készül ahol sűrű tüskéket keresünk Középről indulunk jobbra-balra, újra és újra bővítünk
A program lépései 2 A karakterek keresése A rendszámtábla karaktereinek keresése Soronként haladva, keretet tolva adott érték fölötti intenzitáskülönbséget keresünk Hisztogramot kapunk: sorok sötét/világos váltakozások száma A kapott hisztogramból kivágjuk a megfelelő részt. A kivágott sor oszlopain keresünk tovább. Hol a rendszám? Új hisztogram készül ahol sűrű tüskéket keresünk Középről indulunk jobbra-balra, újra és újra bővítünk
A program lépései 2 A karakterek keresése A rendszámtábla karaktereinek keresése Soronként haladva, keretet tolva adott érték fölötti intenzitáskülönbséget keresünk Hisztogramot kapunk: sorok sötét/világos váltakozások száma A kapott hisztogramból kivágjuk a megfelelő részt. A kivágott sor oszlopain keresünk tovább. Hol a rendszám? Új hisztogram készül ahol sűrű tüskéket keresünk Középről indulunk jobbra-balra, újra és újra bővítünk
A program lépései 2 A karakterek keresése A rendszámtábla karaktereinek keresése Soronként haladva, keretet tolva adott érték fölötti intenzitáskülönbséget keresünk Hisztogramot kapunk: sorok sötét/világos váltakozások száma A kapott hisztogramból kivágjuk a megfelelő részt. A kivágott sor oszlopain keresünk tovább. Hol a rendszám? Új hisztogram készül ahol sűrű tüskéket keresünk Középről indulunk jobbra-balra, újra és újra bővítünk
A program lépései 2 A karakterek keresése A rendszámtábla karaktereinek keresése Soronként haladva, keretet tolva adott érték fölötti intenzitáskülönbséget keresünk Hisztogramot kapunk: sorok sötét/világos váltakozások száma A kapott hisztogramból kivágjuk a megfelelő részt. A kivágott sor oszlopain keresünk tovább. Hol a rendszám? Új hisztogram készül ahol sűrű tüskéket keresünk Középről indulunk jobbra-balra, újra és újra bővítünk
A program lépései 2 A karakterek keresése A rendszámtábla karaktereinek keresése Soronként haladva, keretet tolva adott érték fölötti intenzitáskülönbséget keresünk Hisztogramot kapunk: sorok sötét/világos váltakozások száma A kapott hisztogramból kivágjuk a megfelelő részt. A kivágott sor oszlopain keresünk tovább. Hol a rendszám? Új hisztogram készül ahol sűrű tüskéket keresünk Középről indulunk jobbra-balra, újra és újra bővítünk
A program lépései 3 A karakterek felfedése A szürke képből fekete-fehér,,bináris képet készítünk, a karakterek könnyebb kinyeréséhez Vágás, adott intenzitás alatt fehér, fölötte fekete Medián, Otsu-algoritmus, saját határalkotás
A program lépései 3 A karakterek felfedése A szürke képből fekete-fehér,,bináris képet készítünk, a karakterek könnyebb kinyeréséhez Vágás, adott intenzitás alatt fehér, fölötte fekete Medián, Otsu-algoritmus, saját határalkotás
A program lépései 3 A karakterek felfedése A szürke képből fekete-fehér,,bináris képet készítünk, a karakterek könnyebb kinyeréséhez Vágás, adott intenzitás alatt fehér, fölötte fekete Medián, Otsu-algoritmus, saját határalkotás
A program lépései 4 A karakterek kinyerése A karakterek szegmentálása, mi tartozik egybe, mi külön? Egy-egy fekete pixel megtalálása, majd innen indított rekurzív geometriai klaszterezés, amíg a kép összes fekete képpontja klaszterbe kerül
A program lépései 4 A karakterek kinyerése A karakterek szegmentálása, mi tartozik egybe, mi külön? Egy-egy fekete pixel megtalálása, majd innen indított rekurzív geometriai klaszterezés, amíg a kép összes fekete képpontja klaszterbe kerül
A program lépései 5 A karakterek szűrése A kinyert klaszterek valóban karakterek? Eldobjuk, ha 30 pixel alatti, vagy túl széles, vagy túl keskeny (ekkor az I betűk egy része is repül :) )
A program lépései 5 A karakterek szűrése A kinyert klaszterek valóban karakterek? Eldobjuk, ha 30 pixel alatti, vagy túl széles, vagy túl keskeny (ekkor az I betűk egy része is repül :) )
A program lépései 6 A karakterek felismerése Milyen karaktert látunk? A klasztert bekeretezzük, majd a referencia karaktereink képét az adott méretre konvertáljuk (újra binarizáljuk). Egyezés mértéke: fekete pixelek 2 súllyal, fehér pixelek 1 súllyal 80% fölött elfogadjuk, alatta elutasítjuk. Felismerés balról jobbra, fentről le. ±5 fokos forgatás
A program lépései 6 A karakterek felismerése Milyen karaktert látunk? A klasztert bekeretezzük, majd a referencia karaktereink képét az adott méretre konvertáljuk (újra binarizáljuk). Egyezés mértéke: fekete pixelek 2 súllyal, fehér pixelek 1 súllyal 80% fölött elfogadjuk, alatta elutasítjuk. Felismerés balról jobbra, fentről le. ±5 fokos forgatás
A program lépései 6 A karakterek felismerése Milyen karaktert látunk? A klasztert bekeretezzük, majd a referencia karaktereink képét az adott méretre konvertáljuk (újra binarizáljuk). Egyezés mértéke: fekete pixelek 2 súllyal, fehér pixelek 1 súllyal 80% fölött elfogadjuk, alatta elutasítjuk. Felismerés balról jobbra, fentről le. ±5 fokos forgatás
A program lépései 6 A karakterek felismerése Milyen karaktert látunk? A klasztert bekeretezzük, majd a referencia karaktereink képét az adott méretre konvertáljuk (újra binarizáljuk). Egyezés mértéke: fekete pixelek 2 súllyal, fehér pixelek 1 súllyal 80% fölött elfogadjuk, alatta elutasítjuk. Felismerés balról jobbra, fentről le. ±5 fokos forgatás
A program lépései 6 A karakterek felismerése Milyen karaktert látunk? A klasztert bekeretezzük, majd a referencia karaktereink képét az adott méretre konvertáljuk (újra binarizáljuk). Egyezés mértéke: fekete pixelek 2 súllyal, fehér pixelek 1 súllyal 80% fölött elfogadjuk, alatta elutasítjuk. Felismerés balról jobbra, fentről le. ±5 fokos forgatás
A program lépései 6 A karakterek felismerése Milyen karaktert látunk? A klasztert bekeretezzük, majd a referencia karaktereink képét az adott méretre konvertáljuk (újra binarizáljuk). Egyezés mértéke: fekete pixelek 2 súllyal, fehér pixelek 1 súllyal 80% fölött elfogadjuk, alatta elutasítjuk. Felismerés balról jobbra, fentről le. ±5 fokos forgatás
Felmerült és megoldott problémák Felmerült kérdések, megoldott problémák Probléma: Túl nagy felbontású kép, a klaszter túlcsordul Megoldás: Betöltéskor kicsinyítés Probléma: Teherautók krómozott rácsai elrontották a sorok varianciáját Megoldás: Elvetés lehetősége Probléma: Karakternek felismert szennyeződés Megoldás: Előszűrés, amely a jól felismert karakter magassága, szélessége alapján a túl nagy, túl kicsi foltokat kiszűri Probléma: A betűk teteje, alja lemarad Megoldás: 10%-os növelés lehetősége Probléma: Fekete alapon fehér vagy fehér alapon fekete rendszám? Megoldás: Színcsere lehetősége
Felmerült és megoldott problémák Felmerült kérdések, megoldott problémák Probléma: Túl nagy felbontású kép, a klaszter túlcsordul Megoldás: Betöltéskor kicsinyítés Probléma: Teherautók krómozott rácsai elrontották a sorok varianciáját Megoldás: Elvetés lehetősége Probléma: Karakternek felismert szennyeződés Megoldás: Előszűrés, amely a jól felismert karakter magassága, szélessége alapján a túl nagy, túl kicsi foltokat kiszűri Probléma: A betűk teteje, alja lemarad Megoldás: 10%-os növelés lehetősége Probléma: Fekete alapon fehér vagy fehér alapon fekete rendszám? Megoldás: Színcsere lehetősége
Felmerült és megoldott problémák Felmerült kérdések, megoldott problémák Probléma: Túl nagy felbontású kép, a klaszter túlcsordul Megoldás: Betöltéskor kicsinyítés Probléma: Teherautók krómozott rácsai elrontották a sorok varianciáját Megoldás: Elvetés lehetősége Probléma: Karakternek felismert szennyeződés Megoldás: Előszűrés, amely a jól felismert karakter magassága, szélessége alapján a túl nagy, túl kicsi foltokat kiszűri Probléma: A betűk teteje, alja lemarad Megoldás: 10%-os növelés lehetősége Probléma: Fekete alapon fehér vagy fehér alapon fekete rendszám? Megoldás: Színcsere lehetősége
Felmerült és megoldott problémák Felmerült kérdések, megoldott problémák Probléma: Túl nagy felbontású kép, a klaszter túlcsordul Megoldás: Betöltéskor kicsinyítés Probléma: Teherautók krómozott rácsai elrontották a sorok varianciáját Megoldás: Elvetés lehetősége Probléma: Karakternek felismert szennyeződés Megoldás: Előszűrés, amely a jól felismert karakter magassága, szélessége alapján a túl nagy, túl kicsi foltokat kiszűri Probléma: A betűk teteje, alja lemarad Megoldás: 10%-os növelés lehetősége Probléma: Fekete alapon fehér vagy fehér alapon fekete rendszám? Megoldás: Színcsere lehetősége
Felmerült és megoldott problémák Felmerült kérdések, megoldott problémák Probléma: Túl nagy felbontású kép, a klaszter túlcsordul Megoldás: Betöltéskor kicsinyítés Probléma: Teherautók krómozott rácsai elrontották a sorok varianciáját Megoldás: Elvetés lehetősége Probléma: Karakternek felismert szennyeződés Megoldás: Előszűrés, amely a jól felismert karakter magassága, szélessége alapján a túl nagy, túl kicsi foltokat kiszűri Probléma: A betűk teteje, alja lemarad Megoldás: 10%-os növelés lehetősége Probléma: Fekete alapon fehér vagy fehér alapon fekete rendszám? Megoldás: Színcsere lehetősége
Felmerült és megoldott problémák Felmerült kérdések, megoldott problémák Probléma: Túl nagy felbontású kép, a klaszter túlcsordul Megoldás: Betöltéskor kicsinyítés Probléma: Teherautók krómozott rácsai elrontották a sorok varianciáját Megoldás: Elvetés lehetősége Probléma: Karakternek felismert szennyeződés Megoldás: Előszűrés, amely a jól felismert karakter magassága, szélessége alapján a túl nagy, túl kicsi foltokat kiszűri Probléma: A betűk teteje, alja lemarad Megoldás: 10%-os növelés lehetősége Probléma: Fekete alapon fehér vagy fehér alapon fekete rendszám? Megoldás: Színcsere lehetősége
Felmerült és megoldott problémák Felmerült kérdések, megoldott problémák Probléma: Túl nagy felbontású kép, a klaszter túlcsordul Megoldás: Betöltéskor kicsinyítés Probléma: Teherautók krómozott rácsai elrontották a sorok varianciáját Megoldás: Elvetés lehetősége Probléma: Karakternek felismert szennyeződés Megoldás: Előszűrés, amely a jól felismert karakter magassága, szélessége alapján a túl nagy, túl kicsi foltokat kiszűri Probléma: A betűk teteje, alja lemarad Megoldás: 10%-os növelés lehetősége Probléma: Fekete alapon fehér vagy fehér alapon fekete rendszám? Megoldás: Színcsere lehetősége
Felmerült és megoldott problémák Felmerült kérdések, megoldott problémák Probléma: Túl nagy felbontású kép, a klaszter túlcsordul Megoldás: Betöltéskor kicsinyítés Probléma: Teherautók krómozott rácsai elrontották a sorok varianciáját Megoldás: Elvetés lehetősége Probléma: Karakternek felismert szennyeződés Megoldás: Előszűrés, amely a jól felismert karakter magassága, szélessége alapján a túl nagy, túl kicsi foltokat kiszűri Probléma: A betűk teteje, alja lemarad Megoldás: 10%-os növelés lehetősége Probléma: Fekete alapon fehér vagy fehér alapon fekete rendszám? Megoldás: Színcsere lehetősége
Felmerült és megoldott problémák Felmerült kérdések, megoldott problémák Probléma: Túl nagy felbontású kép, a klaszter túlcsordul Megoldás: Betöltéskor kicsinyítés Probléma: Teherautók krómozott rácsai elrontották a sorok varianciáját Megoldás: Elvetés lehetősége Probléma: Karakternek felismert szennyeződés Megoldás: Előszűrés, amely a jól felismert karakter magassága, szélessége alapján a túl nagy, túl kicsi foltokat kiszűri Probléma: A betűk teteje, alja lemarad Megoldás: 10%-os növelés lehetősége Probléma: Fekete alapon fehér vagy fehér alapon fekete rendszám? Megoldás: Színcsere lehetősége
Felmerült és megoldott problémák Felmerült kérdések, megoldott problémák Probléma: Túl nagy felbontású kép, a klaszter túlcsordul Megoldás: Betöltéskor kicsinyítés Probléma: Teherautók krómozott rácsai elrontották a sorok varianciáját Megoldás: Elvetés lehetősége Probléma: Karakternek felismert szennyeződés Megoldás: Előszűrés, amely a jól felismert karakter magassága, szélessége alapján a túl nagy, túl kicsi foltokat kiszűri Probléma: A betűk teteje, alja lemarad Megoldás: 10%-os növelés lehetősége Probléma: Fekete alapon fehér vagy fehér alapon fekete rendszám? Megoldás: Színcsere lehetősége
Egyelőre megoldatlan problémák Felmerült megoldatlan problémák Dőlő és lejtő karakterek ügyes felismerése Olyan rendszám felismerése, amiben fekete alapon fehér és fehér alapon fekete karakterek is vannak Hisztogram helyett 2D-s csomósodás keresése Összenőtt karakterek vágása, széteső karakterek összerakása Karakterek rendezése karakterfoltok középpontjait egyenes(ek)re illesztve Karakterfoltok előzetes szűrése egymáshoz viszonyított tulajdonságok alapján
Egyelőre megoldatlan problémák Felmerült megoldatlan problémák Dőlő és lejtő karakterek ügyes felismerése Olyan rendszám felismerése, amiben fekete alapon fehér és fehér alapon fekete karakterek is vannak Hisztogram helyett 2D-s csomósodás keresése Összenőtt karakterek vágása, széteső karakterek összerakása Karakterek rendezése karakterfoltok középpontjait egyenes(ek)re illesztve Karakterfoltok előzetes szűrése egymáshoz viszonyított tulajdonságok alapján
Egyelőre megoldatlan problémák Felmerült megoldatlan problémák Dőlő és lejtő karakterek ügyes felismerése Olyan rendszám felismerése, amiben fekete alapon fehér és fehér alapon fekete karakterek is vannak Hisztogram helyett 2D-s csomósodás keresése Összenőtt karakterek vágása, széteső karakterek összerakása Karakterek rendezése karakterfoltok középpontjait egyenes(ek)re illesztve Karakterfoltok előzetes szűrése egymáshoz viszonyított tulajdonságok alapján
Egyelőre megoldatlan problémák Felmerült megoldatlan problémák Dőlő és lejtő karakterek ügyes felismerése Olyan rendszám felismerése, amiben fekete alapon fehér és fehér alapon fekete karakterek is vannak Hisztogram helyett 2D-s csomósodás keresése Összenőtt karakterek vágása, széteső karakterek összerakása Karakterek rendezése karakterfoltok középpontjait egyenes(ek)re illesztve Karakterfoltok előzetes szűrése egymáshoz viszonyított tulajdonságok alapján
Egyelőre megoldatlan problémák Felmerült megoldatlan problémák Dőlő és lejtő karakterek ügyes felismerése Olyan rendszám felismerése, amiben fekete alapon fehér és fehér alapon fekete karakterek is vannak Hisztogram helyett 2D-s csomósodás keresése Összenőtt karakterek vágása, széteső karakterek összerakása Karakterek rendezése karakterfoltok középpontjait egyenes(ek)re illesztve Karakterfoltok előzetes szűrése egymáshoz viszonyított tulajdonságok alapján
Egyelőre megoldatlan problémák Felmerült megoldatlan problémák Dőlő és lejtő karakterek ügyes felismerése Olyan rendszám felismerése, amiben fekete alapon fehér és fehér alapon fekete karakterek is vannak Hisztogram helyett 2D-s csomósodás keresése Összenőtt karakterek vágása, széteső karakterek összerakása Karakterek rendezése karakterfoltok középpontjait egyenes(ek)re illesztve Karakterfoltok előzetes szűrése egymáshoz viszonyított tulajdonságok alapján
Felhasznált matematikai ismeretek Klaszterezés Otsu-algoritmus Statisztkiai ismeretek a hisztogramok kezelésénél, mintavételezések Forgatások, binarizálás készítése, vágás helyének eldöntése Algoritmusok alkalmazása
Felhasznált matematikai ismeretek Klaszterezés Otsu-algoritmus Statisztkiai ismeretek a hisztogramok kezelésénél, mintavételezések Forgatások, binarizálás készítése, vágás helyének eldöntése Algoritmusok alkalmazása
Felhasznált matematikai ismeretek Klaszterezés Otsu-algoritmus Statisztkiai ismeretek a hisztogramok kezelésénél, mintavételezések Forgatások, binarizálás készítése, vágás helyének eldöntése Algoritmusok alkalmazása
Felhasznált matematikai ismeretek Klaszterezés Otsu-algoritmus Statisztkiai ismeretek a hisztogramok kezelésénél, mintavételezések Forgatások, binarizálás készítése, vágás helyének eldöntése Algoritmusok alkalmazása
Felhasznált matematikai ismeretek Klaszterezés Otsu-algoritmus Statisztkiai ismeretek a hisztogramok kezelésénél, mintavételezések Forgatások, binarizálás készítése, vágás helyének eldöntése Algoritmusok alkalmazása
További kutatási lehetőségek, megoldatlan problémák Hatékony, gyors automatizálás A jelenlegi paraméterek (20-30 darab) olyan optimális megválasztása, ami sikeresebb, gyorsabb felismerést tesz lehetővé. Genetikus algoritmus (nagy tér, folytonos paraméterek, jó mérhetőség, kevés előismeret) Neurális hálózat alkalmazása Folyamatos visszacsatolás, futás közbeni adaptálódás.
További kutatási lehetőségek, megoldatlan problémák Hatékony, gyors automatizálás A jelenlegi paraméterek (20-30 darab) olyan optimális megválasztása, ami sikeresebb, gyorsabb felismerést tesz lehetővé. Genetikus algoritmus (nagy tér, folytonos paraméterek, jó mérhetőség, kevés előismeret) Neurális hálózat alkalmazása Folyamatos visszacsatolás, futás közbeni adaptálódás.
További kutatási lehetőségek, megoldatlan problémák Hatékony, gyors automatizálás A jelenlegi paraméterek (20-30 darab) olyan optimális megválasztása, ami sikeresebb, gyorsabb felismerést tesz lehetővé. Genetikus algoritmus (nagy tér, folytonos paraméterek, jó mérhetőség, kevés előismeret) Neurális hálózat alkalmazása Folyamatos visszacsatolás, futás közbeni adaptálódás.
További kutatási lehetőségek, megoldatlan problémák Hatékony, gyors automatizálás A jelenlegi paraméterek (20-30 darab) olyan optimális megválasztása, ami sikeresebb, gyorsabb felismerést tesz lehetővé. Genetikus algoritmus (nagy tér, folytonos paraméterek, jó mérhetőség, kevés előismeret) Neurális hálózat alkalmazása Folyamatos visszacsatolás, futás közbeni adaptálódás.
Köszönöm a figyelmet!