MATEMATIKA ÉRETTSÉGI május 5. EMELT SZINT I.

Hasonló dokumentumok
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 5. 8:00. Az írásbeli vizsga időtartama: 240 perc

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:

Matematika kisérettségi I. rész 45 perc NÉV:...

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2

Abszolútértékes és gyökös kifejezések Megoldások

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

} számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! A = { } 1 pont. B = { } 1 pont. x =

MATEMATIKA ÉRETTSÉGI május 3. EMELT SZINT I.

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (emelt szint)

Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?

MATEMATIKA ÉRETTSÉGI október 25. EMELT SZINT

Függvények Megoldások

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

Érettségi feladatok: Koordináta-geometria 1/5

MATEMATIKA ÉRETTSÉGI október 21. EMELT SZINT

MATEMATIKA ÉRETTSÉGI február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

Érettségi feladatok Koordinátageometria_rendszerezve / 5

MATEMATIKA ÉRETTSÉGI október 16. KÖZÉPSZINT I.

törtet, ha a 1. Az egyszerűsített alak: 2 pont

MATEMATIKA ÉRETTSÉGI október 19. KÖZÉPSZINT

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások

MATEMATIKA ÉRETTSÉGI május 8. EMELT SZINT

NULLADIK MATEMATIKA ZÁRTHELYI

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Halmazok

1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat!

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

1. Feladatsor. I. rész

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1

egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0.

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

Érettségi feladatok: Síkgeometria 1/6

Megoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2.

NULLADIK MATEMATIKA ZÁRTHELYI

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria

Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika

MATEMATIKA ÍRÁSBELI VIZSGA május 5.

Matematika érettségi emelt 2008 október. x 2 0. nem megoldás. 9 x

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

Érettségi feladatok: Trigonometria 1 /6

Koordinátageometria Megoldások

Próbaérettségi feladatsor_a NÉV: osztály Elért pont:

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24

Megyei matematikaverseny évfolyam 2. forduló

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI május 7. KÖZÉPSZINT

Helyvektorok, műveletek, vektorok a koordináta-rendszerben

XXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12.

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai

10. Koordinátageometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria

XVIII. Nemzetközi Magyar Matematika Verseny

Koordináta geometria III.

Kisérettségi feladatsorok matematikából

NULLADIK MATEMATIKA ZÁRTHELYI

Halmazok Megoldások. Az osztály tanulóinak átlagmagassága 168,0 cm

b) Az egyenesnek és a körnek akkor és csak akkor van közös pontja, ha az egyenleteikből álló egyenletrendszernek van megoldása (1 pont)

Exponenciális és logaritmikus kifejezések Megoldások

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT

VI. Felkészítő feladatsor

Hatvány, gyök, normálalak

Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van!

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Statisztika

NULLADIK MATEMATIKA szeptember 7.

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / május a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

MATEMATIKA ÉRETTSÉGI május 9. KÖZÉPSZINT I.

Az egyszerűsítés utáni alak:

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD

NULLADIK MATEMATIKA ZÁRTHELYI

Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1

2. MINTAFELADATSOR KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai. 81f l 2 f 2 + l 2

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész

Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

Matematika PRÉ megoldókulcs január 19. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot!

Gyakorló feladatok. 2. Matematikai indukcióval bizonyítsuk be, hogy n N : 5 2 4n n (n + 1) 2 n (n + 1) (2n + 1) 6

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Koordinátageometria

Átírás:

MATEMATIKA ÉRETTSÉGI 009. május 5. EMELT SZINT I. 1) Egy négyzet alapú egyenes hasáb alapéle 18 egység, testátlója 6 egység. a) Mekkora szöget zár be a testátló az alaplap síkjával? (4 pont) b) Hány területegység a hasáb felszíne? (A felszín mérőszámát egy tizedesjegyre kerekítve adja meg!) ( pont) c) Az alapél és a testátló hosszát ebben a sorrendben tekintsük egy mértani sorozat első és negyedik tagjának! Igazolja, hogy az alaplap átlójának hossza ennek a sorozatnak a második tagja! (4 pont) a) Az ACG háromszögben a GAC szöget keressük Az ABC derékszögű háromszögben AC 18 AC 1 így cos, 0 90 AG ahonnan 60 b) A négyzetes hasáb alapéle a 18, magassága m CG 18 6 felszíne: A a 4a m 18 418 6 8,5 A hasáb felszíne 8,5 területegység c) Ha a mértani sorozat első tagja a, hányadosa q, akkor a AB 18 és a q AG 6 innen q azaz q A mértani sorozat második tagja tehát a q 18 és ez éppen az alaplap átlójának hossza. Összesen: 11 pont

) Egy gimnázium egyik érettségiző osztályába 0 tanuló jár, közülük 16 lány. A lányok testmagassága centiméterben mérve az osztályozó naplóbeli sorrend szerint: 166,175,156, 161, 159, 171, 167, 169, 160, 159, 168, 161, 165, 158, 170, 159 a) Számítsa ki a lányok testmagasságának átlagát! Mekkora az osztály tanulóinak centiméterben mért átlagmagassága egy tizedesjegyre kerekítve, ha a fiúk átlagmagassága 17,5 cm? (5 pont) Ebben a 0 fős osztályban a tanulók három idegen nyelv közül választhattak, ezek az angol, német és francia. b) Hányan tanulják mindhárom nyelvet, és hányan nem tanulnak franciát, ha tudjuk a következőket: (1) minden diák tanul legalább két nyelvet. () Az angol is és németet is tanuló diákok száma megegyezik a franciát tanuló diákok számával. () Angolul 7-en tanulnak. (4) A németet is és franciát is tanulók száma 15. (7 pont) a) A lányok testmagasságának átlaga: 64 164 cm 16 Az osztály tanulóinak átlagmagasságát (t) a 16 lány átlagmagassága (l) és a 14 16 l 14 f fiú átlagmagassága (f) segítségével számolhatjuk ki: t 0 16 164 14 17,5 0 509 0 Az osztály tanulóinak átlagmagassága 168,0 cm b) Ha az osztály 0 tanulóját a három tanult nyelv szerint Venn-diagramon ábrázoljuk, csak négy tartományba jut tanuló, az ábra alapján jelöljük az egyes tartományokat x-szel, y-nal, z-vel és t-vel. (1) alapján x y z t 0 () alapján z t y () alapján x y z 7 (4) alapján x t 15 ( pont) Ezekből: x 1, y 9, z 6, t ( pont) Három nyelven 1-en tanulnak, és 9-en nem tanulnak franciát Összesen: 1 pont

) a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x y 10, egyik csúcsa az origó. Hány ilyen tulajdonságú háromszög van? (6 pont) b) Jelölje e azokat az egyeneseket, amelynek egyenlete x y b, ahol b valós paraméter. Mekkora lehet b értéke, ha tudjuk, hogy van közös pontja az így megadott e egyenesnek és az origó középpontú 4 egység sugarú körnek? (8 pont) a) A megadott x y 10 egyenletű egyenes az A 5;0 és 0;10 B pontokban metszi a tengelyeket Az origóból az egyenesre bocsátott, rá merőleges egyenes egyenlete x y 0 D A két egyenes D metszéspontjának koordinátái: 4; A megadott feltételeknek három derékszögű háromszög felel meg A 5;0, O 0;0, B 0;10 AOB háromszög, ahol ADO háromszög, ahol A 5;0, D 4,, O 0;0 BDO háromszög, ahol B 0;10, D 4,, O 0;0 b) Az egyenesnek és a körnek akkor és csak akkor van közös pontja, ha az egyenleteikből álló egyenletrendszernek van megoldása A kör egyenlete: x y 16 Az egyenes egyenletéből y b x. Behelyettesítés után: x b x 16 5x 4bx b 16 0 A kapott másodfokú egyenletnek van megoldása, ha a D diszkrimináns nem negatív D 0 4b 0 ahonnan b 4 5 A b paraméter lehetséges értékei tehát a 4 5;4 5 elemei Összesen: 14 pont

4) Legyen f és g a valós számok halmazán értelmezett függvény: 1 ha x 1 f x x 1 ha 1 x 0 és g x x 1 ha x 0 a) Ábrázolja ugyanabban a koordinátarendszerben mindkét függvényt! Adja meg az f x g x egyenlet valós megoldásait! (6 pont) b) Számítsa ki a két függvény grafikonja által közrefogott zárt síkidom területét! (8 pont) a) b) A függvények ábrázolása ( pont) 1 x egyenlet megoldása x 1 feltétel esetén x 1 x 1 x 1;0 intervallumon egyenletnek nincs megoldása a egyenlet megoldása az x 0 feltétel esetén x 1 x Az f x g x egyenletnek két megoldása van: x 1 1 és x Tekintsük az f és g grafikonját ahol A 1; 1, B 0;1, C ;1, D 0; A vizsgálandó síkidomot az AB, a BC szakaszok és az ADC parabolaív határolja Vágjuk ketté a síkidomot az y tengellyel. TABCD TABD TDBC ABD 0 0 T f x g x dx x x dx 1 1

0 x x x DBC 5 1 T f x g x dx x dx 0 0 x x 0 A keresett terület nagysága: 5 5,1 Összesen: 14 pont

5) Igazolja, hogy az alábbi négy egyenlet közül az a) és b) jelű egyenletnek pontosan egy megoldása van, a c) és d) jelű egyenletnek viszont nincs megoldása a valós számok halmazán! x x 10 a) x 1 0 (4 pont) b) x 16 x 9 5 (4 pont) c) lg x x 6 lg 1 x d) sin x 1 lg cos x 1, 5cos x II. (4 pont) (4 pont) 1 a) A nevező nem lehet 0, ezért 0 ebből x A továbbiakban a tört akkor 0, ha számlálója 0, tehát x x 10 0, azaz x1 és x,5 Így az egyenletnek csak egy valós megoldása van: x,5 b) A rendezés után kapott x 16 5 x 9 egyenletet mindkét oldalról négyzetre emelve, rendezés után kapjuk, hogy 10 x 9 0 Innen x 9 Behelyettesítéssel ellenőrizve ez jó megoldás. c) A logaritmus értelmezése szerint: x x 6 0 és 1x 0 Az első egyenlet megoldásai azon x valós számok, amelyekre x vagy x a másodiké: 1 x 1 A két egyenlőtlenség megoldáshalmazának nincs közös eleme, így az egyenletnek nincs megoldása. d) A jobb oldali kifejezés az értelezési tartományán csak nem negatív lehet, így sin x 1 0. Ez csak x k k esetén teljesül De mivel cos k 0 minden k esetén és nullára a logaritmus nincs értelmezve, így nincs olyan valós szám, amelyre az egyenlet értelmezve lenne, így nincs megoldása. Összesen: 16 pont

6) Egy nagyvárosban a helyi járatokon olyan buszjegyet kellett érvényesíteni, amelyen egy x-as négyzetben 1-9-ig szerepelnek a számok. (lásd 1. ábra) A jegy érvényesítésekor a jegykezelő automata a kilenc mezőből mindig pontosan hármat lyukaszt ki. a) Rajzolja le az összes olyan lyukasztást, amelyben minden sorban és minden oszlopban pontosan egy kilyukasztott mező van! Indokolja, hogy miért ezek és csak ezek a lehetséges lyukasztások! (4 pont) b) Rajzoljon a. ábrán megadott mezőbe egy olyan lyukasztást, amelyen a ki nem lyukasztott hat kis négyzetlap olyan tartományt fed le, amelynek pontosan egy szimmetriatengelye van! (A mezőkre nyomtatott számoktól most eltekintünk). Rajzolja be a szimmetriatengelyt! ( pont) Két kisiskolás a buszra várakozva beszélget. Áron azt mondja, hogy szeretné, hogy a buszjegyen kilyukasztott három szám mindegyike prím lenne. Zita pedig azt reméli, hogy a számok összege 1 lesz. c) Mekkora valószínűséggel teljesül Áron, illetve Zita kívánsága? (9 pont) 1.ábra.ábra a) Minden sorban kell lyukasztásnak lenni. Az első sorban lehetőségünk van a lyuk kiválasztására, a második sorban, ezek pedig egyértelműen meghatározzák a harmadik sort. A megfelelő lyukasztások száma: 1 6 A megoldások: ( pont)

b) Néhány jó példa a megoldásra: ( pont) Szimmetriatengely berajzolása c) Az első kilenc pozitív egész között 4 prímszám van Kedvező esetek száma 4 Az összes lehetséges lyukasztások száma: 9 84 ( pont) 4 Áron kívánsága P 0,048 valószínűséggel teljesül 84 Zita kívánságának 7 számhármas felel meg: 1;;9 1;4;8 1;5;7 ;;8 ;4;7 ;5;6 ;4;6 A keresett valószínűség ( pont) 7 P 0,08 84 Összesen: 16 pont 7) András edzőtáborban készül egy úszóversenyre, 0 napon át. Azt tervezte, naponta 10000 métert úszik. De az első napon a tervezettnél 10%-kal többet, a második napon pedig az előző napinál 10%-kal kevesebbet teljesített. A. napon ismét 10%-kal növelte előző napi adagját, a 4. napon 10%-kal kevesebbet edzett, mint az előző napon és így folytatta, páratlan sorszámú napon 10%-kal többet, pároson 10%-kal kevesebbet teljesített, mint a megelőző napon. a) Hány métert úszott le András a 6. napon? (4 pont) b) Hány métert úszott le összesen a 0 nap alatt? (6 pont) c) Az edzőtáborozás 0 napjából véletlenszerűen kiválasztunk két szomszédos napot. Mekkora a valószínűsége, hogy András e két napon együttesen legalább 0000 métert teljesített? (6 pont) a) Jelölje a n az n-edik napon leúszott hosszat, méterben mérve. a 10000 1,1 11000 a a a 1 a 0,9 10000 1,1 0,9 9900 1 a 4 1,1 10000 1,1 0,9 10890 a 0,9 10000 1,1 0,9 9801

a5 a4 1,1 10000 1,1 0,9 10781 a4 a5 0,9 10000 1,1 0,9 970 A hatodik napon tehát kb. 970 métert úszott b) A páratlan és páros sorszámú napokon leúszott hosszak is egy-egy mértani sorozat első 10 tagját alkotják. A páratlan sorszámúaknak az elő tagja 11000, hányadosa 0,99, a páros sorszámúak első tagja 9900, hányadosa 0,99. A páratlan sorszámú napokon: S a a... a 9 11000 11000 0,99... 11000 0,99 ptl 1 19 10 1 0,99 11000 105179,7 1 0,99 A páros sorszámú napokon: 9 S a a... a 9900 9900 0,99... 9900 0,99 ps 4 0 10 1 0,99 9900 94661,7 1 0,99 Az első húsz napon kb. 199841 métert úszott összesen c) Az edzések 0 napja közül két szomszédos nap 19-féleképpen választható ki Ha két szomszédos nap során összességében nem teljesül a tervezett 0000 méter, később se fog, mert az összteljesítmény csökken napok naponta leúszott táv kétnapi össztáv száma (n) méterben a n bn an an 1 1. 11000 0900. 9900 0790. 10890 0691 4. 9801 058 5. 10781 0484 6. 970 076 7. 1067 079 8. 9606 017 9. 10566 0076 10. 9510 19971 11. 10461 a táblázat ( pont) kedvező esetek száma 9 9 A keresett valószínűség P 0,474 19 Összesen: 16 pont

8) A K középpontú és R sugarú kört kívülről érinti az O középpontú és r sugarú R r. A KO egyenes a nagy kört A és E, a kis kört E és D pontokban metszi. Forgassuk el a KO egyenest az E pont körül hegyesszöggel! Az elforgatott egyenes a nagy kört az E-től különböző B pontban, a kis kört C pontban metszi. a) Készítsen ábrát! Igazolja, hogy az ABCD négyszög trapéz! (5 pont) b) Igazolja, hogy az ABC háromszög területe: t R R r sin! (7 pont) c) Mekkora szögnél lesz az ABC háromszög területe maximális, az adott R és r esetén? (4 pont) a) Jó ábra Thálesz-tétel miatt ABE DCE 90 Mivel AB és CD merőleges a BC egyenesre, ezért az ABCD négyszögnek van párhuzamos oldalpárja, azaz trapéz. ( pont) b) Az ABE derékszögű háromszögben BE R cos és AB R sin A DCE derékszögű háromszögben EC r cos BC R cos r cos r R cos Így Mivel az ABC derékszög, AB BC AB BE EC így TABC T R r R sin cos R r R sin Így ABC T R r R (ésr r R c) Mivel sin ABC pozitív) ezért T ABC akkor maximális, ha sin 1 ( pont) azaz 45 Összesen: 16 pont

9) Öt egyetemista: Bence, Kati, Márti, Pali és Zoli nyáron munkát szeretne vállalni egy üdülőhelyen. A helyi újságban több megfelelőnek látszó munkahelyet is találtak, mégpedig a következőket: három éttermet, ahova csak fiúkat, két fodrászatot, ahova csak lányokat vesznek fel és két fagyizót, amelyekbe viszont alkalmaznak fiúkat és lányokat is. (Egyik munkahelyen sincs létszámkorlátozás.) a) Hányféleképpen helyezkedhet el az öt fiatal, ha mind az öten egymástól függetlenül döntenek az állásokról, és minden fiatal csak egy állást vállal? (Az azonos típusú munkahelyeket is megkülönböztetjük.) (7 pont) b) Hányféleképpen helyezkedhet el az 5 fiatal, ha a lány nem akar ugyanazon a helyen dolgozni, és a fiú közül bármelyik kettő különböző helyre szeretne menni? (4 pont) Bence, Kati, Pali és Zoli asztaliteniszben körmérkőzést játszanak. (A körmérkőzés azt jelenti, hogy mindenki mindenkivel pontosan egy mérkőzést játszik.) Az első este csak három mérkőzést játszanak le. c) Hányféle lehet a három mérkőzésben a játékosok párosítása, ha tudjuk, hogy négyük közül pontosan két játékos két-két mérkőzést játszott? (5 pont) a) Minden fiú öt lehetőség közül választhat ez együtt 5 lehetőség minden lány négy lehetőség közül választhat ez összesen 4 lehetőség A választásuk független egymástól, ezért az elhelyezkedési lehetőségek száma 5 4 ( pont) = 000 b) A három fiú az öt helyre összesen 5 4 60-féleképpen helyezkedhet el A két lány a négy helyre 4 1 -féleképpen helyezkedhet el A fiúk és a lányok választásai függetlenek egymástól, így az összes elhelyezkedések száma: 60 1 70 ( pont) c) A körmérkőzésen két mérkőzést játszók kiválasztása: 4 6 -féleképpen lehet ( pont) A két-két mérkőzést játszó bármelyik diák két személy közül választhatja az egy mérkőzést játszó társát ( pont) Ezért összesen 61 párosítás lehetséges Összesen: 16 pont