CAD technikák Mérnöki módszerek gépészeti alkalmazása

Hasonló dokumentumok
A végeselem módszer alapjai. 2. Alapvető elemtípusok

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés

időpont? ütemterv számonkérés segédanyagok

3 Technology Ltd Budapest, XI. Hengermalom 14 3/ Végeselem alkalmazások a tűzvédelmi tervezésben

Ejtési teszt modellezése a tervezés fázisában

Újdonságok 2013 Budapest

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

TERMÉKSZIMULÁCIÓ I. 9. elıadás

Projektfeladatok 2014, tavaszi félév

Innocity Kft. terméktervezés, szerszámtervezés öntészeti szimuláció készítés / 7 0 / w w w. i n n o c i t y.

HELYI TANTERV. Mechanika

Akusztikai tervezés a geometriai akusztika módszereivel

TERMÉKSZIMULÁCIÓ. Dr. Kovács Zsolt. Végeselem módszer. Elıadó: egyetemi tanár. Termékszimuláció tantárgy 6. elıadás március 22.

CAD-CAM-CAE Példatár

Lemez- és gerendaalapok méretezése

V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I

Összeállította Horváth László egyetemi tanár

Végeselemes analízisen alapuló méretezési elvek az Eurocode 3 alapján. Dr. Dunai László egyetemi tanár BME, Hidak és Szerkezetek Tanszéke

ÁRAMKÖRÖK SZIMULÁCIÓJA

Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével

Fogorvosi anyagtan fizikai alapjai 6.

CAD Rendszerek I. Sajátosság alapú tervezés - Szinkron modellezés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet

Polimerek fizikai, mechanikai, termikus tulajdonságai

Termék modell. Definíció:

CAD-CAM-CAE Példatár

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.

MUNKAGÖDÖR TERVEZÉSE

A II. kategória Fizika OKTV mérési feladatainak megoldása

CONSTEEL 8 ÚJDONSÁGOK

Tevékenység: Tanulmányozza a ábrát és a levezetést! Tanulja meg a fajlagos nyúlás mértékének meghatározásának módját hajlításnál!

Számítógépes Grafika SZIE YMÉK

Molekuláris dinamika I. 10. előadás

Tartószerkezetek modellezése

Járműelemek. Rugók. 1 / 27 Fólia

A.2. Acélszerkezetek határállapotai

Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások

Csatlakozás a végeselem modulhoz SolidWorks-ben

Hajlított tartó: feladat Beam 1D végeselemmel

Grafikonok automatikus elemzése

Dinamikus modellek felállítása mérnöki alapelvek segítségével

Az igénybevételi ábrák témakörhöz az alábbi előjelszabályokat használjuk valamennyi feladat esetén.

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

DIGITÁLIS TEREPMODELL A TÁJRENDEZÉSBEN

Konzulensek: Czeglédi Ádám Dr. Bojtár Imre

Ipari robotok megfogó szerkezetei

MEMS eszközök redukált rendű modellezése a Smart Systems Integration mesterképzésben Dr. Ender Ferenc

Pere Balázs október 20.

XVII. econ Konferencia és ANSYS Felhasználói Találkozó

Az éghajlati modellek eredményeinek alkalmazhatósága hatásvizsgálatokban

ERŐVEL ZÁRÓ KÖTÉSEK (Vázlat)

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Kiöntött síncsatornás felépítmény kialakításának egyes elméleti kérdései

Smart Strategic Planner

Kiválósági ösztöndíjjal támogatott kutatások az Építőmérnöki Karon c. előadóülés

PÉLDÁK ERŐTÖRVÉNYEKRE

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)

Cölöpalapozások - bemutató

Pro/ENGINEER Advanced Mechanica

Mérnöki faszerkezetek korszerű statikai méretezése

A hatékony mérnöki tervezés eszközei és módszerei a gyakorlatban

GÉPÉSZETI ALKALMAZOTT SZÁMÍTÁSTECHNIKA f iskolai mérnökhallgatók számára. A 4. gyakorlat anyaga. Adott: Geometriai méretek:

Pattex CF 850. Műszaki tájékoztató

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

Példa: Normálfeszültség eloszlása síkgörbe rúd esetén

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév

ahol m-schmid vagy geometriai tényező. A terhelőerő növekedésével a csúszó síkban fellép az un. kritikus csúsztató feszültség τ

Földstatikai feladatok megoldási módszerei

DR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I. Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST

Az alakítással bevitt energia hatása az ausztenit átalakulási hőmérsékletére

GÉPÉSZETI ALAPISMERETEK TÉMAKÖRÖK

3D számítógépes geometria és alakzatrekonstrukció

A szerkezeti anyagok tulajdonságai és azok vizsgálata

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSGÉPÉSZ ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA MINTAFELADATOK

Egy nyíllövéses feladat

Rugalmasan ágyazott gerenda. Szép János

A 29/2016. (VIII. 26.) NGM rendelet által módosított 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján.

Molekuláris dinamika. 10. előadás

TARTALOMJEGYZÉK. 1. KIINDULÁSI ADATOK Geometria Anyagminőségek ALKALMAZOTT SZABVÁNYOK 6.

Szinkronizmusból való kiesés elleni védelmi funkció

SAP EAM MRS és LAM megoldásainak gyakorlati bevezetési tapasztalatai

Nemlineáris anyagviselkedés peridinamikus modellezése. Ladányi Gábor, PhD hallgató

Modern fizika laboratórium

Csavarorsós emelőbak tervezési feladat Gépészmérnök, Járműmérnök, Mechatronikai mérnök, Logisztikai mérnök, Mérnöktanár (osztatlan) BSC szak

GEOTECHNIKA I. LGB-SE TALAJOK SZILÁRDSÁGI JELLEMZŐI

Mérésadatgyűjtés, jelfeldolgozás.

Fogorvosi anyagtan fizikai alapjai 8. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel

Antennatervező szoftverek. Ludvig Ottó - HA5OT

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat.

Technikai áttekintés SimDay H. Tóth Zsolt FEA üzletág igazgató

Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

Fogorvosi anyagtan fizikai alapjai 7.

Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

A Vonallánc készlet parancsai lehetővé teszik vonalláncok és sokszögek rajzolását.

Lemezalkatrész modellezés. SolidEdge. alkatrészen

Tartószerkezetek I. (Vasbeton szilárdságtan)

Átírás:

Mérnöki módszerek gépészeti alkalmazása XI. előadás 2008. április 28.

MI A FEM/FEA? Véges elemeken alapuló elemzési modellezés (FEM - Finite Element Modeling) és elemzés (FEA - Finite Element Analysis). A modellek elemzésén alapuló termékfejlesztés. A számítógépes elemzés minőségi változás. Az elemzések végső célja az a tervezõi megállapítás, hogy a termék tervei változatlan formában, a javasolt módon módosítva, esetleg egyáltalán nem alkalmasak arra, hogy a gyártás tervezésének az alapját képezzék. XI. előadás 2008. április 28. 2/22

MI A FEM/FEA? A végeselem analízis egy numerikus módszer. Általános feladatmegoldó eszköz: bármely bonyolultságú alak elemezhető, bármely anyagjellemző meghatározható, valamint bármely terhelés és határfeltétel figyelembe vehető. Az alkatrész működése közben, a fellépő terhelések hatására: igénybevétel, deformáció A terhelés hely és idő függvényében, matematikai összefüggéssel leírható változása is figyelembe vehetõ. Öntőszerszámok (formák) öntés közbeni hőmérséklet-eloszlásának és a formakitöltésnek a vizsgálata. XI. előadás 2008. április 28. 3/22

A véges elemeken alapuló modellezés és elemzés alapvető lépései Az elemzési modell készítése (preprocesszálás) Geometriai modell előkészítése Külső alkatrész modell konvertálása Geometriai modell kidolgozása A modell egyszerűsítése A modell kiegészítése Hálógenerálás Végeselem modell előkészítése Terhelések és határfeltételek definiálása Anyagjellemzők meghatározása Modell komplettségének és korrektségének ellenőrzése A modell optimalizálása Elemzés Posztprocesszálás Eredmények feldolgozása a felhasználó számára Terhelések és eredmények kijelzése intervallumokban Táblázatok összeállítása Animált megjelenítés XI. előadás 2008. április 28. 4/22

Geometriai modellek felhasználási esetei A geometriai modell a végeselem eszközökkel integrált modellezővel készül így az közvetlenül feldolgozható. A geometriai modell külső rendszerbõl származik, azonban az áthozott adatok a végeselem modellezõben közvetlenül feldolgozhatók. A geometriai modell külső rendszerből származik és az áthozott adatokat elõbb semleges formátumra, majd a végeselem rendszerben alkalmazott formátumra kell alakítani (konvertálni). Ugyan a végeselem háló is külső modellezõ rendszerben készül, azt a geometriai modellel hozzák át, azonban az adatok közvetlenül, átalakítás nélkül felhasználhatók. A geometriai modell és a végeselem háló adatait semleges formátumban hozzák át, így az azokat kettős konverziónak kell alávetni. Ez a bejövő adatok valamely semleges formátumba való alakítását, majd a semleges formátumnak a célrendszer formátumába való alakítását jelenti. Például IGES formátumba. A geometriai modellt a végeselem rendszerben kell kidolgozni. XI. előadás 2008. április 28. 5/22

Véges elemek Az alak, amelyet véges elemekre bontanak lehet vonal (egydimenziós), kétdimenziós héj, háromdimenziós héj vagy test. A véges elemek egymáshoz közös élekkel kapcsolódnak. A véges elemeket határoló élek metszéspontjaiban, esetenként pedig az éleken csomópontok helyezkednek el, amelyekben a vizsgált jellemzõk számítása történik. Vonal (egydimenziós) elemek Kétdimenziós héjelem csomópont közös él Háromdimenziós héjelem Tömör test elem XI. előadás 2008. április 28. 6/22

Véges elemek készlete Az elemek alakja a felbontandó alaknak megfelelő típusok közül választható Egydimenziós elem, kétdimenziós héjelem (háromszög vagy négyszög keresztmetszetű), háromdimenziós héj, valódi térbeli elemek (a harmadik méret állandó vagy változó). A határoló élek fokszáma: elsőfokú (egyenes), másodfokú vagy harmadfokú. A másodfokú élen egy, a harmadfokú élen két közbenső csomópont. XI. előadás 2008. április 28. 7/22

Véges elem háló Az elemek alakját, méretét és sűrűségét alkalmasan választják meg. A felosztott alak és az elem azonos fokszáma: görbült határoló élekkel és felületekkel rendelkezõ testek esetében egzakt elemek. A még alkalmas legkisebb feldolgozási igényű megoldást eredményezõ végeselem modell: ha a közelítés megfelelõ pontosságú elemzési eredményt ad, azt kell választani. A végeselem analízis a sokszorosára nőtt számítógép teljesítmény mellett is fokozottan erőforrás-igényes feladatnak számít a műszaki tervezőrendszerek gyakorlatában. A véges elemek mérete az elemzési feladatnak megfelelen megválasztva. A háló lehet egyenletes vagy változó sűrűségű. Ahol az alkatrészen kisebb és nagyobb várható igénybevételű régiók azonosíthatók, a háló helyi sűrítésével és ritkításával lehet jó hálót kialakítani. A szükségesnél sűrűbb háló felesleges feldolgozási igényt eredményez, a szükségesnél ritkább háló pedig pontatlan eredményt ad. XI. előadás 2008. április 28. 8/22

A háló létrehozásának lépései Tervező által irányított és automatikus hálógenerálás. Háló ellenőrzése: torzulás, szakadás és egyéb rendellenességek Automatikus hálókorrigáló eljárások. Számos módszer, eszköz és fogás megfelelõ minőségű, optimális háló kialakítására. XI. előadás 2008. április 28. 9/22

Terhelési modell Terhelések és a korlátok elhelyezése a hálóval ellátott geometriai modellen. A terhelés elhelyezhető csomópontokban, vonalak mentén vagy felületen. Tipikus terhelés a koncentrált, vagy megoszló erő, a nyíró igénybevétel, a hajlító igénybevétel, a gyorsulás, amely lehet gravitációs, transzlációs vagy rotációs, az élen vagy felületen ható nyomás, a csomópontokban, elemen vagy felületen uralkodó hőmérséklet és a koncentrált vagy megoszló hőforrás. A fejlett rendszerekben a terhelés változása is megadható matematikai összefüggés formájában. XI. előadás 2008. április 28. 10/22

Terhelési modell Az objektum mozgásának korlátait leíró kényszere pontokhoz, görbékhez és felületekhez, illetve csomópontokhoz rendelhetők. A kényszer az elmozdulást meghatározott irányban korlátozza, az elemzés eredményében reakcióerõ fog megjelenni. A mechanikából ismert alapvető kényszereket kész modellépítõ elemekként tartalmazzák. XI. előadás 2008. április 28. 11/22

A kész elemzési modellről A teljes elemzési modell, vagy annak meghatározott részei az elemzési eredmények alapján módosítása után frlhasználhatók, az elemzés megismételhető. A termék modelljében az alkatrész modellje és az elemzési modell között kötöttségek definiálhatók, az alkatrészmodell módosításai automatikusan átvihetők az elemzési modellbe. Az elemzési modell összeállításánál gyakran használnak fel adatbázisban tárolt, könyvtári modell-részeket. XI. előadás 2008. április 28. 12/22

Elemzés Az elemzés során többek között feszültség, alakváltozás, nyomás, reakcióerõ, alakváltozási energia, saját frekvencia, hõmérséklet, hõáram és mágneses tér határozható meg. A különféle elemzésekhez megfelelõ elemzõ programok. A feladatot alapvetően lineáris, nemlineáris, statikus és dinamikai elemzésként kezelhetjük. A végeselem rendszerekben rendelkezésre álló eszközök meghatározott feladat-típusokhoz alkalmasak. XI. előadás 2008. április 28. 13/22

Elemzési feladatok A lineáris feladat megoldásának az alapja az a feltevés, hogy a vizsgált tartományban az anyag rugalmas és legfeljebb a terheléssel arányos, kismértékû elmozdulás lép fel. A gyakorlatban nagyon sok feladat lineárisként való megoldása tökéletesen megfelel, a fenti feltevés helytállónak bizonyul. Lineáris elemzéssel elsõsorban feszültséget, alakváltozást, elmozdulást, reakciót, rugalmas alakváltozási energiát, hőmérsékletet, hőáramot és hullámalakot számítanak. A nemlineáris feladat esetében figyelembe vesszük, azt is, hogy a terhelés, az anyagjellemzõk, az érintkezési feltételek és a szerkezeti merevség az elmozdulás vagy a hőmérséklet függvénye. A nemlineáris elemzés során a képlékeny és a kúszó alakváltozást, valamint az anyag-felkeményedését vizsgálják. Statikus elemzéssel feszültséget, alakváltozást és hőmérséklet-eloszlást számítanak. A dinamikai elemzés saját frekvencia és rezgések meghatározására szolgál. XI. előadás 2008. április 28. 14/22

Elemzési eredmények felhasználása Az elemzési eredményeket a posztprocesszor a tervező számára alkalmas formában szemlélteti. További feldolgozásra alkalmas adatállomány. Összehasonlítás a megengedhető értékekkel. Grafikus módszert alkalmazzák, amely esetében az alakon eltérő színekkel jelölik a vizsgált jellemzõ értékének meghatározott tartományait. Az elemzés eredménye táblázat alakjában. Az alak változásait animációval lehet szemléletesen bemutatni. XI. előadás 2008. április 28. 15/22

Feszültség vizsgálata kapcsolódó testeken Forrás: www.catia.com XI. előadás 2008. április 28. 16/22

Elmozdulás elemzése Forrás: www.catia.com XI. előadás 2008. április 28. 17/22

Hőmérséklet elemzése Forrás: www.catia.com XI. előadás 2008. április 28. 18/22

Dinamikai vizsgálat Forrás: www.catia.com XI. előadás 2008. április 28. 19/22

Színskála alkalmazása Forrás: www.catia.com XI. előadás 2008. április 28. 20/22

A véges elemeken alapuló elemzés aktív alkalmazása. Javasolt tervezési paramétereknek megfelelő alak elemzése helyett a tervezési paramétereket javasol, elemzés útján. A tervező előírásai (az alakoptimálás feltételrendszere): Optimalizálandó tervezési paraméterek v Alakoptimalizálás d a b a b c Tervezési korlátok (megengedhető értékek): Tervezési paraméterek megengedhető tartományai, Anyagban ébredő igénybevétel, elmozdulás, sajátfrekvencia. Tervezési célok: Teljesítményt meghatározó paraméterek minimális, maximális vagy optimális értéke, Az alkatrész minimális tömege. Igénybevétel és deformáció maximális megengedhető értékének kihasználása. Az alakoptimáló eljárás tervezési paraméter értékeket javasol, tervezési céloknak megfelelően, tervezési korlátok betartásával. XI. előadás 2008. április 28. 21/22

Köszönöm a figyelmet! XI. előadás 2008. április 28. 22/22