1. Az első magyarországi THz-es laboratórium felépítése

Hasonló dokumentumok
PÉCSI TUDOMÁNYEGYETEM. Impulzushossz és hőmérséklet hatásai nagyenergiájú lítium-niobát alapú terahertzes forrásokra.

Nagyenergiájú terahertzes impulzusok előállítása és alkalmazása (az ELI-ALPS-ban) Lehetőségek és kihívások

Terahertzes óriásimpulzusok az ELI számára

Válasz Dr. Dzsotjan Gagik bírálatára

PÉCSI TUDOMÁNYEGYETEM. Extrém nagy hatásfokú félvezető anyagú terahertzes források

Válasz Dr. Richter Péter bírálatára

alkalmazásaik MTA PTE Nagyintenzitású Terahertzes Kutatócsoport, Pécs 2 Pécsi Tudományegyetem, Fizikai Intézet, Pécs 3

PÉCSI TUDOMÁNYEGYETEM. Oxidkristályok lineáris terahertzes spektroszkópiai vizsgálata. Unferdorben Márta

A projekt eredetileg kért időtartama: 2002 február december 31. Az időtartam meghosszabbításra került december 31-ig.

PÉCSI TUDOMÁNYEGYETEM. Oxidkristályok lineáris terahertzes. spektroszkópiai vizsgálata. Unferdorben Márta

Kutatóegyetemi Kiválósági Központ 1. Szuperlézer alprogram: lézerek fejlesztése, alkalmazásai felkészülés az ELI-re Dr. Varjú Katalin egyetemi docens

PÉCSI TUDOMÁNYEGYETEM. Ultrarövid fényimpulzusok előállítása az infravörös és az extrém ultraibolya tartományon. Tóth György. Dr.

Lézerek. Extreme Light Infrastructure. Készítette : Éles Bálint

Képalkotás és spektroszkópia THz-es sugárzással: a Csillagászattól az orvosi alkalmazásokig

A femtoszekundumos lézerektől az attoszekundumos fizikáig

Dept of Experimental Physics. fényforrásai. Fülöp József e mail: fulop@fizika.ttk.pte.hu. MAFIHE Téli Iskola, Szeged, február 3.

Lézerek. A lézerműködés feltételei. Lézerek osztályozása. Folytonos lézerek (He-Ne) Impulzus üzemű lézerek (Nd-YAG, Ti:Sa) Ultrarövid impulzusok

PÉCSI TUDOMÁNYEGYETEM. Kontaktrácson alapuló nagyenergiájú terahertzes impulzusforrások fejlesztése. Ollmann Zoltán

ATTOSZEKUNDUMOS IMPULZUSOK

Attoszekundumos impulzusok keltése és alkalmazásai

Femtoszekundumos felületi plazmonok által keltett elektronnyalábok vizsgálata

A lézer alapjairól (az iskolában)

Koherens lézerspektroszkópia adalékolt optikai egykristályokban

Anyagi tulajdonságok meghatározása spektrálisan

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről

Az ELI projekt ( szuperlézer ) Dombi Péter

X-FROG, GRENOUILLE. 11. előadás. Ágazati Á felkészítés a hazai ELI projekttel összefüggő ő képzési é és K+F feladatokra"

Rövid impulzusok vizsgálata autokorrelátorral

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Az elektromágneses színkép és egyes tartományai

Műszeres analitika II. (TKBE0532)

Kvantumos jelenségek lézertérben

Kutatási beszámoló február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése

Atomok és fény kölcsönhatása a femto- és attoszekundumos időskálán

SZAKDOLGOZATI TÉMÁK 2017/2018. tanév

DIELEKTROMOS JELLEMZÔK MEGHATÁROZÁSA A THZ-ES FREKVENCIATARTOMÁNYBAN

Sugárzások kölcsönhatása az anyaggal

Theory hungarian (Hungary)

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék

Röntgendiagnosztikai alapok

Bordács Sándor doktorjelölt. anyagtudományban. nyban. Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano

Munkagázok hatása a hegesztési technológiára és a hegesztési kötésre a CO 2 és a szilárdtest lézersugaras hegesztéseknél

Atomfizika. Fizika kurzus Dr. Seres István

Femtoszekundumos optikai elrendezések modellezése. Kozma Ida Zsuzsanna

Ultrarövid lézerimpulzusban jelenlevő terjedési irány és fázisfront szögdiszperzió mérése

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése

Az elektromágneses hullámok

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez

PÉCSI TUDOMÁNYEGYETEM. Nanométeres relativisztikus elektroncsomó létrehozása lézeres energia modulációval. Tibai Zoltán

A hőmérsékleti sugárzás

Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

Nemlineáris és femtoszekundumos optika Szakmai záróbeszámoló OTKA K 47078

Szinkrotronspektroszkópiák május 14.

Abszorpciós spektroszkópia

Modern Fizika Labor. 17. Folyadékkristályok

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak

Hangfrekvenciás mechanikai rezgések vizsgálata

Magasrendű felharmonikus- és attoszekundumos impulzuskeltés makroszkopikus vizsgálata

Döntött impulzusfrontú gerjesztésen alapuló terahertzes impulzusforrások optimalizálása

DIPLOMAMUNKA TÉMÁK 2017/2018. tanév

Modern Fizika Labor Fizika BSC

Abszorpciós fotometria

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?

Magspektroszkópiai gyakorlatok

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz november 19.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia március 18.

Nemlineáris optika és spektroszkópia a távoli infravörös (THz) tartományon

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)

Hőmérsékleti sugárzás

A fény mint elektromágneses hullám és mint fényrészecske

9. Fotoelektron-spektroszkópia

Abszorpciós fotometria

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:

8. előadás Ultrarövid impulzusok mérése - autokorreláció

Hang terjedési sebességének meghatározása állóhullámok vizsgálata Kundt csőben

14. Előadás Döntött impulzusfrontú THz gerjesztési elrendezés optimalizálása

1. Az üregsugárzás törvényei

CSAPADÉK ÉS TALAJVÍZSZINT ÉRTÉKEK SPEKTRÁLIS ELEMZÉSE A MEZŐKERESZTES-I ADATOK ALAPJÁN*

Optikai mérési módszerek

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet

A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA JAVÍTÁSI ÚTMUTATÓ. Pohár rezonanciája

Modern fizika laboratórium

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia

Modern fizika laboratórium

Ultrarövid impulzusok erősítése következő generációs titán-zafír lézerrendszerekben

Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére

Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében?

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.

Terahertz spektroszkópiai mérések

Fényérzékeny amorf nanokompozitok: technológia és alkalmazásuk a fotonikában. Csarnovics István

RÖVID ÚTMUTATÓ A FELÜLETI ÉRDESSÉG MÉRÉSÉHEZ

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz

Az áramlási citométer és sejtszorter felépítése és működése, diagnosztikai alkalmazásai

A II. kategória Fizika OKTV mérési feladatainak megoldása

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia

Projektfeladatok 2014, tavaszi félév

Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés.

Átírás:

A munkaterv célkitűzései Beszámoló a 7611 sz. OTKA projekt kutatási eredményeiről 1. Felépíteni az első magyarországi THz-es laboratóriumot. 2. Tovább növelni a THz-es impulzusok energiáját. 3. Nemlineáris THz-es spektroszkópia különböző mintákon. Ferroelektromos kristályok rácspotenciál anharmonikusságának kísérleti meghatározása. Megvizsgálni mi okozza az átalakítási hatásfok nagy pumpáló energiáknál megfigyelt csökkenését. 4. Közeltér THz-es optikai kísérletek tervezése, előkísérletek végzése. 5. Különböző bakterio-rodopszin mutánsok által kibocsátott THz-es sugárzás időbeli lefutásának pontos meghatározása. Eltérés az eredeti célkitűzésektől A munkaterv arra épült, hogy a kutatási időszak elején sikerül létrehoznunk Magyarország első terahertzes laboratóriumát, de ez csak a kutatási időszak végére sikerült. Emiatt az erre épülő kísérleteket nem tudtuk elvégezni. A csúszást nagy részben a beszerzések elhúzódása okozta. A tervezéskor egy saját építésű pumpáló lézerrendszerben gondolkodtunk. A kutatás megkezdésére azonban a PTE elnyert egy nagy összegű infrastruktúrafejlesztő pályázatot. Ebből rendelkezésünkre állt elegendő összeg egy kereskedelmi forgalomban kapható megfelelő pumpáló lézer (Pharos) beszerzésére. Megkezdtük ezt a beszerzést, és kutatói időés költségtakarékosság miatt kevésbé intenzíven folytattuk a saját építésű lézer megvalósítását. A Pharos közbeszerzési eljárása viszont sajnos másfél évet késett. Jelentős eltérés volt pozitív irányban is. Egyrészt a tervezettnél is nagyobb energiájú (világrekord) THz-es impulzusokat sikerült előállítanunk. Másrészt, az extrém nagyenergiájú THz-es impulzusok eddig nem ismert alkalmazási lehetőségeit vizsgáltuk modellszámításokkal. A következőkben bemutatjuk az eredeti munkaterv megvalósult két első célkitűzésével kapcsolatos eredményeinket, majd (a 3. és 4. pontban) az extrém nagyenergiájú THz-es impulzusok eddig nem ismert/vizsgált két alkalmazási lehetőségére vonatkozó eredményeket mutatjuk be. 1. Az első magyarországi THz-es laboratórium felépítése A pályázat keretében elsődleges célunk volt egy olyan THz-es laboratórium kiépítése, ahol világszínvonalú kutatások végezhetők. Általában a THz-es tudományterület, de kifejezetten a nagyintenzitású ultragyors THz-es források utóbbi néhány évben tapasztalható gyors fejlődése miatt ez µj nagyságrendű THz energiát követel. Ehhez szükséges, hogy a laboratóriumban rendelkezésre álljon megfelelő femtoszekundumos pumpáló lézer, legalább 1 mj impulzusenergiával. Diagnosztikai oldalról a fő követelmény egy időtartománybeli THz-es mintavételező berendezés, amely a THz-es impulzusok időfüggő elektromos térerősségének közvetlen mérését teszi lehetővé. Beruházási szempontból a pumpáló lézer a legjelentősebb tétel (5 1 millió Ft). A pályázat futamideje alatt lehetőségünk nyílt más forrásból egy kommerciális pumpáló lézer beszerzésére (211. novemberi szállítással), amelynek fő paraméterei a következők: 1 mj impulzusenergia, 18 fs impulzushossz, 135 nm központi hullámhossz, 1 khz ismétlési frekvencia. Ehhez felépítettünk egy döntött impulzusfrontú gerjesztésen alapuló, LiNbO 3

kristályt használó THz forrást, amelynek komponenseit jelentős részben a pályázatból szereztük be. A forrás,6 µj energiájú ultrarövid THz-es impulzusokat szolgáltat, az impulzusenergiát a pályázatból beszerezett THz teljesítménymérővel mértünk. Összeállítottuk az időtartománybeli THz-es mintavételező berendezést, jelenleg ennek tesztelését és az első spektroszkópiai mérések előkészítését végezzük. Folyamatban van egy másik (az eredetileg tervezett) pumpáló lézerforrás építése is, amely 3 1 mj energiájú impulzusok előállítására lesz képes. Az 1.6 µm hullámhosszon működő femtoszekundumos optikai parametrikus erősítő rendszer teljes egészében saját fejlesztés. A parametrikus erősítő pumpáláshoz elkészült egy 1.6 µm hullámhosszon működő regeneratív erősítő; jelenleg ennek optimalizálását végezzük. Elkészült az impulzusnyújtó, a kompresszor összeállításán dolgozunk. A pumpáló és az erősítendő impulzusok szinkronizálása megoldott. A regeneratív erősítő optimalizálásának befejezése után a közeljövőben az első parametrikus erősítőfokozat megépítése következhet. A femtoszekundumos impulzusok időbeli jellemzésére másodrendű autokorrelátort építettünk. Összefoglalva, felépítettük az első magyarországi THz-es laboratóriumot, benne egy nagyintenzitású THz forrással és egy elektro-optikai mintavételező berendezéssel. Laboratóriumunk a közeljövőben külső felhasználók számára is hozzáférhető lesz, ahol spektroszkópiai mérések széles skáláját lehet majd elvégezni, beleértve THz pumpa THz próba méréseket is. 1. ábra. Laboratóriumunk THz forrása és az elektro-optikai mintavételező berendezés.

2. A THz-es impulzusok energiájának további növelése Ultrarövid lézerimpulzusok optikai egyenirányítása [1] egyszerű és hatékony módszer nagyenergiájú THz-es impulzusok előállítására. Hasonlóan más nemlineáris optikai folyamatokhoz, optikai egyenirányításnál is kell fázisillesztési feltételnek teljesülnie. Ez a pumpáló impulzus csoportsebességének és a THz-es sugárzás fázissebességének egyenlőségét írja elő. A legtöbb kísérletben használt Ti:zafír lézerek 8 nm-es hullámhosszán ez a feltétel ZnTe-ban teljesül [2]. ZnTe-ot használva az eddig elért legnagyobb THz energia 1,5 μj volt [3]. Itt azonban a pumpa kétfotonos abszorpciója révén szabad töltéshordozók keletkeznek, amelyek a THz tartományban jelentős abszorpciót okoznak, ezzel limitálják a hasznos pumpáló intenzitást és az elérhető hatásfokot [3,4]. A LiNbO 3 (LN) jóval nagyobb nemlineáris együtthatóval rendelkezik mint a ZnTe. Ráadásul a nagyobb tiltott sávszélessége miatt a többfotonos abszorpció korlátozó hatása csak sokkal nagyobb intenzitásoknál lép fel. Ezért ez az anyag alkalmasabb optikai egyenirányításra. LN-ban azonban nem lehetséges kollineáris fázisillesztés, mert az optikai csoportsebesség több mint kétszerese a THz fázissebességnek [5]. A döntött impulzusfrontú gerjesztést mi javasoltuk 22-ben LN-ban sebességillesztés létrehozására THz keltéshez [6]. Ez a technika a 27 évi közleményünk megjelenése [7] után kezdett elterjedni, és felhasználásával mások az utóbbi időben 5 μj-os THz impulzusokat állítottak elő [8]. A LN-ban való THz keltés paramétereinek optimalizálása A jelenleg elérhetőnél nagyobb THz energia és térerősség számos új alkalmazás szempontjából fontos. Ennek a célnak az eléréséhez a numerikus számolások segítségével megvizsgáltuk LN esetében a kimenő THz térerősség függését a pumpáló impulzushossztól és a LN kristály hőmérsékletétől. A számolások alapjául szolgáló modell leírása megtalálható a [9,1] munkákban. A 2(a) ábrán a számított THz spektrális intenzitás-eloszlás csúcsához tartozó THz frekvencia látható a transzformáció-limitált pumpáló impulzushossz függvényében, a LN kristály hőmérsékletének három különböző értékére. Mivel az egyes THz spektrális komponensek a pumpálás két-két spektrális komponensének frekvenciakülönbségeiként állnak elő, az elérhető THz frekvenciákat meghatározza a pumpálás spektrális szélessége. Így a növekvő pumpáló impulzushosszal csökkenő sávszélesség a csúcs THz frekvencia csökkenésével jár. csúcs frekvencia, Ω [THz] 1.5 (a) 1..5 csúcs térerõsség [MV/cm] 3. 2.5 2. 1.5 1..5 2.8 MV/cm 2.3 MV/cm 1. MV/cm 24 kv/cm. 2. ábra. THz spektrális intenzitás-eloszlás csúcsához tartozó THz frekvencia (a) és a THz-es impulzusok elektromos térerősségének maximuma a LN kristály kimenetén (b) a transzformáció-limitált pumpáló impulzushossz függvényében különböző hőmérsékletekre ([9] alapján). (b)

A kimenő THz térerősség-spektrum Fourier-transzformációjával kapott időbeli impulzusalakok csúcs-térerősségeit mutatja a 2(b) ábra a transzformáció-limitált pumpáló impulzushossz függvényében különböző hőmérsékletekre. Az ábrán kereszttel jelölt 1 fs és értékekhez közeli paramétereket alkalmaztak számos eddigi kísérletben, ahol Ti:zafír lézereket használtak pumpáló forrásként [11 13]. Ilyen kísérleti feltételekre a számításaink 24 kv/cm csúcsértéket adnak az elektromos térerősségre, ami jól közelíti a kísérleti értéket. Látható, hogy a pumpáló impulzushossz értékének növelése jelentősen növeli az elérhető térerősség-maximumot. A szokásos 1 fs helyett 6 fs-os impulzusokkal pumpálva a kimenő THz csúcs-térerősség több mint négyszeresre, az extrém nagy 1, MV/cm értékre növelhető. Megjegyezzük, hogy ezzel párhuzamosan a THz spektrum intenzitáscsúcsához tartozó frekvencia 1,1 THz-ről,4 THz-re csökken (2(a) ábra). A THz térerősség növekedése részben az alacsonyabb frekvencia miatti kisebb THz abszorpció, részben pedig a hosszabb pumpáló impulzushosszból adódó hosszabb effektív THz keltési hossz következménye [9]. (Az effektív hossz definíciója, és e hossz impulzushossztól való függésének magyarázata megtalálható a [9] cikkünkben.) A kristály alacsony hőmérsékletre hűtésével a THz abszorpció jelentősen tovább csökkenthető. Így pl. 5 fs-os pumpálás esetén hőmérsékleten a térerősség csúcsértéke 2,8 MV/cm, ami több mint egy nagyságrenddel nagyobb a 1 fs, -hez tartozó értéknél (2(b) ábra). Extrém nagy energiák és térerősségek nagy felületű forrásokból A THz keltés hatásfokának függését a pumpáló impulzushossztól a 3(a) ábrán láthatjuk. 1 fs és esetén a hatásfok,31%, ami 2%-ra nő 5 fs-os pumpálást használva. A kristályt -re hűtve és az optimális 4 fs-os impulzushosszat használva a hatásfok 13%. Az általunk javasolt kontaktrácsos elrendezés [14] a leképező optika kiküszöbölésével lehetővé teszi az eddigieknél lényegesen nagyobb felület pumpálását, ezzel jelentősen megnövelve az elérhető THz energiát. A 3(b) ábra az elérhető THz energiát mutatja a pumpáló impulzushossz függvényében, különböző hőmérsékletekre. A pumpált felület átmérője 5 cm volt. 2 mj energiájú, 5 fs-os pumpáló impulzusokat használva a kimenő THz energia 23 mj hőmérsékleten, 1 cm-es kristályhossz esetén. Ilyen extrém nagy energiájú THz-es impulzusok fókuszálásával az elektromos térerősség csúcsértéke elérheti a 1 MV/cm értéket, ami két nagyságrenddel nagyobb, mint az 1 THz körüli frekvenciatartományban jelenleg elérhető. hatásfok [%] 1 5 (a) THz energia [mj] 25 2 15 1 5 (b) 3. ábra. A THz keltés hatásfoka (a) és az 5 cm átmérőjű pumpált felület esetében elérhető THz energia (b) a pumpáló impulzushossz függvényében különböző hőmérsékletekre ([9] alapján).

Kísérleti eredmények Az optimális (~5 fs-os) hosszúságú pumpáló impulzusok esetére az eddigieknél jelentősen nagyobb hatásfokot jelző számításaink ellenőrzésére elvégeztünk egy kísérletet a garchingi Kvantumoptikai Max Planck Intézet 13 nm hullámhosszú, 1,3 ps impulzushosszúságú (Fourier-limit: 6 fs) lézerével, szobahőmérsékletű LN kristályt használva [15]. Noha a pumpáló impulzusok az optimálisnál hosszabbak voltak, a kísérlet meggyőzően bizonyította a korábbiaknál hosszabb impulzushossz előnyét. A 4. ábrán látható a mért THz energia a pumpáló energia függvényében. 5 mj pumpáló energiával sikerült 125 μj energiájú THz-es impulzusokat előállítani. Ez a THz energia 2,5-szer nagyobb, mint az eddig publikált legnagyobb THz energia, ami 5 μj volt, 1 fs-os pumpálást használva [8]. Az általunk elért,25% hatásfok ötször nagyobb, mint a [8] hivatkozásban leírt érték. A THz energia csökkenése a legnagyobb pumpáló energia esetében (4. ábra) a LN-ban fellépő négyfotonos abszorpciónak tulajdonítható. 1 experiment calculation THz energy [μj] 1 1 1 1 1 pump pulse energy [mj] 4. ábra. Mért és számított THz energia a pumpáló energia függvényében. Összefoglalás Optimális tervezési paramétereket adtunk meg a leképezést használó döntött impulzusfrontú THz gerjesztő elrendezésre [9]. Kimutattuk, hogy a szokásos 8 nm-nél hosszabb pumpáló hullámhosszakat, valamint döntött impulzusfrontot használva félvezető anyagok (pl. ZnTe, GaP) alkalmasak a LiNbO 3 -hoz hasonló, vagy azt meghaladó THz keltési hatásfok elérésére [9]. Numerikus számítások segítségével megmutattuk, hogy optikai egyenirányítással LN-ban döntött impulzusfrontú gerjesztést használva az elérhető THz energia és térerősség jelentősen (egy, ill. két nagyságrenddel) növelhető, egészen a 1 mj, 1 MV/cm szintig [1]. A THzkeltés hatásfokának növekedése három fő tényezőnek köszönhető: (i) optimális, ~5 fs-os pumpáló impulzushossz használata; (ii) THz abszorpció csökkentése a LN kristály hűtésével; (iii) nagy pumpáló energia és pumpált felület használata, amit főleg a kontaktrácsos impulzusfront-döntő elrendezés tesz lehetővé [14]. Kísérletünkben előállítottuk az eddigi legnagyobb, 125 μj energiájú THz-es impulzusokat, az eddigi legnagyobb,,25%-os hatásfokkal [15]. 3. THz-es impulzussal segített attoszekundumos impulzus előállítás Az ilyen extrém nagy, több 1 MV/cm térerősséggel rendelkező THz-es impulzusok számos új alkalmazási lehetőséget kínálnak. Például, ha a közeli infravörös (IR) pumpáló lézerimpulzus mellett nagy csúcs-térerősséggel rendelkező THz-es impulzust is alkalmazunk attoszekundumos (as) impulzusok gáz-jetben létrehozott magas harmonikuskeltéssel történő előállításakor, akkor a THz-es impulzus az IR impulzus időtartama alatt eltolja a térerősséget és ezzel megbontja az IR impulzus szimmetriáját. Emiatt egy IR periódusonként nem

keletkezik a pozitív és negatív térerősség csúcshoz köthető két as impulzus, hanem csak egy. (A magas harmonikus spektrum páros és páratlan felharmonikust is fog tartalmazni.) További fontos következmény, hogy a levágási frekvencia jelentős mértékben, 1 MV/cm THz-es tér esetén akár 1 %-al is megnőhet [16]. A magas harmonikus spektrum megfelelő részének kivágásával többciklusú (12 15 fs időtartamú) IR impulzusokkal is lehet egyes as impulzust kelteni a THz-es impulzus segítségével [16]. C. Serrat és J. Biegert modellszámításai szerint [17] gáz-jetben történő magas-harmonikus keltés esetén a gerjesztett térfogat intenzív CO 2 lézerrel történő keresztirányú, térben periodikus megvilágításával kvázi-fázisillesztés érhető el. Észrevettük, hogy a javasolt eljárás technikai okokból valójában nem megvalósítható. Ezzel szemben CO 2 lézer helyett megfelelő frekvenciájú THz-es impulzusokat használva technikailag kivitelezhető kvázi-fázisillesztő elrendezést lehet megvalósítani. Szegedi és kolozsvári együttműködő partnereink 3D nemadiabatikus modellszámításai szerint már 5MV/cm THz-es térerősség is elég ahhoz, hogy a levágási frekvencia közelében a harmonikusok intenzitása százszorosra növekedjen [18]. További háromszoros növekedés érhető el akkor, ha a THz-es impulzusok megfelelő csörppel rendelkeznek [18]. 4. Töltött részecskék manipulációja extrém THz-es impulzusokkal Az extrém nagy térerősségű THz-es impulzusok további alkalmazási lehetősége lehet relativisztikus elektroncsomagok, vagy lézerplazmával keltett protoncsomagok manipulálása, például gyors eltérítése, időbeli fókuszálása, gyorsítása, monokromatizálása. Elkezdtük e lehetőségek feltárást részecske részecske kölcsönhatás típusú numerikus módszerek segítségével. Y' [mm] s=833mm 3 2 1-1 -2-3 -6-5 -4-3 -2-1 1 Y' [mm] s=731mm 1-1 -2.2-2.15-2.1 s=833mm s=935mm -2.45-2.4-2.35-2.75-2.7-2.65 5. ábra. Elektroncsomag alakja THz-es optikai kapun történő áthaladás után a csomag nyugalmi koordinátarendszerében. E THz = 1 MV/cm, Q cs =1 fc, γ=5, σ y =σ z =4μm, σ x =8μm. A fókuszált csomag hossza a laboratóriumi rendszerben Δx 1 nm. Az optikai kaputól mért laborbeli távolságok az ábrák felett vannak feltüntetve. Kaplan és Pokrovsky 29-ben javasolták az optikai kaput elektroncsomagok időbeli fókuszálására [19]. Optikai kapun itt két, egymással szemben haladó lefókuszált lézernyalábbal előállított állóhullámot értünk. Az elektroncsomag haladjon az állóhullám azon síkjában, ahol a térerősségnek maximuma van, és használjunk olyan polarizációt, hogy az elektromos tér az elektronok haladási irányában oszcillál. Ilyen elrendezésnél az elektroncsomag különböző részeire az állóhullám más és más átlagos fázisú tere fog hatni. Az elektroncsomag egy részét gyorsítani, más részét viszont lassítani fogja az optikai kapu. Az elektroncsomag és az optikai kaput létrehozó lézerimpulzus megfelelő relatív késleltetése esetén a csomag eleje fog lassulni, a vége pedig gyorsulni. Ilyen esetben megfelelő repülési hossz alatt az elektroncsomag hosszirányban igen jelentősen összenyomódik, időben

fókuszálódik [19]. A gyakorlatban előállított elektronnyalábok legalább néhány mikrométer, de tipikusan néhány 1 mikrométer méretűek. Emiatt nem lehet -az eredeti elképzelésnek megfelelően-, 1 mikrométer hullámhosszú lézereket használni. A THz-es impulzusok több száz mikrométer hullámhossza viszont tökéletesen illeszkedik a tipikus elektroncsomag mérethez. Numerikus számolásaink szerint 1 MV/cm térerősségű THz-es impulzusokkal megvalósítható THz-es optikai kapu [2]. Az 5. ábra egy γ = 5 relativisztikus faktorral rendelkező Q cs = 1 fc össztöltésű elektroncsomag térbeli alakját mutatja az optikai kaputól különböző távolságra. Látható, hogy az optikai kaputól 833 mm-re hosszirányban fókuszálódik a csomag. A repülés irányában a mérete nem nagyobb, mint 1 nm. (Az ábrán a csomag saját rendszerében vannak ábrázolva az elektronok. A labor rendszerben a hosszirányú méret 5-szer kisebb.) Egyciklusú, megfelelő frekvenciájú THz-es impulzusoknak az így fókuszált elektroncsomagon történő (Thomson) szórásával várhatóan elő lehet állítani egyciklusú EUV MIR impulzusokat. Ennek (elsősorban a keletkező impulzus energiájának) a további vizsgálata szükséges. Ha megvalósítható, és gyakorlati alkalmazásokhoz megfelelő az energia, akkor ennek nagyon nagy jelentősége van (például az ELI-ALPS szempontjából is). Az extrém nagy térerősségű THz-es impulzusok további alkalmazását jelentheti rövid periódusú undulátorként történő alkalmazása [2,21]. Irodalomjegyzék [1] B. B. Hu, X.-C. Zhang, D. H. Auston, Appl. Phys. Lett. 56, 56 (199) [2] T. Löffler, T. Hahn, M. Thomson, F. Jacob, H. G. Roskos, Opt. Express 15, 5353 (25) [3] F. Blanchard, L. Razzari, H.-C. Bandulet, G. Sharma, R. Morandotti, J.-C. Kieffer, T. Ozaki, M. Ried, H. F. Tiedje, H. K. Haugen, F. Hegmann, Opt. Express 15, 13212 (27) [4] M.C. Hoffmann, K.-L. Yeh, J. Hebling, K. A. Nelson, Opt. Express 15, 1176 (27) [5] J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, K. A. Nelson, J. Opt. Soc. Am. B 25, 6 (28) [6] J. Hebling, G. Almási, I. Z. Kozma, J. Kuhl, Opt. Express 1, 1161 (22) [7] K.-L. Yeh, M. C. Hoffmann, J. Hebling, K. A. Nelson, Appl. Phys. Lett. 9, 171121 (27) [8] A. G. Stepanov, S. Henin, Y. Petit, L. Bonacina, J. Kasparian, J. P. Wolf, Appl. Phys. B 11, 11 (21) [9] J. A. Fülöp, L. Pálfalvi, G. Almási, J. Hebling, Opt. Express 18, 12311 (21) [1] J. A. Fülöp, L. Pálfalvi, M. C. Hoffmann, J. Hebling, Opt. Express 19, 159 (211) [11] A. G. Stepanov, L. Bonacina, S. V. Chekalin, J.-P. Wolf, Opt. Lett. 33, 2497 (28) [12] K.-L. Yeh, J. Hebling, M. C. Hoffmann, K. A. Nelson, Opt. Commun. 281, 3567 (28) [13] M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, K. A. Nelson, Phys. Rev. B 79, 16121 (29) [14] L. Pálfalvi, J. A. Fülöp, G. Almási, J. Hebling, Appl. Phys. Lett. 92, 17117 (28) [15] J.A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, J. Hebling, Opt. Lett. 37, 557 (212) [16] E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, Gy. Farkas, J. Hebling, V. Tosa, K. Varjú, Phys. Rev. A 84, 2386 (211) [17] C. Serrat, J. Biegert, Phys. Rev. Lett. 14, 7391 (21) [18] K. Kovács, E. Balogh, J. Hebling, V. Tosa, K. Varjú, Phys. Rev. Lett. submitted (212) [19] A. E. Kaplan, A. L. Pokrovsky, Optics Express 17, 6194 (29) [2] arxiv.org/abs/119.6852 (211) [21] Rövid periódusú undulátor Magyar szabadalmi bejelentés: P11452 (211)