A termodinamika. elszigetelt rendszerek zárt rendszerek nyílt rendszerek

Hasonló dokumentumok
A bioenergetika a biokémiai folyamatok során lezajló energiaváltozásokkal foglalkozik.

Metabolizmus. 1. előadás. Bevezető

Citrátkör, terminális oxidáció, oxidatív foszforiláció

A citoszolikus NADH mitokondriumba jutása

A felépítő és lebontó folyamatok. Biológiai alapismeretek

09. A citromsav ciklus

A METABOLIZMUS ENERGETIKÁJA

A METABOLIZMUS ENERGETIKÁJA

Fotoszintézis. 2. A kloroplasztisz felépítése 1. A fotoszintézis lényege és jelentısége

Az eukarióta sejt energiaátalakító organellumai

Glikolízis. Csala Miklós

Mire költi a szervezet energiáját?

Integráció. Csala Miklós. Semmelweis Egyetem Orvosi Vegytani, Molekuláris Biológiai és Patobiokémiai Intézet

Bevezetés a biokémiába fogorvostan hallgatóknak

A felvétel és a leadás közötti átalakító folyamatok összességét intermedier - köztes anyagcserének nevezzük.

Zsírsav szintézis. Az acetil-coa aktivációja: Acetil-CoA + CO + ATP = Malonil-CoA + ADP + P. 2 i

A glükóz reszintézise.

A légzési lánc és az oxidatív foszforiláció

A szénhidrátok lebomlása

A felvétel és a leadás közötti átalakító folyamatok összességét intermedier - köztes anyagcserének nevezzük.

ZSÍRSAVAK OXIDÁCIÓJA. FRANZ KNOOP német biokémikus írta le először a mechanizmusát. R C ~S KoA. a, R-COOH + ATP + KoA R C ~S KoA + AMP + PP i

A piruvát-dehidrogenáz komplex. Csala Miklós

A szénhidrátok lebomlása

Szerkesztette: Vizkievicz András

Szénhidrátok monoszacharidok formájában szívódnak fel a vékonybélből.

A biokémiai folyamatokat enzimek (biokatalizátorok) viszik véghez. Minden enzim. tartalmaz fehérjét. Két csoportjukat különböztetjük meg az enzimeknek

A biokémia alapjai. Typotex Kiadó. Wunderlich Lívius Szarka András

A nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk.

Energiatermelés a sejtekben, katabolizmus. Az energiaközvetítő molekula: ATP

Növényélettani Gyakorlatok A légzés vizsgálata

Glikolízis. emberi szervezet napi glukózigénye: kb. 160 g

MEDICINÁLIS ALAPISMERETEK BIOKÉMIA AZ AMINOSAVAK ANYAGCSERÉJE 1. kulcsszó cím: Az aminosavak szerepe a szervezetben

, mitokondriumban (peroxiszóma) citoplazmában

MEDICINÁLIS ALAPISMERETEK BIOKÉMIA A SZÉNHIDRÁTOK ANYAGCSERÉJE 1. kulcsszó cím: A szénhidrátok anyagcseréje

A tananyag felépítése: A BIOLÓGIA ALAPJAI. I. Prokarióták és eukarióták. Az eukarióta sejt. Pécs Miklós: A biológia alapjai

3. A w jelű folyamat kémiailag kondenzáció. 4. Ebben az átalakulásban hasonló kémiai reakció zajlik le, mint a zsírok emésztésekor a vékonybélben.

A szénhidrátok anyagcseréje. SZTE AOK Biokémiai Intézet Gyógyszerész hallgatók számára 2014.

Energiaforrásaink Szénvegyületek forrása

Biokémiai és Molekuláris Biológiai Intézet. Mitokondrium. Fésüs László, Sarang Zsolt

A metabolizmus energetikája

jobb a sejtszintű acs!!

A nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk.

Produkcióökológiai alapok

A MITOKONDRIÁLIS ENERGIATERMELŐ FOLYAMATOK VIZSGÁLATA

A mikrobaszaporodás alapösszefüggései TÁPOLDATOK, TÁPTALAJOK HOZAMKIFEJEZÉS ÁLTALÁNOSITÁSA. Fermentációs tápoldatok MIKROORGANIZMUSOK TÁPANYAG IGÉNYE

Az energiatermelõ folyamatok evolúciója

80 éves a Debreceni Egyetem Növénytani Tanszék Ünnepi ülés és Botanikai minikonferencia november

Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek

Kollokviumi vizsgakérdések biokémiából humánkineziológia levelező (BSc) 2015

BIOKÉMIA GYAKORLÓ TESZT 1. DEMO (FEHÉRJÉK, ENZIMEK, TERMODINAMIKA, SZÉNHIDRÁTOK, LIPIDEK)

BIOLÓGIAI PRODUKCIÓ. Az ökológiai rendszerekben végbemenő szervesanyag-termelés. A növények >fotoszintézissel történő szervesanyagelőállítása

bevezetés a fotoszintézis rejtelmeibe

Modul cím: MEDICINÁLIS ALAPISMERETEK BIOKÉMIA LIPIDEK ANYAGCSERÉJE 1. kulcsszó cím: A lipidek szerepe az emberi szervezetben

Vércukorszint szabályozás

Vizsgakövetelmények Hasonlítsa össze a biológiai oxidációt és az erjedést (biológiai funkció, sejten belüli helyszín, energiamérleg).

BIOGÉN ELEMEK MÁSODLAGOS BIOGÉN ELEMEK (> 0,005 %)

A BAKTÉRIUMOK TÁPLÁLKOZÁSA

BIOGÉN ELEMEK Azok a kémiai elemek, amelyek az élőlények számára létfontosságúak

neutrális zsírok, foszfolipidek, szteroidok karotinoidok.

Az edzés és energiaforgalom. Rácz Katalin

BIOLÓGIA ALAPJAI. Anyagcsere folyamatok 2. (Felépítő folyamatok)

BIOKÉMIA. Simonné Prof. Dr. Sarkadi Livia egyetemi tanár.

MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI A SZÉNHIDRÁTOK 1. kulcsszó cím: SZÉNHIDRÁTOK

Mikrobák táplálkozása, anyagcseréje

MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak

Sejtszintű anyagcsere Ökrös Ilona

A nitrogén körforgalma. A környezetvédelem alapjai május 3.

Környezeti klimatológia I. Növényzettel borított felszínek éghajlata

Az anyag- és energiaforgalom alapjai

A gasztrointesztinális (GI) rendszer élettana IV. Táplálkozás élettan.

Az enzimműködés termodinamikai és szerkezeti alapjai

sejt működés jovo.notebook March 13, 2018

Biokémiai és Molekuláris Biológiai Intézet. Lipid anyagcsere. Balajthy Zoltán, Sarang Zsolt

Az AS nitrogénjének eltávolítása

MITOCHONDRIUM. Molekuláris sejtbiológia: Dr. habil. Kőhidai László egytemi docens Semmelweis Egyetem, Genetikai, Sejt- és Immunbiológiai Intézet

BIOLÓGIA ALAPJAI. Sejttan. Anyagcsere folyamatok 1. (Lebontó folyamatok)

VIZSGAKÉRDÉSEK A FELKÉSZÜLÉSHEZ* Biokémia és molekuláris biológia II. kurzus (bb5t1403)

A cukrok szerkezetkémiája

A kémiai energia átalakítása a sejtekben

Stanley Miller kísérlet rajza:

A kloroplasztok és a fotoszintézis

A Bevezetés a biológiába I. tárgy vizsgájára megtanulandó fogalmak:

Kollokviumi vizsgakérdések BIOKÉMIABÓL OSZTATLAN TESTNEVELŐ TANÁRI Szak, Levelező tagozat A kérdés

A zsírok április 17.

Valin H 3 C. Treonin. Aszpartát S OH

AJÁNLOTT IRODALOM. A tárgy neve BIOKÉMIA I. Meghirdető tanszék(csoport) SZTE TTK, Biokémiai Tanszék Felelős oktató:

A sokoldalú L-Karnitin

BIOKÉMIA. levelezõ MSc számára A TANTÁRGY KÖVETELMÉNYRENDSZERE

A növények fényreakciói. A növények fényreakciói. Fotoszintézis

TRANSZPORTFOLYAMATOK A SEJTEKBEN

A sejt molekuláris biológiája és genetikája; 2. A biológiai membrán. Kemoszintézis, fotoszintézis, légzés.

transzláció DNS RNS Fehérje A fehérjék jelenléte nélkülözhetetlen minden sejt számára: enzimek, szerkezeti fehérjék, transzportfehérjék

A MITOKONDRIUMOK SZEREPE A SEJT MŰKÖDÉSÉBEN. Somogyi János -- Vér Ágota Első rész

A KOLESZTERIN SZERKEZETE. (koleszterin v. koleszterol)

Stressz és a reaktív oxigénformák

VIZSGAKÉRDÉSEK A FELKÉSZÜLÉSHEZ* Biokémia és molekuláris biológia IB kurzus

A mitokondriumok felépítése

MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI A LIPIDEK 1. kulcsszó cím: A lipidek szerepe az emberi szervezetben

A levegő Szerkesztette: Vizkievicz András

LIPID ANYAGCSERE (2011)

Átírás:

A termodinamika A metabolizmus keretében zajló anyag- és energiaáramlás a termodinamika törvényeit követi. A termodinamika a fizika energiaátalakulásokkal foglalkozó tudományterülete. Termodinamikai rendszerek: elszigetelt rendszerek zárt rendszerek nyílt rendszerek Az elszigetelt rendszerek és környezetük között anyag- és energiaforgalom nem zajlik. Kb. mint a termoszban lévő meleg tea. A zárt rendszerek környezetükkel anyagforgalmat nem bonyolítanak le (energiaforgalom lehetséges). Kb. mint az zárt üvegben lévő meleg tea (hűl). A nyílt rendszerek környezetükkel anyag és energiaforgalmat bonyolíthatnak le. Kb. mint a pohárban lévő meleg tea (párolog és hűl)..

Az energia megjelenési formái Az energia a változás/változtatás képessége. Az energia különböző formái: Kinetikus energia = mozgási energia Termikus energia: hőmozgással kapcsolatos kinetikus energia, hőenergia Potenciális energia = helyzeti energia (az anyag térbeli helyzetéből vagy szerkezetéből adódó) Kémiai energia: kémiai reakciók során felszabaduló potenciális energia. Az energiaformák átalakulhatnak egymásba a termodinamika 1. törvénye szerint. Az univerzum energiatartalma állandó. A rendszer és környezete energiájának összege állandó. Zárt rendszer energiája növelhető, ha munkát végzünk rajta, vagy hőt közlünk vele.

Szabadenergia Fordítva: a zárt rendszer hőt adhat le a környezetének és munkát végezhet rajta miközben belső energiája csökken. Az első főtételből azt gondolhatnánk, az energia-átalakulási folyamatok bármilyen irányban folyhatnak. Ez azonban nincs így A termodinamika 2. törvénye: zárt rendszer és környezete entrópiája nem csökkenhet. ΔS rendszer + ΔS környezete 0 Az ekvilibrium (egyensúly) elérésekor a rendszer maximálisan stabil állapotba kerül. Ilyenkor S max. A szabadenergia(változás) a belsőenergia(változás) munkavégzésre hasznosítható része (a többi hő formájában elvész). Csak azok a folyamatok zajlanak le spontán, ahol G negatív. G = H T S (G: Gibbs féle szabadenergia,; H a hőtartalom, ami állandó térfogaton megegyezik a belső energiával )

A metabolizmus a termodinamika szemszögéből Az élő rendszerek sem szeghetik meg a termodinamika törvényeit. A sejtek felépítő folyamatai során a keletkező struktúrák rendezettebbek, mint a kiindulási anyagok. Az élő rendszerek nyílt rendszerek. Az entrópia a szervezet növekedése során csökken, de a környezete (végső soron az univerzum) entrópiája nő. A sejtek anyagcseréje didaktikailag (= oktatástan) két részre osztható: Lebontó anyagcsere (katabolizmus) Felépítő anyagcsere (anabolizmus, bioszintézis) A két alapvető anyagcsereirány kiegészíti egymást. (Nem egymás ellen dolgoznak!)

Lebontó anyagcsere Tápanyagokból indul ki A tápanyagok többnyire redukált, szerves anyagok. A lebontás során egyre kisebb és oxidáltabb anyagokká alakulnak. A lebontó folyamat oxidáció (= elektronelvonás). Az oxidáció többnyire hidrogénleadással jár (H = proton+elektron). A sejtekben a e - (és a H + ) fogadómolekulája a NAD +. Ennek egyik alkotórésze a B3 vitamin = niacin Energiafelszabadító reakciósor Az energia egy része ATP-ben raktározódik. A másik része hővé alakul, és elvész.

Bioszintetikus folyamatok Egyszerű szerves vegyületekből - ill. autotrófok esetében CO 2 ból - indul ki. Az egyszerű szerves vegyületek többnyire a lebontó anyagcsere köztitermékei. Redukciós folyamat, egyre bonyolultabb vegyületek képződnek. A szükséges elektronokat (többnyire protonnal együtt, azaz H formájában) a NADPH szolgáltatja. Energiafelhasználó folyamat. Az energia ATP-ből származik. Az ATP az anyagcsere fizetőeszköze Az ATP a lebontó folyamatokban vagy a fényenergia hasznosításával képződik. Az ATP összeköti a lebontó és felépítő folyamatokat. A bioszintézis mértéke nem haladhatja meg a lebontást (heterotrófokban).

A szénhidrátlebontás áttekintése Elektronok (NADH) Elektronok (NADH és FADH 2 ) Glükóz Glikolízis Piruvát Piruvát oxidáció AcetilKoA Citromsav ciklus Oxidatív foszforiláció: elektrontranszport és kemiozmózis SEJTPLAZMA MITOKONDRIUM ATP Szubsztrát-szintű foszforiláció ATP Szubsztrát-szintű foszforiláció ATP Oxidatív foszforiláció

Glikolízis A glikolízis a szénhidrátok katabolizmusának kezdő lépése, melynek során egy molekula glükóz két molekula piroszőlősavvá (piruvát) oxidálódik 2ATP és 2NADH képződése mellett. Minden élőlény képes kivitelezni és minden sejt meg tudja csinálni. A folyamat három alapvető célt szolgál: 1. Makroerg molekulák (ATP, NADH) termelése 2. Piroszőlősav termelése a citromsavciklus számára 3. Hat- és háromszénatomos köztitermékek termelése más anyagcsere-folyamatok (pl. aminosavszintézis) céljaira.

A glikolízis áttekintése Energiabetápláló lépések Glükóz 2 ADP 2 P 2 ATP felhasználva Energiatermelő lépések 4 ADP 4 P 4 ATP szintetizálva 2 NAD + 4 e 4 H + 2 NADH 2 H + 2 Piruvát 2 H 2 O Összességében Glükóz 4 ATP szint. 2 ATP felhaszn. 2 NAD + 4 e 4 H + 2 Piruvát 2 H 2 O 2 ATP 2 NADH 2 H +

A glikolízis lépései 1. Glikolízis: Energiabetápláló lépések Glükóz ATP Glükóz 6-foszfát ADP Fruktóz 6-foszfát Hexokináz 1 Foszfoglükoizomeráz 2 1. ATP-vel foszforilálódik. 2. Izomerilálódik, fruktóz-p-tá alakul át.

A glikolízis lépései 2. Glikolízis: Energiabetápláló lépések Fruktóz 6-foszfát ATP Fruktóz 1,6-bifoszfát ADP Foszfofruktokináz Aldoláz 4 3 Szimmetrikus molekula, mint a két végén egy nagy foszfátcsoporttal. Ez a molekula közepét meggyengíti, így tud könnyen széthasadni. Dihidroxiaceton foszfát Glicerinaldehid 3-foszfát 3. Még egyszer foszforilálódik. 4. A glükolízis. Izomeráz 5

A glikolízis lépései 3. Glikolízis: Energiatermelő lépések 2 NADH 2 NAD + 2 H 2 2 ATP 2 ADP 2 Trióz foszfát dehidrogenáz 6 2 P i Glicerinsav 1,3-bifoszfát Foszfoglicerokináz 7 Glicerinsav 3-foszfát 6. Oxidáció. Két NADH képződik. Egy szervetlen foszfát beépül. 7. A befektetett energia visszanyerése: Első ATP szintézis. A korábban elhasznált 2 ATP-t visszanyertük.

A glikolízis lépései 4. Glikolízis: Energiatermelő lépések 2 2 2 H 2 O 2 2 ADP 2 ATP 2 Glicerinsav 3-foszfát Foszfogliceromutáz 8 Glicerinsav 2-foszfát Enoláz 9 Foszfoenolpiruvát (PEP) Piruvát kináz 10 Piruvát (piroszőlősav) 8. Izomerizáció (A foszfátcsoport középre kerül. Így a követező lépés könnyebben megy.) 9. Vízelvonás. 10. Energianyerés. Második ATP szintézis.

Az erjedés Mi legyen a NADH-val? Ha az összes NAD + -ot elhasználjuk a folyamat leáll. Az élő szervezetek többféle módon oldják meg. Egyik mód az erjedés. tejsavas erjedés alkoholos erjedés vajsavas erjedés metanogén erjedés Mindig a végtermék alapján nevezzük el.

Tejsavas erjedés 2 ADP 2 P i 2 ATP Glükóz Glikolízis 2 NAD 2 NADH 2 H 2 Piroszőlősav 2 Tejsav (Laktát) Ha a szerves elektronfelvevő anyag a piroszőlősav.

Alkoholos erjedés 2 ADP 2 P i 2 ATP Egymás melletti két szénen hasonló nagy méretű csoportok vannak. Glükóz Glikolízis 2 Piroszőlősav Az ilyen alfa-ketokarbonsavak könnyen törnek. 2 NAD 2 NADH 2 H 2 CO 2 2 Etanol 2 Acetaldehid

A piroszőlősav oxidációja Az élő szervezetben is lejátszódik MITOKONDRIUM a piroszőlősav ecetsavvá CITOPLAZMA oxidálódása. Az ecetsav azonban kizárólag kötött formában (mint acetilcsoport) CO 2 Koenzim fordul A elő. Ez a reakció már nem a citoplazmában zajlik. A 1 2 piroszőlősav belép a mitokondriumba. 3 Piroszőlősav NAD NADH + H Acetil KoA Transzport fehérje A folyamatot a piruvát dehidrogenáz enzim komplex végzi. A komplex három enzimből áll, ezek prosztetikus csoportjai ismert vitaminok. (tiamin, riboflavin)

A citromsav ciklus áttekintése Acetil-KoA keletkezése a citromsavciklus bevezető lépése. Acetil KoA CoA-SH NAD NADH + H 8 1 Oxálecetsav 2 H 2 O H 2 O 7 Almasav Citromsav ciklus Citromsav Izocitromsav NAD NADH 3 + H CO 2 Fumársav 6 CoA-SH CoA-SH 4 -Ketoglutársav FADH 2 FAD Borostyánkősav ADP 5 GTP GDP ATP P i Szukcinil KoA NAD NADH + H CO 2

Citromsav ciklus 1. Acetil KoA KoA-SH 1. Az acetilcsoport oxálecetsavhoz kötődik. A hat szénatomos termék a citromsav. 2. A citromsav OH csoportja a béta helyzetű szénre vándorol (izocitromsav). 1 H 2 O Oxálecetsav 2 Citromsav Izocitromsav

Citromsav ciklus 2. 3. Az -OH csoport =O csoporttá oxidálódik (NADH képződik megint!). Oxálborotyánkősav keletkezik, amiről azonnal leszakad a CO 2. A végtermék alfa-ketoglutársav. (A piroszőlősavhoz hasonló szerkezet és reakció). CoA-SH 4 3 Izocitromsav NAD NADH + H CO 2 -Ketoglutársav 4. Dekarboxiláció és oxidáció (Újabb NADH képződik!) Az oxidáció során felszabaduló energia CoA-kötésben konzerválódik. Szukcinil KoA NAD NADH + H CO 2

6. A borotyánkősav fumársavvá oxidálódik, FADH 2 képződik. Fumársav Citromsav ciklus 3. Az enzim membránkötött (szokatlan módon), tulajdonképpen az elektrontranszportlánc része is egyben. FADH 2 6 CoA-SH 5 FAD 5. GTP szintézis. Először szervetlen foszfát beépül a KoA helyére (megmarad a kötés energiája), majd egy enzim a foszfátcsoportot GDP-re transzportálja. A végtermék borostyánkősav (szukcinát). Borostyánkősav (Szukcinát) ADP GTP GDP ATP P i Szukcinil KoA

NAD NADH + H 8 Oxálecetsav Citromsav ciklus 4. Almasav (Malát) 7. A fumársav almasavvá hidratálódik. H 2 O 7 8. Az almasav oxidációjával visszakapjuk az oxálecetsavat. (Megint egy NADH!) Fumársav

A citromsav ciklusból kilépő molekulák Piroszőlősav CO 2 NAD CoA NADH + H Acetil KoA CoA CoA Az egész citrát ciklusnak az a lényege, hogy a belépő acetilcsoport két szene CO 2 formájában távozni fog. A citrát ciklus hozza létre azt a CO 2 -ot, amit ki fogunk lélegezni. FADH 2 FAD Citromsav ciklus 2 CO 2 3 NAD 3 NADH + 3 H ATP ADP + P i Szentgyörgyi Albert Nobel díj 1937

Légzés A glukóz szenét immár maximális fokig eloxidáltuk. Viszont ezáltal még több H halmozódott fel NADH (FADH 2 ) formájában. Mi legyen vele? Reagáltassuk szervetlen redukálószerrel! = LÉGZÉS Az eukariótákra aerob légzés jellemző. Egyes baktériumok képesek anaerob légzésre. Egyes baktériumok képesek aerob és anaerob légzésre is. És vannak obligát anaerobok (aerob közegben elpusztulnak) is. Denitrifikáció: NO 3- N 2 metanogén ősbaktériumok: CO 2 CH 4

Peroxiszómák Legegyszerűbb, a H-t közvetlenül reagáltatjuk az oxigénnel. A folyamat a peroxiszómában folyik. Peroxiszómák főleg a májban. Kb. 1000 db peroxiszóma /májsejt Két, csak rá jellemző enzim az oxidáz kataláz és a A hidrogén-peroxid rendkívül reaktív, mérgező vegyület, gyorsan el kell bontani. ATP nem keletkezik, a felszabaduló nagy mennyiségű energia hő formájában elvész.

szabadenergia, G Szabadenergia, G Terminális oxidáció 1. Az evolúció során egy más megoldás jött létre a mitokondriumban. A NADH és az oxigén nem közvetlenül reagál egymással, hanem egy elektronszállító rendszer (légzési lánc) tagjain keresztül. H 2 1 / 2 O 2 2 H 1 / 2 O 2 (NADH a táplálékból) Kontrolált energia- 2 H + 2 e felszabadulás és ATP szintézis Robbanásszerű energiafelszabadulás (hő- és fény) 2 e ATP ATP ATP Ezáltal energia részletekben szabadul fel. Ez nagy mennyiségű ATP szintézisét teszi lehetővé. 2 H + 1 / 2 O 2 H 2 O H 2 O Kontrolálatlan reakció Sejtlégzés 2 NADH + 2 H + + O 2 = 2 NAD + + 2 H 2 O

Az oxidatív foszforiláció Az elektronszállító rendszer úgy működik, hogy redukciós/oxidációs reakcióikkal csatoltan H + -k pumpálódnak a mátrix felől a mitokondrium külső és belső membránja közé. Egy ph- és feszültség-gradiens alakul ki a belső membrán két oldala között. Az ATP akkor képződik, amikor a H + ionok az ATP-szintetáz enzimen keresztül visszaáramlanak a mátrixba. A légzési lánc által létrehozott elektrokémiai potenciál hajtja az enzimet. Az energia elektrokémiai potenciál formájában raktározódik

Oxidatív foszforiláció H Koenzim-Q (ubikinon) H Citokrom-c Cit c H H I Q III IV II FADH 2 FAD 2 H + 1 / 2 O 2 H 2 O ATP szintáz NADH NAD ADP P i ATP H 1 Elektron transzportlánc 2 Kemiozmózis hajtotta ATP-képzés Oxidatív foszforiláció Elektrontranszportlánc = légzési lánc

INTERMEMBRÁN TÉR ATP szintáz Forgó rész H Álló rész Amikor a protonok visszaáramlanak a mátrixba, energia szabadul fel. Ez az energia ATP szintézisére hasznosul. Belső rúd Katalitikus kilincs Peter Mitchell Nobel díj, 1978 ADP + P i MITOKONDRIUM MÁTRIX ATP

A glükóz bontásának energiamérlege Bemenet Glükóz Glycolysis Kimenet 2 Piroszőlősav 2 ATP 2 NADH Bemenet Kimenet 2 Piroszőlősav 2 Acetil KoA 2 Oxálacetát Citromsav ciklus 2 ATP 8 NADH 6 CO 2 2 FADH 2 4ATP+10NADH+2FADH 2 = 38ATP (1NADH=3ATP, 1FADH 2 =2ATP )

A terminális oxidáció energiamérlege NADH +H + +½O 2 NAD + +H 2 O ADP +P i ATP ΔG 0 = -220 kj Az oxidatív foszforilációban 3 ATP keletkezik: ΔG 0 = + 30,8 kj + 92,4 kj Az energia 41%-a konzerválódik ATP-be, a többi hővé alakul. A mitokondrium sokkal ügyesebben használja fel a hidrogént, kevesebb hő képződik.

Reaktív oxigéngyökök Előfordul, hogy az oxigén nem 4 db elektront vesz fel, hanem kevesebbet. Ezek a reaktív oxigéngyökök rendkívül veszélyesek (pl. tönkreteszik a mitokondriális DNS-t) A reaktív oxigéngyökök elleni védekezés: Szuperoxid-diszmutáz (SOD) a mitokondriumokban. Gyökfogó vegyületek antioxidánsok. A biológiai oxidáció tehát nagy mennyiségű ATP-vel lát el minket, de megfizetjük az árát.

A tápanyagok katabolizmusa Fehérjék Szénhidrátok Zsírok Aminosavak Cukrok Glicerin Zsírsavak Glikolízis Glükóz Glicerinaldehid 3- P NH 3 Piroszőlősav Acetil KoA Citromsav ciklus Oxidatív foszforiláció

A zsírok bontása - lipázok A trigliceridek nem jutnak át a sejtmembránon, túl nagyok, ezért az észterkötéseket fel kell bontani - hidrolízis. Lipázok. Pankreász lipáz: az emésztés és felszívás során. Lipoprotein lipázok: a vérből a zsírokat felhasználni képes szövetekbe (zsírszövet, szív- és vázizom) való bejutás során Hormon-szenzitív lipáz: a zsírszövetben raktározott zsírok mobilizálásakor. A keletkező glicerin glicerin-3 foszfáttá alakul, ami a glikolízis köztes terméke És a zsírsavlánc?

A zsírok bontása - ß-oxidáció KoA Ketoacil-KoA NADH Acetil-KoA! Zsírsav KoA Zsírsavacil-KoA 6. 1. Aktiváció ATP igényes! (citoplazma) 5. láncszakadás 4. oxidáció ß-oxidáció* (mitokondrium) Zsírsavacil -KoA 3. abszorpció 2. FAD Hidroxiacil-KoA (Enoil KoA) NAD + FADH 2 H 2 O * A név onnan ered, hogy a β helyzetben levő szénatom oxidálódik.

A zsírsavak bontása - energiamérleg Miért a mitokondriumban? Mert oxidatív közeg kell. Mitokondriális transzport karnitin segítségével. A fogyasztó anyagok is karnitint tartalmaznak, mert elősegíti a zsírok lebontását. A β-oxidáció során nagy mennyiségű NADH keletkezik. (Az acetil-coa további bontásával még több NADH és ATP.) Aktiváció: Sztearinsav+ATP+CoA=SztearinsavCoA+AMP+PPi ( -2ATP) Β-oxidáció: 1SztearinsavCoA+8CoA+8FAD+8NAD+8H 2 O=9AcCoA+8FADH 2 +8NADH + +8H + (Egy AcCoA-ból 12ATP lesz) Azaz 1 sztearinsavból 9*12+8*2+8*3-2=146ATP A zsírok a legfőbb ATP forrás!

Az aminosav-anyagcsere A táplálékkal felvett aminosavak sorsa: 1. fehérjeszintézis (alapvetően ez a cél) 2. lebontás és raktározás cukor és zsír formájában (pozitív energiamérleg esetén) 3. lebontás, elégetés, energiatermelés (csak éhezés esetén) A lebontás lépései: 1.Az aminocsoport leválasztása transzaminálás (másik as.-nak átadja) A reakcióban szereplő enzim koenzimje a Piridoxin=B6 vitamin oxidatív dezaminálás (ketonsav képződik) 2.A szénlánc átalakítása a cukor ill. zsírbontás vmilyen köztes termékévé.

Aminosavak belépése az anyagcserébe PEP Glükóz Aszparaginsav Aszparagin Almasav Piroszőlősav Acetil- KoA Oxálecetsav Alanin, Glicin, Threonin Cisztein, Szerin Izoleucin Citromsav Acetecetsav Izocitromsav Leucin Lizin, Fenilalanin Tirozin Triptofán Arginin, Prolin, Hisztidin, Glutamin Tirozin, Fenilalanin Fumársav Borosgyánkősav Borosgyánkősav-KoA α-ketoglutársav Glutaminsav Izoleucin, Valin, Metionin, Threonin

Nitrogén-ürítés Mi legyen az amino-csoporttal? Re-szintézis, vagy el kell távolítani, mert mérgező! Fehérjék Aminosavak Nukleinsavak Nitrogenbázisok NH 2 Amino csoport A vízi állatok többsége Emlősök, kétéltűek többsége, néhány hal Hüllők, madarak Rovarok stb. Ammónia Urea Húgysav

Karbamid, ammónia, húgysav 1. Ammónia diffúzióval, így a higításhoz és gradienshez nagy mennyiségű víz kell (halak, vízi gerinctelenek) 2. Karbamid (urea) Kevésbé mérgező, szintéziséhez ATP kell 3. Húgysav Kevesebb víz kell a kiválasztásához. Vízhiányos körülmények mellett (madár guano: húgysav és guanin)

A nukelotidok lebontása 1. A pirimidinbázisok bontása során glükogén és ketogén aminosavak keletkeznek. 2. A purinbázisok bontásának végterméke húgysav. A nukleotidok lebontása alapvetően nem cél Ha a purinbázisok lebontása nincs egyensúlyban a kiválasztással/újrahasznosítással), akkor a rosszul oldódó húgysav kikristályosodhat (izületi folyadékban, vesében). Az ízületi folyadékban kiváló húgysav gyulladást okoz. Ez a köszvény.

Egyszerűből bonyolult. Mi kell hozzá? Bioszintézis 1. Szénforrás szervetlen vegyületek - autotrófok. szerves vegyületek - heterotrófok 2. Energia fényenergia fototrófok (fotoszintetizálók) kémiai energia kemotrófok kemolitotróf kemoorganotróf 3. Redukálószer (elektron és hidrogénforrás) szerves vegyületek - heterotrófok víz oxogenikus fotoszintetizálók más anoxogenikus (foto)szintetizálók

A fotoszintézis evolúciója Az A kékalgák ősi első eukarióták fotoszintetizáló (=cianobaktériumok) kb. 1 milliárd élőlények éve 2,4 kb. szimbiózisba milliárd 3,5 milliárd éve léptek évvel fedezték ezelőtt cianobaktériumokkal fel a jelentek vízbontást, meg és (magasabb és kezdődött letrejöttek volt meg a az CO a első 2 algák. szint). légkör oxigenizálása. Ők valószínűleg H 2 S-t használtak elektron- és hidrogénforrásként. (a) Növények (b) Többsejtű algák (c) Egyszerű 10 m Eukarióták (protiszták) (d) Kékalgák 40 m (prokarióták) (e) Bíbor 1 m kénbaktériumok

A fotoszintézis jelentősége 1. szerves anyagok szintézise 2. a heterotróf élőlények kialakulása Az előállított szerves anyag az alapja az autotróf és a rájuk utalt heterotróf szervezetek közötti anyagcserének. 3. oxidatív légkör, ózonréteg A fotoszintézis során melléktermékként keletkezett 4. oxigén a szárazföld lehetővé meghódítása tette az oxidatív légkör kialakulását, az ózonréteg létrejöttét. A fotoszintézis tehát minden földi élet alapja. Ezáltal az élővilág új területeket népesíthetett be, 5. fosszilis energiaforrások élettere a szárazföldre is kiterjedt. Az ózon ugyanis védelmet biztosított az élőlényekre káros UV sugárzással szemben. A fosszilis energiaforrások (kőolaj, földgáz) sokmillió éve elhalt élőlények maradványaiból keletkeztek. Ilyen értelemben napenergia-raktárak.

A fotoszintézis helye a növényekben Kevél-keresztmetszet Kloroplasztisz CO 2 O 2 Mezofill sejt Sztróma Tilakoid Gránum Lumen Külső membrán Membránközti tér Belső membrán 20 m 1 m

A fényenergia megkötése gerjesztett fotopigment fény Az elektron a fény fotonjainak energiáját átvéve nagyobb energiájú pályára kerül. fény és hő szomszédos klorofill molekula A fotopigment lazán kötött elektronja GERJESZTÉS elektron donor elektron akceptor oxidált klorofill redukált akceptor oxidált donor Fényés hőleadás (fluoreszcencia vagy hőveszteség) 1. 2. 3. Rezonancia energia-transzfer Szomszédos, alacsonyabb gerjesztési energiájú pigment molekulák, majd a reakciócentrum felé. Fotokémiai reakció Elektron-transzfer Töltésszétválás. Az elektronok elektronszállító rendszernek adódnak át.

A fotokémiai rendszerek A fotopigmentek fotokémiai rendszerekben helyezkednek el. Két funkcionálisan eltérő rész: 1. Antenna komplex A reconancia elektrontranszfere a molekulák közti távolságtól és pozíciójuktól is függ. A fehérjékben a pigmentek optimálisan pozícionáltak. javítják a fényabszorpció hatásfokát (a reakciócentrum önmagában kevesebb fény megkötésére lenne képes). 2. Reakciócentrum A reakciócentrum egy irreverzibilis elektron csapda, ami a gerjesztett elektront gyorsan átadja egy olyan molekulának, ahol az sokkal stabilabb környezetben lesz.

Tilakoid membrán A fotokémiai rendszerek szerkezete fény fénybegyűjtő komplex Fotorendszer reakciócentrum komplex STRÓMA elsődleges elektron akceptor e energia transzfer Klorofill a molekula-pár Pigment molekulák TILAKOID TÉR

A fotopigmentek 1. Klorofill a Ősi és univerzális (prokarióta cianobaktériumokban csak ez van) kék ill. vörös abszorbciós maximum 430 ill. 660 nm a fénybegyűjtés mellett fotokémiai reakcióra is képes. A PSI és a PSII reakciócentrumában A többiek a spektrumtartomány jobb lefedését szolgálják. Egyéb klorofillek Az eukariótákban klorofill-b Barna- és kovamoszatokban klorofill-c Vörös moszatokban klorofill-d

A fotopigmentek 3. Karotinoidok a kék tartományban (400-500 nm körül) nyelnek el. 4. Fikobilnek vörösalgák és cianobaktériumok segédpigmentjei. 5. Bakterioklorofillek a nem oxigéntermelő baktériumokban abszorpciója az infravörös tartományban (900-1000 nm) víz alatti fényviszonyokhoz való alkalmazkodás

Fotoszintézis két fő szakasza H 2 O CO 2 Fény Fény reakció NADP ADP + P i ATP NADPH Calvin ciklus Színtest O 2 O 2 [CH 2 O] (cukor)

A fényszakaszban lejátszódó folyamatok Fényelnyelés (abszorpció) Vízbontás (fotolízis) Elektrontranszport végső elektronakceptor a NADP + ATP szintézis 2NADP + 2H 2 O = 2NADPH + 2H + + O 2

A fotoszinetikus apparátus Kloroplasztisz sztóma NADP- H+ NADPH ADP Pi ATP fény plasztokinon Citokróm b 6 f fény e- Fd FNR Ferredoxin -NADP reduktáz ferredoxin ATP szintáz e- PSII OEC H 2 O O 2 H+ PQ Vízpontó komplex (oxigen evolving complex) b 6 f e- PSI e- PC plasztocianin Tilakoid lumen

A fotoszinetikus apparátus Kloroplasztisz sztóma H+ NADP- H+ NADPH ADP Pi ATP fény H+ plasztokinon Citokróm b 6 f fény e- Fd FNR Ferredoxin -NADP reduktáz ferredoxin ATP szintáz e- PSII OEC PQ b 6 f e- PC PSI e- H 2 O O 2 H+ H+ plasztocianin H+ Vízpontó komplex (oxigen evolving complex) Tilakoid lumen (A citokróm b6/f redukciója során a H ionok a sztómából érkeznek, oxidációjakor a lumen felé távoznak.)

A fotoszinetikus foszforiláció fény PS II 4 H + Citokróm b6/f fény PS I Fd NADP reduktáz 3 NADP + H Pq NADPH H 2 O 1 TILAKOID TÉR (magas H koncentráció) 1 / 2 O 2 +2 H + 2 4 H + Pc Calvin ciklus felé SZTRÓMA (alacsony H koncentráció) Tilakoid membrán ATP szintáz ADP + P i H + ATP

A fényszakasz részletes vizsgálata 2 H + 1 / 2 O 2 H 2 O 3 e e Primer Akceptor (feofitin) e 2 P680 Pq Citokróm b6/f komplex 5 4 Pc Primer akceptor klorofill-a 0 e P700 Fd e e 7 8 NADP reduktáz fény NADP + H NADPH 1 fény 6 ATP Fotokémiai rendszer II (PS II) Pigment molekulák Fotokémia rendszer I (PS I)

A PSI ciklikus működése Célja tisztán az ATP szintézis. (A fénysokktól is véd.) Primer akceptor A ferredoxin visszaredukálja a citokróm b6/f komplexet. Pq Fd Citokróm b6/f komplex Primer akceptor klorofill-a 0 Fd NADP reduktáz NADP + H NADPH Pc Fotokémiai rendszer II (PS II) ATP Fotokémia rendszer I (PS I)

Mechanikai modell e e e A malom ATP-t készít e e e NADPH e ATP PS II PS I

A mitokondriális és fotoszintetikus kemiozmózis összevetése Mitokondrium Színtest MITOKONDRIUM SZERKEZET Intermembrán tér Belső membrán Elektron transzport lánc H Diffúzió SZÍNTEST SZERKEZET Tilakoid tér Tilakoid membrán Mátrix ATP szintáz Sztróma Magas [H ] Alacsony [H ] ADP P i H ATP

A mitokondriális és fotoszintetikus kemiozmózis összevetése 1. Fotoszintézisnél a hajtóerő a fény energiája Oxidatív foszforilációnál az oxidálódó szénatomokról származó nagy energiájú elektronok hajtják. 2. A színtestekben a belső térből (sztróma) a tilakoidok belesejébe pumpálódnak a H + -ok. A mitokondriumban a H + -ok a belső térből (mátrix) a külső és belső memrán közé pumpálódnak. 3. Az ATP mindkét esetben a belső térben szintetizálódik.

A Calvin ciklus A fotoszintézis sötét-szakasza A reakció helye: a kloroplasztisz sztrómája felé néző tilakoid membrán felszíne. 1. FIXÁCIÓ: a széndioxid megkötése 2. REDUKCIÓ: széndioxid redukciója szénhidráttá a fényszakaszból származó ATP és NADPH segítségével 3. REGENERÁCIÓ: A széndioxidot megkötő molekula visszanyerése Ezek a reakciók már nem függenek közvetlenül a fénytől

Calvin ciklus Bemenet 3 (ciklusonként CO egy) 2 Rubisco 1. szakasz: FIXÁCIÓ LÍZIS 3 P P rövidéletű intermedier 3 P P 6 P Ribulóz bifoszfát Glicerinsav 3-foszfát (RuBP) 6 6 ADP ATP 3 ATP 3 ADP 3. szakasz: REGE- NERÁCIÓ 5 átrendeződés: 5*3 szén 3*5 szén G3P P 6 P P Glicerinsav 1,3-bifoszfát 6 NADP 6 P i 6 NADPH 6 P 2. szakasz: REDUKCIÓ Glicerinaldehid 3-foszfát (G3P) A dehidrogenáz enzim specifikus NADPH-ra!!! 1 P G3P (cukor) kimenet glükóz és egyéb szerves anyag

A fixáció egyenlete redukálódik Energy 6 CO 2 6 H 2 O C 6 H 12 O 6 6 O 2 oxidálódik 6CO 18ATP 12NADPH 12H O C H O 18ADP 18P 12NADP 6H 2 2 6 12 6 i Kiindulási anyagok: 6 CO 2 12 H 2 O Termékek: C 6 H 12 O 6 6 H 2 O 6 O 2

Fotorespiráció A RuBisCo nem nagy affinitással köti a CO 2 t és nem is szelektív. Adott esetben O 2 t is képes fixálni. A Normál legtöbb körülmények növény számára között nagy a széndioxid probléma kötés a fotolégzés. sebessége kb. 4-szer A akkora RuBisCO mint akkor az oxigéné. alakult ki, amikor még sokkal több CO 2 és kevesebb OEz 2 az volt arány a légkörben. azonban az oxigénkötés javára tolódik el, ha Evolúciós - a CO 2 /Omaradvány. 2 arány romlik Elvileg - a hőmérséklet van haszna emelkedésével is: A túl sok NADH az oxigént is redukálhatja és reaktív A keletkező gyökök glikolsav-2-foszfát keletkezhetnek. Ezt több a lépésen fénylégzés keresztül elhárítja. Elképzelhető peroxiszómákba hogy és a mitokondriumokba N megkötésében is kerülve segít. - glicinné alakul, CO 2 Genetikailag kibocsátás közben. módosított (fénylégzés csökkentését szolgáló) növények sem O 2 fogy, fejlődnek CO 2 keletkezik gyorsabban. légzés A fénylégzés növények néhány veszteséges csoportja folyamat, megoldotta mert a nem problémát. jár ATP szintézissel, és akár 50% -ra is csökkenhet miatta a fixáció mértéke.

A C 4 és a CAM fotoszintézis cukornád C 4 CO 2 ananász CAM CO 2 mezofill sejt szerves sav CO 2 fixáció szerves sav éjjel CO 2 hüvelyparenchima sejt Calvin ciklus CO 2 felszbadulás Calvin ciklus Calvin ciklus nappal cukor (a) A lépések térbeli szétválasztása cukor (b) A lépések időbeli szétválasztása

Pentóz-foszfát ciklus Az állatokban is NADPH szükséges a felépítő folyamatokhoz. A szintetizáló enzimek szelektívek! ez teszi lehetővé, hogy a NADH-ból mindenképpen ATP keletkezzen (a terminális oxidáció során). A felépítő és lebontó folyamatok különválasztása. Hol keletkezik NADPH? (A citromsavciklusban nem!) A válasz a pentóz-foszfát ciklus. A citoplazmában zajlik. A ciklus két szakaszra bontható: Oxidatív fázis Regenerációs fázis

Pentóz-foszfát ciklus 1. Szakasz oxidáció 2. Szakasz regeneráció

Pentóz-foszfát ciklus A visszatápláló lépések során visszakapjuk a glükóz-6- foszfát egy részét. 1db glükóz-6-p-ból 1db ribulóz-5-p és 1db CO 2 képződik. tehát 6 ciklus alatt 6db glükóz-6-p-ból 6db ribulóz-5-p és 6db CO 2 képződik. a regenerációs lépéseket figyelembe véve 6db glükóz-6-p-ból 5db glükóz-6-p és 6db CO 2 képződik. Olyan, mintha 1db glükóz-6-p teljesen eloxidálódott volna... a glükóz direkt oxidációja ( direkt, azaz egyetlen lépésben).

A félciklusok szerepe 1. Nukleotid-szintézis 2. ATP-szintézis

Calvin- vs. Pentóz-foszfát ciklus 1. Calvin ciklus a kloroplasztiszok sztómájában, Pentóz-foszfát ciklus a citoplazmában zajlik. 2. Felületesen szemlélve egymás megfordításának tűnnek. (De nem az!) Calvin ciklusban CO 2 és NADPH felhasználódik, a pentózfoszfát ciklusban keletkezik. 3. Mindkét ciklus záró lépése regeneráció. 4. A folyamat célja: Calvin ciklusban szénhidrát szintézis Pentóz foszfát ciklusban más felépítő folyamatokhoz szükséges NADPH szintézis

Glükoneogenezis A glükóz szintézise nemszénhidrát előanyagokból: fehérjék aminosavjaiból, zsírok glicerinjéből, ill. az izmok által termelt tejsavból és piroszőlősavból. Miért van erre szükség? Mert vannak sejtek, ami csak glukózt igényelnek (obligát cukorfogyasztók). Nagyjából a glikolízis lépései zajlanak visszafelé, DE! Egyes lépések azonban nem megfordíthatóak Ezeket fordított irányban más enzimek katalizálják. Az eltérő enzimek egymástól független módon is szabályozhatóak.

A glükoneogenezis folyamata 1. Nem megfordítható folyamatok (eltérő enzimek) ATP ADP ATP ADP Glu Glu-6-P Fru-6-P Fru-1,6-biP Pi H 2 O Pi H 2 O Dihidroxiaceton-P Dihidroxiaceton-P GlicerinAldehid-3-P NAD +, Pi NAD +, Pi NADH + H + NADH + H + Glicerinsav-1,3-biP ADP ADP ATP ATP Glicerinsav-3-P 2. A Calvin ciklushoz hasonló lépések (de ez NADH-specifikus!) ADP ATP Glicerinsav-2-P GDP PEP GTP oxálecetsav ADP piroszőlősav ATP

A glükoneogenezis kiindulási anyagai Minden olyan anyagból, ami a glikolízis köztes termékévé alakítható lehet glükózt előállítani. 1. glicerin glicerinaldehid-foszfát (GAP) (lipidek) 2. pentózok GAP, fruktóz-6-foszfát (nukleotidok) 3. aminosavak piroszőlősav (fehérjék) Sőt a citromsavciklus tagjaiból is lehet glukózt előállítani, mert azok oxálecetsavvá alakulhatnak, ami a glükoneogenezis köztes terméke. 4. aminosavak citromsavcikus tagjai

Aminosav-szintézis Az a táplálék, aminek az aminosav összetétele megfelel a mienknek, a teljes értékű táplálék. Ez ritkán teljesül. Az aminosavak egy része előállítható ketosavakból transzaminálással. 1. A szervezet nem képes a szintézisre: leucin, isoleucin, valin, triptofán, thereonin, lizin, hisztidin, metionin 2. A szervezet esszenciális aminosavakból állítja elő: cisztein, tirozin Ezek csak akkor esszenciálisak, ha a kiindulási (esszenciális) aminosav mennyisége korlátozott. 3. A szervezet képes szintetizálni, de a de novo szintézis nem tud lépést tartani a szükséglettel: arginin (A karbamidszintézishez használódik el.)

Zsírsavszintézis Zsírszintézisre minden sejt képes, de leginkább a máj és a zsírszövet sejtjeiben zajlik. Nem a lebontófolyamat megfordítása! 1. A szintézishez NADPH kell, míg a lebontásnál NADH képződött. 2. Lokalizáció: a lebontás a mitokondriumban, a szintézis a citolpazmában, az ER felületén. 3. Mások az enzimek: a lebontásban több enzim vesz részt, a szintézist egyetlen hatalmas polipeptidlánc végzi: a zsírsav-szintáz.

Zsírsavszintézis főbb pontjai A zsírsavlánc két szénatomos egységekből épül fel, az egységek acetil-koa molekulákból származnak. 1. Aktiváció: A CO 2 átmeneti beépülése, ehhez ATP-ben tárolt energiát használ. Malonil-KoA keletkezik. Az enzim kofaktora a biotin. 2. Lánchosszabbítás Az újabb egység hozzáadása során a malonil-koa dekarboxilálódik.

A láncnövekedés lépései 1. Acetil-csoport kötése Kondenzáció Malonil-csoport kötése

A láncnövekedés lépései 2. ketonból alkohol a kettőskötés telítése Redukció 1. Vízkilépés Redukció 2. Áthelyeződés Malonil-csoport kötése

Zsírsavszintézis főbb pontjai 2. A lánc 16 egységnyi hosszúságig növekszik. Ez a palmitinsav. 3. Utólagos módosítások (ha szükséges) Lánchosszabítás Kettős kötés (egy!) létrehozása oxidációval cukorlánc hozzákötése (glikolipidek) stb. Többszörösen kettős kötést tartalmazó molekulákat nem az emberi szervezet nem tud szintetizálni. Ezek az esszenciális zsírsavak. Pl linolsav, linolénsav

Nukleotidok bioszintézise 1. A ribózt a pentóz-foszfát ciklus termeli glukózból. 2. A dezoxiribonukleotidok utólag képződnek, redukcióval (B 12 vitamin szükséges). A bázisok beépülése történhet: 1. A lebontás során keletkező szabad bázisok újrahasznosításával. 2. De novo szintézissel. A de novo szintézis során a bázisok nitrogéntartalma aminosavakból származik. (Hevessy György kémiai Nobel-díj 1943)