Lézer ablációs ICP-MS Dobosi Gábor GKI



Hasonló dokumentumok
Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz november 19.

A lézer alapjairól (az iskolában)

Lézerek. A lézerműködés feltételei. Lézerek osztályozása. Folytonos lézerek (He-Ne) Impulzus üzemű lézerek (Nd-YAG, Ti:Sa) Ultrarövid impulzusok

Anyagvizsgálati módszerek Elemanalitika. Anyagvizsgálati módszerek

Nagyteljesítményű elemanalitikai, nyomelemanalitikai módszerek

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez

Koherens fény (miért is különleges a lézernyaláb?)

Izotópkutató Intézet, MTA

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft

TÖMEGSPEKTROMÉTEREK SZEREPE A FÖLDTUDOMÁNYBAN. Palcsu László MTA Atommagkutató Intézet (Atomki) Környezet- és Földtudományi Laboratórium, Debrecen

Koherens fény (miért is különleges a lézernyaláb?)

Koherens lézerspektroszkópia adalékolt optikai egykristályokban

A LÉZERSUGÁRZÁS ALAPVETŐ ISMÉRVEI SPONTÁN VS. INDUKÁLT EMISSZIÓ A FÉNYERŐSÍTÉS FELTÉTELE A POPULÁCIÓ INVERZIÓ FELTÉTELE

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

Radionuklidok meghatározása környezeti mintákban induktív csatolású plazma tömegspektrometria segítségével lehetőségek és korlátok

NAGY ENERGIA SŰRŰSÉGŰ HEGESZTÉSI ELJÁRÁSOK

Laser / lézer. Egy kis történelem. Egy kis történelem. Egy kis történelem Albert Einstein: az indukált emisszió elméleti predikciója

Dicsı Ágnes: Lézer a restaurálás szolgálatában Álom és valóság

Lézerek. Extreme Light Infrastructure. Készítette : Éles Bálint

Röntgen-gamma spektrometria

Abszorpció, emlékeztetõ

Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVIII-a, Cluj-Napoca Proba teoretică, 1 iunie II. Feladat: Lézer (10 pont)

Abszorpciós spektroszkópia

Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére

Kimenő üzemmód ; Teljesítmény

Abszorpciós fotometria

AZ MFGI LABORATÓRIUMÁNAK VIZSGÁLATI ÁRAI

Aktiválódás-számítások a Paksi Atomerőmű leszerelési tervéhez

A TÖMEGSPEKTROMETRIA ALAPJAI


Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése

A lézersugár és szerepe a polimer technológiákban

Litoszféra fő-, mikro- és nyomelemgeokémiája

Távolságmérés hullámokkal. Sarkadi Tamás

Stabilizotóp-geokémia II. Dr. Fórizs István MTA Geokémiai Kutatóintézet

2.4. ábra Alkalmazási területek

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia

Kutatóegyetemi Kiválósági Központ 1. Szuperlézer alprogram: lézerek fejlesztése, alkalmazásai felkészülés az ELI-re Dr. Varjú Katalin egyetemi docens

Fotonikai eszközök ZH bulid10.10.sp1

Rövid ismertető. Modern mikroszkópiai módszerek. A mikroszkóp. A mikroszkóp. Az optikai mikroszkópia áttekintése

RÖNTGEN-FLUORESZCENCIA ANALÍZIS

Köpenyfluidzárványok kutatása mikro- és nanométeres léptékben

Lézerek Lézer és orvosbiológiai alkalmazásaik

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic

I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK

Az elektromágneses színkép és egyes tartományai

Optika Gröller BMF Kandó MTI

Ipari Lézerek és Alkalmazásaik

Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Fizikai Kémia és Anyagtudomány Tanszék. Lézerek és mézerek

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Abszorpciós fotometria

Rövid impulzusok esetén optikai Q-kapcsolót is találhatunk a részben áteresztő tükör és a lézer aktív anyag között.

Atomreaktorok üzemtana. Az üzemelő és leállított reaktor, mint sugárforrás

ATOMEMISSZIÓS SPEKTROSZKÓPIA

9. Fotoelektron-spektroszkópia

Litoszféra fő-, mikro- és nyomelemgeokémiája

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak

XLVI. Irinyi János Középiskolai Kémiaverseny február 6. * Iskolai forduló I.a, I.b és III. kategória

LÉZER: Alapok, tulajdonságok, alkalmazások

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Az Ampère-Maxwell-féle gerjesztési törvény

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

Műszeres analitika II. (TKBE0532)

A hőmérsékleti sugárzás

A TERMÉSZETBEN SZÉTSZÓRÓDOTT NUKLEÁRIS ANYAGOK VIZSGÁLATA

Metaszomatózis folyamatának nyomon követése felsőköpeny zárványokban, Persány-hegység

Prompt-gamma aktivációs analitika. Révay Zsolt

RADIOAKTÍV HULLADÉKOK MINŐSÍTÉSE A PAKSI ATOMERŐMŰBEN

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben

Munkagázok hatása a hegesztési technológiára és a hegesztési kötésre a CO 2 és a szilárdtest lézersugaras hegesztéseknél

Az ICP-MS módszer alapjai

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?

NAA és PGAA módszerek összehasonlítása, jelentőségük a geológiai minták vizsgálatában, Standard referencia anyagok vizsgálata

Tömegspektrometria. Tömeganalizátorok

Abszorpciós fotometria

A nagy-kopasz hegyi cheralit környezetgeokémiai vizsgálata

Mikrohullámú abszorbensek vizsgálata 4. félév

Modern fizika laboratórium

A fény mint elektromágneses hullám és mint fényrészecske

RAJZOLATI ÉS MÉLYSÉGI MINTÁZATKIALAKÍTÁS II:

Kémiai fizikai alapok I. Vízminőség, vízvédelem tavasz

RÉSZLETEZŐ OKIRAT (3) a NAH / nyilvántartási számú akkreditált státuszhoz

Környezet nehézfém-szennyezésének mérése és terjedésének nyomon követése

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről

Laser / lézer. Egy kis történelem. Egy kis történelem. Egy kis történelem Albert Einstein: az indukált emisszió elméleti predikciója

Az elektromágneses spektrum és a lézer

A hőmérsékleti sugárzás

a NAT /2010 nyilvántartási számú akkreditált státuszhoz

Nanoelektronikai eszközök III.

1000 = 2000 (?), azaz a NexION 1000 ICP-MS is lehet tökéletes választás

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása

A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD

ALPHA spektroszkópiai (ICP és AA) standard oldatok

Fény és anyag munkában

Az elektromágneses hullámok

Kristályorientáció-térképezés (SEM-EBSD) opakásványok és fluidzárványaik infravörös mikroszkópos vizsgálatához

Modern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: Az optikai pumpálás. A beadás dátuma: A mérést végezte:

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:

Átírás:

Lézer ablációs ICP-MS Dobosi Gábor GKI LA (M) ICP - MS tömegspektrométer elvi vázlata tömeg analizátor Ionforrás 1

LA (M) ICP -MS nagy hőmérséklet vákuum ICP-MS Az első kereskedelmi készülék - 1984 2

ICP-MS előnyei: -Érzékeny -Egyszerű spektrum -Multielemes technika (30-40 elem egyszerre) -Jól kalibrálható (linearis kalibrációs görbék több nagyságrenden keresztül) -Jól automatizálható Az XRF mellett a legelterjedtebb elemanalitikai technika 1985. Alan Gray (Anglia) Lézer abláció A lézeres mintavétel előnyei: - szilárd minták vizsgálhatók (laborköltség, kontamináció oldat problémák) - lokális - in situ -elemzés - száraz plazma kevesebb interferencia Egyéb lézeres technikák lézer szinképelemzés (LIBS), Ar-Ar kormeghatározás, lézer-fluorináció, Raman spektroszkópia) Lézer ablációs egység Részei: Lézer Lézer optika -fókuszálás -energia szabályozás -energia mérés Mikroszkópos megfigyelés Ablációs cella, mintatartó, mintamozgató motorok Szállító vezetékek 3

Lézer LASER Light Amplification by Stimulated Emission of Radiation Indukált emisszió (Einstein 1917) abszorpció indukált emisszió spontán emisszió Indukált emisszióval felszabaduló foton frekvenciája, polarizációja és rezgési fázisa ugyanaz, mint az indukáló fotonnak Erősítés monokromatikus, polarizált, koherens és egyirányú (nem széttartó) Probléma az indukált emisszióhoz az kell, hogy több atom legyen gerjesztett állapotban (felső energiaszint), mint alapállapotban Fordított benépesültség Kétállapotú rendszerben nem valósítható meg (Boltzmann törvény) Három, vagy több állapotú rendszerben azonban megvalósítható Boltzmann eloszlás a pumpálás előtt metastabil szint Fordított benépesültség E 1 és E 0 között Rubin lézer (Maiman 1960) a háromállapotú rendszer nem elég hatékony (a fordított benépesültség a lézerátmenettel csökken) 4

Négy állapotú rendszer (Nd:YAG lézer) Boltzmann eloszlás a pumpálás előtt metastabil szint Pumpálás Spontán emisszió Lézer átmenet Gyors spontán emisszió E0 E3 E3 E2 (E2 szint metastabil) E2 és E1 szint között E1 E0 Így az E1 szinten nem lesz semmi, E2 és E1 között a fordított benépesültség pumpálással folyamatosan fenntartható A lézer médium (aktiv közeg) Nd:YAG (YAl-gránát), vagy Nd üveg rúd Pumpálás Erős fényforrás - folyamatos, vagy szaggatott fény (villanófény, vaku) 5

Optikai rezonátor A gerjeszett aktiv közegben fényerősítés általában kicsi, kb. 10 % Az erősítés fokozása tükrök a gerjesztett aktiv közeg mindkét oldalán (pozitív visszacsatolás) félig áteresztő tükör Az aktiv közegen a fény akár 100-szor is áthalad ez az optikai rezonátor (optical cavity), vagy Fabry-Perot rezonátor A kilépő fény monokromatikus koherens polarizált párhuzamos (nem széttartó) A hatásfok rossz, általában 1 %, viszont a kimenő energia kis területre koncentrálható Az abláció szempontjából az a jó, ha a lézerfény minél kisebb hullámhosszú, és minél rövidebb impulzusokban érkezik Frekvencia sokszorzás Q-switching Az előbbiekben nyert lézersugárzás folyamatos (bár a pumpálás miatt nem egészen) free runnig laser A rövid, de erős impulzusokat az ún. Q-switching révén kapjuk Q-switched (quality switched), vagy magyarul impulzus lézerek Szándékosan rontjuk le az optikai rezonátor minőségét, ezáltal nagyfokú inverz populációt érünk el, kisülés nélkül Hirtelen csökkentük a veszteséget kezdődik az oszcilláció, így az összes felgyülemlett energia egyetlen nagy impulzusban sugárzódik ki (egy ilyen kisülés időtartama 10-100 ns) 6

A lézerabláció során impulzuslézert (Q-switched laser) használnak A frekvencia általában 10 Hz Frekvencia sokszorozás A Nd:YAG lézer hullámhossza 1064 nm (IR) A lézerablációhoz viszont kisebb hullámhossz (lehetőleg UV) a kedvezőbb Ezt a megfelelő felharmonikusok előállításával érhetjül el. Nemlineáris optika az ún. nemlineáris kristályok elektromos térben különlegesen viselkednek. Rezgő dipólus A belépő fény frekvenciájának kétszeresével rezeg, és kétszeres frekvenciájú fotont emittál Ez a fény ugyanolyan tulajdonságokkal rendelkezik (koherencia, összetartás), mint a belépő fény Az effektus nem lineáris, rohamosan nő a fotonsűrűséggel 7

Megfelelő keveréssel tetszőleges felharmonikus előállítható A lézerablációban használt Nd:YAG lézerek 266 nm-en (négyszeres frekvencia), vagy 213 nm-en (ötszörös frekvencia) működnek Excimer lézerek (Excimer excited dimer) Vannak kétatomos molekulák, amelyek csak gerjesztett állapotban léteznek (pl. nemesgáz halogenidek) Gerjesztés (pumpálás): elektromos kisülés, elektronbombázás, mikrohullám A nagy nyereség miatt nincs szükség Q-switchingre Néhány típus XeF KrF KrCl ArF F 2 350 nm 249 nm 222 nm 183 nm 157 nm 200 nm alatt vákuum ultraibolya 8

Hátrány - nagy méret - veszélyes - drága (beszerzés, karbantartás) NIST 157 nm F 2 excimer lézer Legújabb fejlesztés femtosecond lézer Ti-zafir lézer (Ti 3+ ) (650 és 1100 nm között hangolható, de kisebb hullámhossz is elérhető) Femtosecond (10-15 sec) időtartamú impulzusok (nanosecond 10-9 sec) Még nincs kulcsrakész ( turn key ) változat A pumpáláshoz is lézert használnak Nagyon drága és munkaigényes Hannoveri Egyetem Ingo Horn 196 nm femtosecond lézer 9

Lézerekről néhány érdekesség Maiman 1960 az első működő rubinlézer, ezt hamarosan számos követi Utána kezdtek csak azon gondolkodni, hogy mire is használják. A megoldás keresi a problémát Nd üveg lézer Lawrence Livermore National Laboratory (Teller Ede) Több 10 méter hosszú, 46 * 85 cm-es elliptikus szegmensekből álló lézer, a melegedés miatt óránként 1 impulzust képes leadni (fúziós kísérletek) Röntgen lézer Szabad elektron lézerek Se 24+ (20 nm), Ta 45+ (4,5 nm), W 46+ (4.36 nm) Alkalmazás pl. sejtholográfia Katonai lézer, 1984 Ronald Reagen csillagháborús tervei 1.4 nm hullámhossz, a pumpálás atombombával Lézer abláció Nd:YAG 266, 213 ArF excimer 183 Ti:Zafir femtosecond A lézersugarat tükrökkel és lencsékkel a minta felületére fókuszáljuk Energia szabályozás polarizátorokkal Energia mérés hőérzékelőkkel Mintatartó Ar (He) be plazmába 10

A lézerablációs rendszereket régebben a laboratóriumok maguk építették Memorial University, St. John s, Newfoundland 11

Az abláció Számos folyamat párolgás, fragmentáció, olvadás, inkongruens olvadás, fázis szétesés, exploziv felforrás Ez mind függ a lézer hullámhossztól, az impulzusok energiájától, időtartamától és ismétlődésétől 12

Az abláció eredményeképp egy ablációs kráter keletkezik Ennek tipikus mérete átmérő 50-60 mikrométer (kisebb átmérő esetén az érzékenység is kisebb), és az abláció során kb. 1 mikrométert mélyül másodpercenként, azaz 60 sec ablációnál ennyi mikron mélység A kráterből eltávolított anyag jelentős része nem jut el az ICP plazmába, egy része már a kráter peremén lerakódik Ez nemcsak anyagveszteséggel, hanem elem, illetve izotóp frakcionációval jár, azaz az eltávolított anyag (aeroszol) összetétele nem azonos a mérendő fázis összetételével. Ennek csökkentése, illetve kiküszöbölése lézer okozta hatások szállítás okozta hatások 13

Lézer minél kisebb a hullámhossz, az anyagok annál jobban abszorbeálnak d-elemeket tartalmazó ásványok (szines elegyrészek) abszorbeáltak az IR és a látható tartományban is, de számos ásvány (kalcit, apatit, kvarc, földpát, fluorit stb.) csak az UV tartományban abszorbeál Ez néha katasztrofális ablációhoz vezetett 50 mikron Kalcit 1064 nm Kvarc 1064 nm Apatit A legtöbb anyag jól abszorbeál az ultraibolya tartományban, ezért használják a sokkal drágább UV lézereket Nagyobb érzékenység, kisebb elem és izotópfrakcionáció További javítás femtosecond lézer A hőközlés olyan gyors, hogy nem vezetődik el a hő, és a nagy hőmérséklet csökkenti a frakcionációt A szállítás 10-100 nm-es részecskék formájában (aerosol) A szállítás során is lehet veszteség (gravitációs ülepedés), és ezzel járó frakcionáció A szállítás javítása He vivőgázzal. A plazma Ar, de az abláció He atmoszférában történik, és ezt vezetjük a plazmába (ez 5x érzékenység javulást okozott az Ar vivőgázhoz képest) 14

A frakcionáció a kráter mélyülésével nő sztatikus pontszerű és dinamikus pásztázó abláció A vizsgálatok szerint a pásztázó abláció nagyobb érzékenységet és kisebb frakcionációt eredményez Viszont nagyobb a felületi kontamináció, és rosszabb a térbeli felbontás 15

Összességében az a cél, hogy az abláció során az anyag minél nagyobb részét a mintához hasonló összetételű, kisméretű és nagyjából azonos méretű szemcsékből álló aeroszollá alakítsuk, amit veszteség nélkül eljuttatunk az ICP plazmába. Intenzív elméleti és kísérleti kutatások. Ehhez a minél kisebb hullámhosszú (UV) lézer, a minél rövidebb impulzusú (femtosecond) lézer és a pásztázó abláció a legjobb. Az abláció során a lézer mindent eltávolít, ami az útjába kerül. Ezért az egyik legfontosabb, hogy a mintát a mérés előtt, és a mérés után is alaposan vizsgáljuk meg, hogy csakugyan azt mértük-e, amit akartunk. 16

Visszaszórt elektronkép Katódlumineszcens kép A sötétebb zirkon részből is belemértünk egy keveset Az ICP-MS A tömegspektrométer - Kvadrupol analizátor - rendkívül gyors tömegugrás ( 6 Li-tól a 238 U-ig) - jó érzékenység A mérés ún. peak hopping üzemmódban történik, azaz a mágneses tér változtatásával az analizátor csúcsról csúcsra ugrik. Az ugrás ideje (settling time) kb. 1 msec, a mérés ideje (dwell time) a csúcson 10 msec Így kb. 30 elem mérése esetén a teljes tömegtartományt másodpercenként háromszor végigméri (3 sweeps). Egy perces mérésnél minden elemre 1-2 másodperc jut összesen olyan, mintha az összes mérendő elemet egyszerre mérné. Nyomelemezésre. Time resolved szignál az egyes elemek intenzitását az idő függvényében méri és ábrázolja. Háttér mérése vivőgáz, üresen (gas blank) Minta mérése lézerabláció Kiértékelés a háttér és a minta szignál integrálása 17

Time-resolved analízis beütésszám (cps) 1000000 Laser be 100000 10000 1000 100 Háttér Minta 10 0 20 40 60 80 100 120 140 idő (sec) Mg 25 Si 29 Ca 42 Sc 45 Ti 49 V 51 Cr 53 Co 59 Ni 60 Rb 85 Sr 88 Y 89 Zr 90 Nb 93 Ba 137 La 139 Ce 140 Pr 141 Nd 145 Sm 147 Eu 151 Gd 157 Tb 159 Dy 163 Ho 165 Er 167 Tm 169 Yb 173 Lu 175 Hf 177 Ta 181 Pb 208 Th 232 U 238 Nagyobb méretű homogén ásvány 18

Változó time resolved szignálok Kalibráció Külső és belső sztenderd. A külső sztenderd a koncentráció beállításhoz, a belső sztenderd az ablációs különbségek kiegyenlításhez kell. A mért intenzitásokat mind a sztenderd, mind a minta esetén a belső sztenderdhez viszonyítjuk, és ebből számolunk. Az instabilitás miatt gyakran (pl. óránként) sztenderdizálunk, és a csúszást interpoláljuk. Milyen sztenderdet használjunk? Nincs szükség mátrix-azonos sztenderdre. A szilikátok, oxidok, sőt a karbonátok is jól mérhetők szintetikus szilikát üvegsztenderdekhez. Ilyen pl. a NIST 612 (30-40 ppm nyomelem), vagy a NIST 610 (300-400 ppm nyomelem), de vannak olvasztott bazalt, vagy egyéb kőzet sztenderdek, pl. BCR-2. 19

Nyomelem alkalmazások Teljes kőzet nyomelemzés Préselt por Olvasztott üveg Li-metaboráttal olvasztott üveg (XRF preparátum) Préselt por 1000 100 10 mr17b15 15 mr17b16 16 1 mr17b17 17 Brehy Brehy glass 0.1 Li Ca V Co Rb Y Nb La Pr Sm Gd Dy Er Yb Hf Pb U Pákozdi lamprofir 10000 1000 PaB av PaA av 100 10 1 0.1 Rb Ba U Th Nb Ta La Ce Sr Pr Nd Zr Hf Sm Eu Ti Gd Tb Dy Ho Y Er Tm Yb Lu Pb V Cr Co Ni Mérések: MTA IKI 20

Olvasztott üveg Szilikát ásványok nyomelemeinek mérése Példa A balatonfelvidék peridotit xenolitjainak nyomelemei primitiv xenolitok Klinopiroxén és ortopiroxén 21

Metaszomatizált xenolitok Primitiv köpeny piroxén összetétel számítása 22

1 cm 100 mikron 100 10 klinopiroxén Zónás (metaszomatizált) klinopiroxén Persányi hegység 1 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 23

Hazai lézer ablációs ICP-MS lehetőségek MTA Izotópkutató Intézet (Stefánka Zsolt, Varga Zsolt, Gméling Katalin) Sikerrel reprodukáltuk a korábbi elemzéseket (példa Bo20 amfibol megakristály 100 10 St. John's 2001 MTA IKI 2006 MTA IKI 2006 1 0.1 Li Ca V Co Rb Y Nb La Pr Sm Gd Dy Er Yb Hf Pb U Illékony nyomelemek (As, Cd, Ga, In, Sn) a köpenyben Witt-Eickschen 2009 ppb körüli kimutatási határok elérhetők teljesen új adatok a Föld köpenyéről a köpeny kozmokémiai összefüggései vizsgálhatók 24

Szulfidok nyomelemei elsősorban a Pt-fémek érdekesek A sztenderdizálás már probléma préselt szulfidporok, kolloid szulfidok, olvasztott Ni szulfid, hozzáadott kalkofil nyomelemekkel kalkopirit Köpeny szulfidok pentlandit kalkopirit 25

Fluidzárványok Hidrotermális ércesedések tanulmányozása A kalibráció itt komoly probléma Multikollektoros ICP-MS Nu 1700 kettős fókuszálású multikollektoros ICP-MS Nagypontosságú izotóparány mérések 26

Kormeghatározás Zirkon U-Pb kormeghatározás (az ionszonda komoly vetélytársa) Eredeti magmás zirkonok és metamorf szegélyek elkülönítése Ősi kontinensfejlődés tanulmányozása Kínában is találtak 4 milliárd éves zirkont (Hadeszi kor) 27

Az igazi azonban az U-Pb kormeghatározás és a Hf izotóparányok mérése a zirkonban Illetve ugyanezek mellett ionszondával az oxigén izotóparányok mérése Jack Hill Ausztrália A Föld jelenleg ismert legidősebb darabja, 4.3-4.4 milliárd éves zirkon Mesterségesen szinezett katódlumineszcens kép Ionszondával mérték Egyéb radiogén izotóparány mérések: Sr izotóparányok in situ elemzése plagioklászban, apatitban Nd izotóparányok elemzése akcesszórikus ritkaföldfém ásványokban, pl. monacit, xenotim Os izotóparány szulfidokban Nem-tradicionális stabilizotóparányok elemzése Fe, Mg, vagy Si izotóparányok Oxidációs-redukciós folyamatok, biogén folyamatok, köpeny differenciáció Meteorit (CAI) kutatás Femtosecond lézer 28