rendszerek egy olyan speciális csoportját

Hasonló dokumentumok
MIKOVINY SÁMUEL TÉRINFORMATIKAI EMLÉKVERSENY

TÉRINFORMATIKAI MODELLEZÉS TÉRINFORMATIKAI MODELLEZÉS ALAPFOGALMAI A VALÓSÁG MODELLEZÉSE

Mezők/oszlopok: Az egyes leíró adat kategóriákat mutatják.

ERDŐFELTÁRÁS ÉS VÍZGAZDÁLKODÁS

Erdészeti útügyi információs rendszerek

DIGITÁLIS TEREPMODELL A TÁJRENDEZÉSBEN

Adatmodellezés. 1. Fogalmi modell

A DIGITÁLIS TÉRKÉP ADATAINAK ELŐÁLLÍTÁSA, ADATNYERÉSI ELJÁRÁSOK

A FÖLDMINŐSÍTÉS GEOMETRIAI ALAPJAI

Környezeti informatika

A térinformatika lehetőségei a földrajzórán

Ingatlan-nyilvántartási megoldás a magyar állami erdőgazdálkodás számára március 18. GIS open 2010 Székesfehérvár Nyull Balázs DigiTerra Kft.

Földfelszín modellezés

Térinformatika. j informáci. ciós s rendszerek funkciói. Kereső nyelvek (Query Languages) Az adatok feldolgozását (leválogat

Intelligens közlekedési rendszerek (ITS)

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.

Az ErdaGIS térinformatikai keretrendszer

Térinformatika 2. A valós világ modellezésének folyamata Végső, Ferenc

PTE PMMF Közmű- Geodéziai Tanszék

DET Digitális Erdészeti Térkép

A. ÁLTALÁNOS BEVEZETŐ... A 1 A.I. A FELHASZNÁLÓI KÉZIKÖNYV CÉLJA... A 1 A.II. A FELHASZNÁLÓI KÉZIKÖNYV HASZNÁLATA... A 1 A.III.

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

A FIR-ek alkotóelemei: < hardver (bemeneti, kimeneti eszközök és a számítógép), < szoftver (ARC/INFO, ArcView, MapInfo), < adatok, < felhasználók.

PTE PMMIK Infrastruktúra és Mérnöki Geoinformatika Tanszék

MS ACCESS 2010 ADATBÁZIS-KEZELÉS ELMÉLET SZE INFORMATIKAI KÉPZÉS 1

QGIS. Tematikus szemi-webinárium Térinformatika. Móricz Norbert. Nemzeti Agrárkutatási és Innovációs Központ Erdészeti Tudományos Intézet (NAIK ERTI)

Adatmodellezés CityGML használatával

Csoportosítás. Térinformatikai műveletek, elemzések. Csoportosítás. Csoportosítás

A Beregszászi járás természeti erőforrásainak turisztikai szempontú kvantitatív értékelése

Adatbázis rendszerek. dr. Siki Zoltán

Adatbázis-kezelés az Excel 2013-ban

Autodesk Topobase gyakorlati alkalmazások Magyarországon

Települési tetőkataszterek létrehozása a hasznosítható napenergia potenciál meghatározására a Bódva-völgyében különböző térinformatikai módszerekkel

Térinformatika 3. Vektoros adatszerkezetek Végső, Ferenc

Láthatósági kérdések

GÁBOR DÉNES FŐISKOLA MŰSZAKI INFORMATIKA ALKALMAZÁSFEJLESZTÉS SZAKIRÁNY DIPLOMADOLGOZAT

QGIS gyakorló. --tulajdonságok--stílus fül--széthúzás a terjedelemre).

Intelligens közlekedési rendszerek (ITS)

KÉP VAGY TÉRKÉP DR. PLIHÁL KATALIN ORSZÁGOS SZÉCHÉNYI KÖNYVTÁR

Változás jegyzék VERZIÓ: ÚJ FEJLESZTÉSEK. Hivatkozás # Leírás. Verzió dátuma:

Adatbázisok. és s GIS műveletek pontossága

Geoshop fejlesztése a FÖMI-nél

3D számítógépes geometria és alakzatrekonstrukció

3D-s számítógépes geometria és alakzatrekonstrukció

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

Hálózatok dokumentálása, törvények, szabályzatok, az egységes közműnyilvántartás utasítás-rendszerének megújítása

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Mélykúti Gábor. Topográfia 9. TOP9 modul. Digitális topográfiai térképezés alapfogalmai

Téradatokkal kapcsolatos elemzések és fejlesztések a FÖMI Térinformatikai Igazgatóságán

A GVOP keretében készült EOTR szelvényezésű, 1: méretarányú topográfiai térkép továbbfejlesztésének irányai

Adatbázis-kezelő rendszerek. dr. Siki Zoltán

TÉRINFORMATIKAI ALKALMAZÁSOK A METEOROLÓGIÁBAN

Kérdés Lista. A Magyarországon alkalmazott rajzlapoknál mekkora az oldalak aránya?

Kerti's Kft. Nagy Bence Vezető termékmenedzser.

Máté: Számítógépes grafika alapjai

QGIS Gyakorló. 1. kép. A vektor réteg (grassland.shp).

Országos Területrendezési Terv térképi mel ékleteinek WMS szolgáltatással történő elérése, Quantum GIS program alkalmazásával Útmutató 2010.

PTE PMMIK Infrastruktúra és Mérnöki Geoinformatika Tanszék

Térinformatikai adatszerkezetek

A tételsor a 12/2013. (III. 29.) NFM rendelet foglalt szakképesítés szakmai és vizsgakövetelménye alapján készült. 2/33

Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc

TÉRINFORMATIKAI ALGORITMUSOK

Digitális Domborzat Modellek (DTM)

Digitális topográfiai adatok többcélú felhasználása

MIKOVINY SÁMUEL TÉRINFORMATIKAI EMLÉKVERSENY

Hálózat hidraulikai modell integrálása a Soproni Vízmű Zrt. térinformatikai rendszerébe

Geoinformációs szolgáltatások

Tantárgy neve. Geomatematika és térinformatika I-II. Meghirdetés féléve 2-3 Kreditpont 2-2 Összóraszám (elm+gyak) 0+2

KATONAI TÉRKÉPÉSZETI ADATBÁZISOK MAGYARORSZÁGON. Dr. Mihalik József (PhD)

Városökológiai vizsgálatok Székesfehérváron TÁMOP B-09/1/KONV


DigiTerra fejlesztési eredmények

2. A VALÓS VILÁG MODELLEZÉSE

RELÁCIÓS ADATBÁZISSÉMÁK. Egyed-kapcsolat modellről átírás

Geoinformatikai rendszerek

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Végső Ferenc. Térinformatika 3. TÉI3 modul. Vektoros adatszerkezetek

TÉRINFORMATIKAI ALGORITMUSOK

A DTA-50 felújítása. Dr. Mihalik József (PhD.)

A Vonallánc készlet parancsai lehetővé teszik vonalláncok és sokszögek rajzolását.

A földmérés szerepe a mérnöki létesítmények teljes életciklusában

Fogalmak: Adatbázis Tábla Adatbázis sorai: Adatbázis oszlopai azonosító mező, egyedi kulcs Lekérdezések Jelentés Adattípusok: Szöveg Feljegyzés Szám

Termék modell. Definíció:

Földmérési és Távérzékelési Intézet

Térinformatikai kihívások a természetvédelem előtt

29/2014. (III. 31.) VM rendelet az állami digitális távérzékelési adatbázisról

ADATBÁZIS-KEZELÉS ALAPOK I.

Rostás Sándor szds. MH GEOSZ Műszaki és információs osztály térképész főtiszt (ov. h.)

MIKOVINY SÁMUEL TÉRINFORMATIKAI EMLÉKVERSENY

ABAP dictionary objektumok SAP adatmodell Táblák kezelése. Az SAP programozása 1. Tarcsi Ádám

Adatbázis, adatbázis-kezelő

5. gyakorlat. Feladatunk az, hogy készítsük el Zamárdi környékének területhasználati a térképét.

Adatbázis rendszerek Definíciók:

Vetési Albert Gimnázium, Veszprém. Didaktikai feladatok. INFORMÁCIÓTECHNOLÓGIAI ALAPISMERETEK (10 óra)

Adatbázisok gyakorlat

FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

A városökológia és talajvédelem térinformatikai modellezési lehetőségei

Szabó József CadMap Kft. 29. Vándorgyűlés július Sopron

Válogatás a BME Általános- és Felsőgeodézia tanszékén Bentley szoftverek felhasználásával készült diplomatervekből

Bányatérkép rétegkiosztás

TÉRINFORMATIKA I. Dr. Kulcsár Balázs egyetemi docens. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés

Átírás:

Geoinformációs rendszer A geoinformációs rends rendszerek a térinformációs rendszerek egy olyan speciális csoportját alkotják, melyek a földdel, mint közvetlen környezetünkkel foglalkoznak foglalkoznak. 1

Geoinformációs rendszer A rendszer használhatóságát alapvetően az abban szereplő adatok mennyisége és minősége határozza meg meg. Az információs rendszer kialakításának tervezésekor először a tárolandó-feldolgozandó-megjelenítendő adatok körét kell tisztázni, a további építőelemek kiválasztása csak ezután következhet! A szoftverkörnyezet kiválasztásakor elsődleges szempont, hogy az a megjeleníteni kívánt adatokat kezelni tudja tudja, figyelembe véve a tárolandó információk mennyiségét is 2

Geoinformációs rendszer A hardverelemek kiválasztása célszerűen az előző lépéseket követően történik meg, hiszen így az elhamarkodottan beszerzett hardver eszközök esetleges gyengeségei nem korlátozzák az ideális szoftver megfelelő alkalmazhatóságát. 3

Modellalkotás A geoinformatikai rendszerekben a valós világot annak modellezésével ábrázoljuk ábrázoljuk. A geoinformációs rendszerekben a helyzeti adatok ábrázolásának (tárolásának) két nagy csoportját különböztetjük meg meg, ezek a szabályos (raszter) és szabálytalan (vektor) geometriai modellek modellek. 4

Raszteres adatmodell A raszteres modellek a területet szabályos geometriai elemekre osztják (pixelek).. (pixelek) Geoinformatikai rendszerekben a raszteres adatmodellnek általában a négyzet az alap alapja, ami jól igazodik a raszteres megjelenítőkhöz is. Az adatmodellt felépítő elemi pixelek egy-egy adott területet fednek le. A pixelek értékeit tematikus kódoknak nevezzük, ezekkel jellemezzük a pixel által lefedett területet területet. A pixelek rácsszerűen, sorokban és oszlopokban helyezkednek el el.. 5

Raszteres adatmodell pixel raszter pixelértékek 15 15 16 14 17 13 11 19 12 15 10 14 sx sy elemi pixel méretei 10 x 13 pixelből felépülő raszter 6

Raszteres adatmodell Az adatmodell az egyes pixelek felsorolásán, valamint a sorok és oszlopok számának megadásán túl olyan lényeges információkat is tartalmaz, amelyek a vizsgált terület vetületi tartalmaz rendszerbe illesztését teszik lehetővé lehetővé. Ezek az úgynevezett georeferencia adatok a pixelek által lefedett terület mérete, és a raszter egy pontjának (pl. bal felső pixel közepe) koordinátái. koordinátái 7

Raszteres adatmodell A raszteres adatmodell nagyon jól használható domborzatmodellezésre, illetve szorosan összefonódott a távérzékelési technológiákkal (műholdképek, légifényképek, ortofotók). Használata abban az esetben indokolt, ha nagy területről egyenletes sűrűségben kívánunk információkat tárolni tárolni. 8

Vektoros adatmodell A vektoros adatmodell esetében a földrajzi objektumok helyzetét szabálytalan geometriai elemekkel írjuk le le. A földrajzi objektumok leírása általában négy geometriai elem segítségével történik. Ezen négy alapelem a pont, vonal, poligon és a térbeli felület felület. A vektoros adatmodell az ábrázolandó objektumok lényegi információit tartalmazza tartalmazza. Egy erdőrészlet esetében annak határvonalát (pontosabban a határvonal töréspontjait), út esetében annak tengelyét stb. 9

Vektoros adatmodell A vektoros adatmodellben megjelenített térképi elemek kezelésére bonyolult algoritmusokat kell használni, továbbá alapvető fontosságú az objektumok szomszédsági viszonyainak korrekt ábrázolása (topológia) (topológia). Ez a vektoros geoinformatikai adatok elemzésében nélkülözhetetlen. 10

Vektoros adatmodell A topológikus adatábrázolás alapegysége a koordinátáival adott pont pont. A vonalakat pontok építik fel fel. A vonalak egymást nem metszik, csak a kitüntetett szerepű pontokban, a csomópontokban kapcsolódnak össze. Minden egyes vonal a síkot két részre osztja osztja. A záródó vonalak területrészeket különítenek el el. 11

Vektoros adatmodell Ha a pont-vonal-terület építkezést követjük, akkor a topológia az egyes építőelemek közötti lépcsőfokot jelenti jelenti. A pont, vonal, poligon vektoros elemek között értelmezett topológiák közül a fontosabbak: területterület -vonal, vonal vonal-terület, vonal vonal-csomópont, csomópontcsomópont -vonal vonal-csomópont csomópont. 12

Vektoros adatmodell A vektoros adatmodellben tárolt geometriai elemekhez attribútumadatokat (szöveges, leíró adatok) rendelünk rendelünk. Az egy objektumhoz rendelt attribútumok csoportját rekordnak rekordnak, az azonos típusú rekordok összességét adattáblának hívjuk. Több adattábla pedig a leíró vagy hívjuk szöveges adatbázist alkotja alkotja. Ennek megfelelően a leíró adatbázis struktúrá struktúrája:: adat>mező>rekord>tábla>adatbázis ja adat>mező>rekord>tábla>adatbázis. 13

Adattábla felépítése ADATTÁBLA ADATREKORDOK ADAT M E Z Ő K Helység Tag Részlet Sopron 1 A Sopron 2 B...... ADATOK 14

Vektoros adatmodell Az adatmezők típusa lehet numerikus, szöveges, dátum, idő, logikai és csatolt objektum (fájlok, képek, hangok, dokumentumok). Az egyes mezőkre, táblákra, adatbázisokra a megfelelő névvel hivatkozhatunk. A rekordokra történő hivatkozás a rekord sorszámával, egyedi azonosítójával vagy valamilyen relációval történik. történik 15

Vektoros adatmodell A térinformatikai adatmodell kettősségét a grafikus (geometriai) és a szöveges (leíró) szegmens adja meg meg. A két adattípus között közvetlen megfeleltetés van, az első geometriához az első leíró rekord kapcsolódik, a másodikhoz a második stb. A térinformatikai adatmodellben a geometriát általában pont, vonallánc és poligonnal tároljuk. A geometriához közvetlenül kapcsolódó tulajdonságokat az elsődleges adattáblában helyezzük el el. 16

A geometriai és leíró adatok kapcsolata Elsődleges adattáblák PONT.TAB Ssz. Ponttípus Pontfelirat 102 103 18 19 Püspök erdő 107 Határkő 108 Határoszlop 109 Határoszlop 110 Határoszlop 111 200 109 18 VONAL.TAB Sopron 103 A 106 2 Sopron 103 C 2 0 Ssz. Jogi határ Erdőhatár 105 Taghatár Taghatár 106 Községhatár 107 Községhatár 108 109 Országhatár Sopron 103 B Sopron 103 ID 2 2 1 Sopron 103 Nyi 2 3 4 5 Sopron 103 A Sopron 103 B Sopron 103 C Sopron 103 ID Sopron 103 Nyi Állami műút Taghatár Gerincvonal Részlethatá Vadg.egység Erdei út rrészlethatá r TERULET.TAB Ssz. Erdőrészlet Vadg.Határ Term.Határ Kapcsolójel Baloldal Jobboldal 0 15 9 0 0 0 0 2 4 3 0 1 5 5 7 További leíró adattáblák Terület Erdőrészlet 3,8 5,2 10,5 2,1 4,1 Sopron 103 A Sopron 103 B Sopron 103 C Sopron 103 ID Sopron 103 Nyi Erdőrészlet Sopron 103 A Sopron 103 B Sopron 103 B Sopron 103 C Sopron 103 C Sopron 103 C Rendeltetés Terület Gazdasági Védelmi Közjóléti nincs nincs 3,8 5,2 10,5 2,1 4,1 Fafaj Elegyarány Fatömeg Ktt B Ktt B LF Ktt 100 60 40 50 30 20 410 160 120 210 130 90 17

Vektoros adatmodell Az adattábla sorai a rekordok, minden geometriához egy rekord tartozik, az oszlopai pedig a tulajdonságok tulajdonságok. A sorok és oszlopok metszésében tároljuk a tulajdonságértékeket, leggyakrabban számokat, szöveges értékeket, dátumot, de képeket vagy egyéb típusú adatokat is elhelyezhetünk bennük. További adatokat is tárolhatunk más adattáblákban, amelyeket a kapcsoló mezőkkel az elsődleges adattáblához kapcsolhatunk kapcsolhatunk. 18

Relációs adatbázis felépítése 19

Vektoros adatmodell A vektoros térkép a megjelenítés szempontjából méretarányméretarány -független, az adatok geometriájának pontosságát azonban nem szabad összetéveszteni azok tárolásának élességével! élességével Ha a digitális térkép 1:10000 méretarányú papírtérkép felüldigitalizálásával készült, nem várható el tőle cm-es pontosság, még akkor sem, ha a nyiladék töréspontjait ekkora élességgel tároljuk is el. 20

Domborzatmodellek A geoinformatikai rendszerekben vizsgált egyik tipikus objektum a terep felszíne. A terepfelszínt leíró felületmodellt domborzati modellnek (DDM digitális domborzati modell, DEM digital elevation model) hívjuk hívjuk. A DDM a terepfelszín célszerűen egyszerűsített mása, amely fizikailag számítógéppel olvasható mása adathordozón tárolt terepi adatok rendezett halmazaként valósul meg meg. 21

Domborzatmodellek A geoinformációs rendszerben szereplő domborzatmodell részletességét, felépítését mindig az adott feladat szabja meg meg. Más léptékű és pontosságú terepmodellre van szükségünk, ha az erdőgazdaság teljes feltáróhálózatát vizsgáljuk, vagy ha egy erdészeti utat tervezünk. Különböző struktúrájú domborzati modellt célszerű használni vízgyűjtő területek lehatárolásához vagy semleges vonalak felkereséséhez. 22

Raszteres domborzatmodellek A pixelértékek felületmodell esetében a pixel által lefedett felületelem magasságát jelentik jelentik. A szabályosan elhelyezkedő rácspontok közötti pontok magasságát térbeli interpolációs módszerekkel lehet előállítani előállítani. Távolsággal arányos súlyozással; Minimális görbület alapján; Vektoros felületmodellezéssel, amikor egy olyan vektoros felületmodellt állítunk elő, amelynek kontrolpontjai a raszter celláinak középpontjaiba esnek. 23

Vektoros domborzatmodellek A felületmodellek másik csoportját azok az adatstruktúrák alkotják, ahol a felületet alkotó geometriai elemek tetszőleges bonyolultsággal bonyolultsággal, szabálytalan módon kapcsolódnak egymáshoz egymáshoz. A csúcspontok, törésvonalak ábrázolása koordinátákkal, vektorokkal történik. Ennél az adatmodelladatmodell -típusnál lényeges a térbeli kapcsolatok korrekt rögzítése, a topológia kialakítása.. kialakítása 24

Vektoros domborzatmodellek A modellezés feladata a Z=F(x,y) függvény vektoros adatokkal történő minél jobb közelítése, amelynek célszerű előállítása a végeselemek módszerével történik. A vektoros felületmodellezésben legáltalánosabban használt végeselem a három kontrolpont alkotta térbeli háromszög háromszög. A háromszögek általában szabálytalan háromszöghálót (Triangulated Irregular Network, TIN) alkotnak alkotnak. 25

Domborzatmodellek előállítása A domborzatmodellek előállítása a következő eljárások valamelyikével történhet: Szintvonalas térképek digitalizálása; Digitális fotogrammetria; Lézeres felmérési technológiák; Földi geodéziai módszerek. 26

TIN HÁLÓ KIALAKÍTÁSA

SZABÁLYOS HÁROMSZÖGHÁLÓ

SZINTVONALAK MEGJELENÍTÉSE

Geoinformációs rendszerek az erdőgazdálkodásban Magyarország erdőállományainak leíró adatbázisa 1976 óta az egész országot lefedően működik. Az adatbázis a relációs adatmodell szerint épül fel; az adattáblák közötti kapcsolatot a Hely-Tag-RészletAlrészlet adatmezőkkel, mint kulcsmezőkkel oldották meg. Ennek a struktúrának köszönhetően a különböző jellegű adatokat tartalmazó, fizikailag különálló adattáblák tetszés szerinti mélységig összekapcsolhatók, az információs rendszerben mint egységes adatbázis jeleníthetők meg. 34

Geoinformációs rendszerek az erdőgazdálkodásban TERÜLET adattábla AZONOSÍTÓ adatok RÉSZLET adatok FAFAJSOR adatok Sorszám Hely Tag Részlet Alrészlet HRSZ ETI EF Rendeltetés VAGE VEK Dolgozó Hely Tag Részlet Alrészlet Korlátozás TermCél TFM Fekvés Lejtés Klíma Hidrológia Hely Tag Részlet Alrészlet Ssz. Jsz. Fafaj Eredet EA Elmód Záródás Hely Tag Részlet Alrészlet Terület MEGJEGYZÉS adatok Hely Tag Részlet Alrészlet Megjegyzés 35

Geoinformációs rendszerek az erdőgazdálkodásban A magyarországi erdőgazdálkodás igényeinek megfelelően fejlesztett DigiTerra Map szoftver és adatformátumai 1997-től az Állami Erdészeti Szolgálat által alkalmazott geoinformációs rendszerek alapjává vált. ÁESZ vonatkozó Végrehajtási Utasítása alapján az erdészeti térképek digitalizálása is ezen program felhasználásával történt. 2003-ra Magyarország erdőterületének 100%áról elkészültek a digitális üzemtervi térképek 36