9. A FORGÁCSOLÁSTECHNOLÓGIAI TERVEZŐ-RENDSZER FUNKCIONÁLIS STRUKTÚRÁJA



Hasonló dokumentumok
SZAKDOLGOZAT. Gömbcsap működtető orsó gyártástervezése

A teljesítményértékelés és minősítés a közigazgatási szervek vezetésében

Tevékenység: Gyűjtse ki és tanulja meg a lemezkarosszéria alakítástechnológia tervezés-előkészítésének technológiai lépéseit!

A.26. Hagyományos és korszerű tervezési eljárások

Pénztárgép Projektfeladat specifikáció

4. A GYÁRTÁS ÉS GYÁRTÓRENDSZER TERVEZÉSÉNEK ÁLTALÁNOS MODELLJE (Dudás Illés)

OTDK-DOLGOZAT

A készletezés Készlet: készletezés Indok Készlettípusok az igény teljesítés viszony szerint

Felkészülést segítő kérdések Gépszerkesztés alapjai tárgyból

VIZSGAKÉRDÉSEK GÉPGYÁRTÁSTECHNOLÓGIÁBÓL AZ I. ÉVF. ELŐADÁSI ANYAG TERMÉKTERVEZŐ ÉS A II.ÉVF. GÉPÉSZMÉRNÖK HALLGATÓK SZÁMÁRA

Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László

Gépbiztonság. Biztonságtechnikai és szabványok áttekintése.

2009/2010 Huszka Jenő

Kézi forgácsolások végzése

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és 25/2014 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

Előterjesztés Békés Város Képviselő-testülete december 16-i ülésére

Vasúti infrastruktúragazdálkodás kontrolling bázisú döntéselőkészítő rendszerek alkalmazásával

1 Rendszer alapok. 1.1 Alapfogalmak

A beszerzési logisztikai folyamat tervezésének és működtetésének stratégiái II.

Most akkor nincs csőd? - Mi folyik a Quaestornál?

Terület- és településrendezési ismeretek

SZENT ISTVÁN EGYETEM

Utángyártott autóalkatrészek és Volkswagen Eredeti Alkatrészek minőségi összehasonlítása

GÉNIUSZ DÍJ EcoDryer. Eljárás és berendezés szemestermények tárolásközbeni áramló levegős szárítására és minőségmegóvó szellőztetésére

Gyártási folyamatok tervezése

BUDAPESTI GAZDASÁGI FŐISKOLA KÜLKERESKEDELMI FŐISKOLAI KAR NEMZETKÖZI GAZDÁLKODÁS SZAK

Módszertani útmutató városi közösségi közlekedési projektek költség-haszon elemzéséhez. Nemzeti Fejlesztési Ügynökség

A CONCORDE ALAPKEZELŐ ZRT. VÉGREHAJTÁSI POLITIKÁJA

I: Az értékteremtés lehetőségei a vállalaton belüli megközelítésben és piaci szempontokból

Költségvetés és árképzés az építőiparban TERC Kft., Budapest, 2013.

Versenykiírás, Szervezeti Leírás

Rendezettség. Rendezettség. Tartalom. Megjegyzés

1. BEVEZETÉS. - a műtrágyák jellemzői - a gép konstrukciója; - a gép szakszerű beállítása és üzemeltetése.

1. A beszámolókészítés alapjai

Hajdúsági Kistérség Területfejlesztési Koncepciója és Programja HELYZETÉRTÉKELÉS 2005.

OKI-TANI Kisvállalkozási Oktatásszervező Nonprofit Kft. Minőségirányítási Kézikönyv

Tűgörgős csapágy szöghiba érzékenységének vizsgálata I.

TANÁRI MESTERKÉPZÉSI SZAK LEVELEZŐ TAGOZAT. mesterképzés (MA, MSc) levelező. Bölcsészettudományi Kar

ESZTERHÁZY KÁROLY FŐISKOLA KOCKÁZATFELMÉRÉSI ÉS -KEZELÉSI SZABÁLYZAT MS5802

Békéscsaba és Térsége Többcélú Önkormányzati Kistérségi Társulás ÖNKÖLTSÉGSZÁMÍTÁSI SZABÁLYZAT

MŰANYAGOK FELDOLGOZÁSA

Forgácsolási folyamatok számítógépes tervezése I.

I. A légfékrendszer időszakos vizsgálatához alkalmazható mérő-adatgyűjtő berendezés műszaki

Paksi Atomerőmű üzemidő hosszabbítása. 1. Bevezetés. 1. fejezet

PIB tájékoztatás. A költségvetési gazdálkodás eredményességének javítása (Gazdálkodási projekt)

Szegény gazdagok és gazdag szegények ( Vizsgálódások a személyi jövedelmek körében)

Energiaipar: a jég hátán is megél?

Szent László SZKI Szekszárd HELYI TANTERV

Kétnyelvű Német Nemzetiségi Óvoda- Bölcsőde Zánka BÖLCSŐDEI SZAKMAI PROGRAM 2015.

A Magyar Távhőszolgáltatók Szakmai Szövetségének javaslatai a távhőár-megállapítás témakörében

A szántóföldi növények költség- és jövedelemhelyzete

Tűzvédelmi Műszaki Irányelv TvMI 10.1:

Iparművészeti Múzeum 1091 Budapest, Üllői út KÖZBESZERZÉSI DOKUMENTUM 2016/S Budapest, május

Novák Nándor. Készletezés. A követelménymodul megnevezése: A logisztikai ügyintéző speciális feladatai

322/2015. (X.30.) KORM. RENDELETE

LELTÁROZÁSI SZABÁLYZAT

HITELESÍTÉSI ELŐÍRÁS HIDEGVÍZMÉRŐK ÁLTALÁNOS ELŐÍRÁSOK

17/2001. (VIII. 3.) KöM rendelet

LELTÁROZÁSI SZABÁLYZAT 2016

Minőségirányítási kézikönyv

PÁLYÁZATI ÚTMUTATÓ december. Nemzeti Kapcsolattartó, a Támogatási forrást nyújtó alap: Pályázati kapcsolattartó, támogatásközvetítı szervezet:

Javaslat A TANÁCS RENDELETE. a 282/2011/EU végrehajtási rendeletnek a szolgáltatásnyújtás teljesítési helye tekintetében történő módosításáról

FT Nyilatkozat a Felelős Társaságirányítási Ajánlásokban foglaltaknak való megfelelésről

J/55. B E S Z Á M O L Ó

TARTALOM AZ INFORMATIKA FOGALMA A fogalom kialakítása Az informatika tárgyköre és fogalma Az informatika kapcsolata egyéb

A megváltozott munkaképességű személyek foglalkoztatási helyzete

AZ EURÓPAI KÖZÖSSÉGEK BIZOTTSÁGA A BIZOTTSÁG KÖZLEMÉNYE KONZULTÁCIÓS DOKUMENTUM AZ INNOVÁCIÓS CÉLÚ ÁLLAMI TÁMOGATÁSRÓL

KHEOPS Tudományos Konferencia, AMBRUS ATTILÁNÉ Egyetemi főtanácsadó 1, NYME KTK, Sopron. Az egyéni vállalkozók adó és járulékterheinek alakulása

TÁMOP VIR alprojekt VIR felhasználói kézikönyv

A nemzetközi vándorlás hatása a magyarországi népesség számának alakulására között 1

2013. augusztus Gépjármű villamosságtan Autóelektronikai műszerész pótvizsga feladatok. (14.A.) (teljes egészében kiadható a pótvizsgázónak)

HEFOP Korszer feln ttképzési módszerek kidolgozása és alkalmazása. A szakképzés rendszere

MŰSZAKI KÖVETELMÉNYEK A 306/2011. (XII. 23.) Kormányrendelet szerint

Erősítőszálak választéka és tulajdonságaik

BUSZI itemizált feladatok web felülete

Dr. Göndöcs Balázs, BME Közlekedésmérnöki Kar. Tárgyszavak: szerelés; javíthatóság; cserélhetőség; karbantartás.

MINTAPROJEKT. Fejlesztési különbözet módszer alapján

3.1. Alapelvek. Miskolci Egyetem, Gyártástudományi Intézet, Prof. Dr. Dudás Illés

Az erdőfeltárás tervezésének helyzete és továbbfejlesztésének kérdései

B-TEL99 Kétcsatornás telefonhívó

8. MODELLEZÉS AZ ALKATRÉSZGYÁRTÁS TECHNOLÓGIAI TERVEZÉSÉNÉL

Összeállította: Bohácsné Nyiregyházki Zsuzsanna június 17.

2.3. A rendez pályaudvarok és rendez állomások vonat-összeállítási tervének kidolgozása A vonatközlekedési terv modellje

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára

MŰANYAGOK FELDOLGOZÁSA

M Ű S Z A K I K Ö V E T E L M É N Y

MATEMATIKA. Tildy Zoltán Általános Iskola és Alapfokú Művészeti Iskola Helyi tanterv 1-4. évfolyam 2013.

6. évfolyam MATEMATIKA

Tájékoztató. a IX. Helyi önkormányzatok támogatásai fejezet évi el irányzatairól

Matematikai és matematikai statisztikai alapismeretek

Irinyi József Általános Iskola 4274 Hosszúpályi Szabadság tér HELYI TANTERV Informatika 4. osztály 2013

Javaslat AZ EURÓPAI PARLAMENT ÉS A TANÁCS RENDELETE

Leromlott állapotú vasúti hidak, műtárgyak felújítása, hídrekonstrukciós munkák elvégzése

hogy a megismert fogalmakat és tételeket változatos területeken használhatjuk Az adatok, táblázatok, grafikonok értelmezésének megismerése nagyban

Stratégiai menedzsment

ÖNKÖLTSÉG-SZÁMÍTÁSI SZABÁLYZAT

Tárgy: Kiskunmajsa Város Önkormányzatának évi költségvetési koncepciója.

INHALÁCIÓS KÉSZÍTMÉNYEK VIZSGÁLATA: A FINOMRÉSZECSKÉK AERODINAMIKAI VIZSGÁLATA

PANNON EGYETEM. Nyelvtudományi és Neveléstudományi Doktori Iskola

Nemzeti Adó- és Vámhivatal által kiadott. 4.../2013. tájékoztatás

Átírás:

9. A FORGÁCSOLÁSTECHNOLÓGIAI TERVEZŐ-RENDSZER FUNKCIONÁLIS STRUKTÚRÁJA Egy-egy konkrét forgácsolástechnológiai tervezőrendszer saját, a fejlesztő által megfogalmazott struktúrát testesít meg. Az itt tárgyalt struktúra egy lehetséges változatnak tekinthető. Ez a funkcióból kiinduló struktúra összehasonlítási alapot adhat egy konkrét például forgalmazott rendszer értékeléséhez. 9.1. Számítógépes technológiai tervezés szintjei Az alkatrészgyártás számítógépes technológiai tervezésének alapvetően két szintjét különböztetjük meg. A műveleti sorrendtervezést és a művelettervezést. Funkcionális struktúrájukat szemlélteti a 9.1. és 9.2. ábra.

INPUT a nyers- és a készdarab leírása, sorozatnagyság, gyártórendszer stb. MŰVELETI SORRENDTERVEZÉS Felületcsoportok képzése, megmunkálási igényük feltárása Lehetséges befogási sémák meghatározása Primer sorrend generálása TIR Készüléktervezés Gyártóberendezések kiválasztása, műveletek kialakítása, megmunkálási sorrendtervek, technológiai változatok képzése Optimális sorrend kiválasztása Műveletközi méretek, ráhagyások meghatározása Befogókészülék választása Műveleti sorrendterv lap szerkesztése Műveleti sorrendterv 9.1. ábra A műveleti sorrendtervezés feladatai és szintjei Művelettervezés MŰVELETI SORRENDTERV

INPUT: Műveleti sorrendterv Szerszám tervezés Műveletelemek generálása Szerszámválasztás Műveletelemek végrehajtási sorrendjének meghatározása Szerszámelrendezési terv kidolgozása Műveletelemtervezés Forgácsolási paraméterek számítása Szerszám mozgásciklusok tervezése, normaidő meghat. 9.2. ábra A művelet- és a műveletelemtervezés feladatai és szintjei Adaptálás, posztprocesszálás Művelettervek Gyártóeszköz lista, beállítási lap NC-CNC vezérlőprogramok.-.-.-.-.- -.-.--.-.-.- -.-.-..--

Példaként vázoljuk egy technológiai tervezőrendszer funkcionális moduljainak készletét (9.1. táblázat). A forgácsolástechnológiai tervezőrendszer egy lehetséges modulkészlete: 1.1. Rögzítő furatok 9.1. táblázat ATTR funkcionális modulok összefoglalása 1. FELÜLETCSOPORTOK KÉPZÉSE, MEGMUNKÁLÁSI IGÉNYÜK ELEMZÉSE 1.2. 1.3. 1.4. 1.5. 1.6. Lépcsős Síkok, Felöntések Hornyok, Zsebek, és egytengelyű lépcsős sík keret- átvágások esetleg síkok felületek szige- furatok tekkel 1.8. Forgástest mellékelemek 1.9. Lelapolások, sokszög alakzatok 1.7. Forgástest főelemek 1.10. Transzlációs, vonal és szoborfelületek

2. LEHETSÉGES BEFOGÁSI SÉMÁK MEGHATÁROZÁSA 2.1. Forgástestekhez 2.2. Prizmatikus, szekrényes alkatrészekhez 3. PRIMER SORREND GENERÁLÁSA 3.1. Forgástestekhez 3.2. Prizmatikus alkatrészekhez 4. GYÁRTÓBERENDEZÉSEK KIVÁLASZTÁSA, MEGMUNKÁLÁSA, SORRENDVÁLTOZATOK GENERÁLÁSA műveletkoncentrációra törekedve 4.1. Forgástestekhez 4.2. Prizmatikus alkatrészekhez más stratégiával 4.3. Forgástestekhez 5. OPTIMÁLIS SORREND KIVÁLASZTÁSA 4.4. Prizmatikus alkatrészekhez 6. MŰVELETKÖZI MÉRETEK, RÁHAGYÁSOK MEGHATÁROZÁSA 6.1. Forgástestekhez 6.2. Prizmatikus alkatrészekhez 7. BEFOGÓKÉSZÜLÉKEK KIVÁLASZTÁSA 7.1. Forgástestekhez 7.2. Szekrényes alkatrészekhez 8. MŰVELETI SORRENDTERV SZERKESZTÉSE

9.1. Esztergáláshoz 10.1. Esztergáláshoz 9. MŰVELETELEMEK GENERÁLÁSA 9.2. Méretes szerszámokkal végzett furatmegmunkáláshoz 9.3. Maráshoz 9.4. Egyszerű fúrási-marási munkákhoz, forgástestek esetében 10. SZERSZÁMVÁLASZTÁS 10.2. Méretes 10.3. Maráshoz 10.4. Egyszerű szerszámokkal fúrási-marási végzett munkákhoz, furatmegmunkáláshoz forgástestek esetében 11. MŰVELETELEMEK VÉGREHAJTÁSI SORRENDJÉNEK 11.1. Esztergagépi művelethez MEGHATÁROZÁSA 11.2. Fúró-maró gépi megmunkálás, központi műveletekhez 11.3. Esztergaközponti műveletekhez 12. SZERSZÁMELRENDEZÉSI TERV KIDOLGOZÁSA 12.1. Esztergagépi művelethez 12.2. Fúró-maró gépi megmunkálközponti műveletekhez 12.3. Esztergaközponti műveletekhez

13. FORGÁCSOLÁSI PARAMÉTEREK MEGHATÁROZÁSA 13.1. Furatmegmun -káláshoz 13.2. Fúrórudas megmunkáláshoz 13.3. Esztergáláshoz 13.4. Maráshoz 14.1. Esztergagépi üresjárati mozgások 14.8. Furat megmunkálási ciklusok 14. SZERSZÁM MOZGÁSCIKLUSOK TERVEZÉSE 14.2. 14.3. 14.4. 14.5. 14.6. Fúrómaró Eszterga- Mozgás- Fúró- Megmun- gépi központi pálya maró- káló- üresjárati üresjárati transzformáció gépi központi elemi mozgások mozgások elemi mozgás- mozgás- 14.9. Nagyoló és simító esztergálás 14.10. Beszúrás, alászúrás, menetvágás 14.11. 2,5D-s marási ciklusok 14.15. Összetett felületek 3-5D-s marása utasítások 14.12. Vonalfelü -letek 3-5D-s marása utasítások 14.13. Transzlációs felületek 3-5D-s marása 14.7. Egyszerű fúrásimarási ciklusok forgástestekhez 14.14. Szoborfelületek 3-5D-s marása 14.16. Hagyományos (nem NC) gépekre műszaki normaidők számítása (eszterga + maró + fúrógépek)

Szerszámválasztási (tervezési) kritériumok fúró-maró szerszámok esetében: SZER = f(t i, t m, m, etap, d min, d max, l m.min, l sz.min, G forg, G bev, ti hely ) (9.1) ahol: t i t m m etap d min d max l m.min l sz.min G forg G bev ti hely szerszám típusa, műveletelem típusa, megmunkálandó anyag kódja, megmunkálandó szakasz (nagyolás, simítás), átmérő határ, átmérő határ, minimális működési hossz, minimális szabad (ütközésmentes) hossz, élgeometria, bevezető rész geometriája, helyettesítő szerszámtípusok. A technológiai tervezőrendszerekben használt megoldások közül ismertetjük az egy műveleten belüli szerszámok számának minimalizálását (9.3. ábra), a nagyolt kontúr meghatározását (9.4. ábra) és egy marási probléma megoldását (9.5. ábra).

lm lsz lsz d 1min d d 2min min d 1max d d d d 2max max min max elsõ furat második furat mindkét furathoz alkalmas méretû szerszám lm 9.3. ábra Szerszámok számának minimalizálása

A modulokra bontás elvi alapjai röviden a következőkben foglalhatók össze: Minden, viszonylag zárt egységet képező feladat vagy részfeladatmegoldás kerüljön önálló modulba, főként ha a rendszer különböző pontjain többször is felhasználható. Egymást helyettesítő modulok azonos jellegű feladatot más-más módszerrel oldanak meg. Egymást kiegészítő modulok síkgörbék, síkkontúrok, felületek, felületmodellezés, testprimitívek, testmodellezése, stb. Az egymást kiegészítő modulok bővítik a megoldható, az azonos jellegű feladatok körét. A vertikális modularitást a tervezési szinteknek, lépéseknek megfelelő, egymást követő modulok határozzák meg. Egy modul hiánya a rendszer automatizálási szintjét csökkenti. A horizontális modularitás az azonos tervezési szinten egymást kiegészítő modulok készlete. Egy-egy modul hiánya a rendszer alkalmazási területét szűkítheti. A tervezés egyes szintjein megoldandó feladatok, optimálási lehetőségek a modulkészlettel összhangban a műveleti sorrendtervezés területén (9.1. táblázat).

a) (1) Felületcsoportok képzése, megmunkálási igények feltárása Feladat: a rendszerbe inputként bevitt kész és nyersdarab modell analízise útján feltárni a technológiai egységet képező felületcsoportokat és meghatározni azok megmunkálási igényét. Megmunkálási igény: a megfelelő állapotváltozási táblában a nyers állapotnak és a kész állapotnak megfelelő sorok azonosítása. Ha a két sor azonos, akkor a felületcsoport nem munkálandó meg. Ha különböző, akkor a nyers állapotból a kész állapotba juttatás jelenti a megmunkálási igényt. b) (2) A lehetséges befogási sémák meghatározása Feladat: a felületcsoportok megmunkálási igényének és a teljes alkatrész-konfiguráció figyelembevételével a lehetséges befogási módok meghatározása. Automatizált megoldás csak a jól tipizálható esetekre létezik. Egyébként a technológus interaktív közreműködése szükséges.

c) (3) Primer sorrend generálása Feladat: az alkatrész állapotváltozási folyamatának felépítése a felületcsoportok állapotváltozási folyamataiból (megmunkálási igényéből) kiindulva a megmunkálási szakaszok figyelembevételével a sorrendtervezési vezérlőtábla (TANLÓ) felhasználásával. d) (4) Gyártóberendezések kiválasztása, műveletek kialakítása, megmunkálási sorrendtervek képzése Feladat: a becsült idő és költségadatokkal ellátott változatok közül az adott kritérium szerint optimális kiválasztása. Célszerű együttműködni a termelésirányítással. f) (6) Műveletközi méretek, ráhagyások meghatározása Feladat: a műveletközi alkatrészállapotok és konfigurációk meghatározása, azaz egy-egy művelethez tartozó nyers és kész munkadarab meghatározása, a további megmunkálásra meghagyandó ráhagyásméretek figyelembe vételével.

g) (7) Befogókészülékek választása Feladat: a műveleti sorrendterv és annak részeként az egyes műveletek tartalmának ismeretében, a művelethez tartozó kész és nyersdarab, továbbá gyártóberendezés [104] figyelembe vételével műveletenként a befogási séma véglegesítése, befogóeszköz választása speciális befogóeszköz igény esetén a készülékszerkesztést igénylő lap kitöltése. Hatékony megoldás interaktív üzemmód mellett képzelhető el, amikor a rendszer felkínál a technológusnak megoldásváltozatokat, megjeleníti a munkadarabot a munkatérben (képernyőn), de a megfelelő megoldás kiválasztása vagy kitalálása a gépkezelő technológus feladata. h) (8) Műveleti sorrendterv szerkesztése Feladat: a tervezés eddigi eredményeinek egységes keretbe foglalása, előkészítése további feldolgozásra (pl. műveletelem tervezésre), valamint a gyártási dokumentációként használható műveleti sorrend szerkesztése és kiadása.

9.2. Optimálási lehetőségek a műveleti sorrend tervezéskor A műveleti sorrendtervezés szintjén az optimálási feladatok megoldására felhasználható a korábban tárgyalt technológiai gráf. Ekkor a gráf éleihez tartozó tevékenységek (megmunkálás, helyzetváltoztatás, stb.) jellemzésére idő és költségadatokat használunk fel, amelyek a tervezés ezen szintjén fajlagos adatok alapján számíthatók. A technológiai gráf tárgyalásakor megadtuk a célfüggvényt és utaltunk a megoldás módjára is (utazó ügynök típusú feladat). A technológiai folyamat tervezésekor, pontosabban a technológiai gráf összeállításakor számos korlátozást kell figyelembe venni: a megmunkálási módok, gyártóberendezések választásakor nem vehetjük számításba a technika mindenkori állása szerinti legjobbakat, csupán az adott gyártórendszer lehetőségei közül választhatunk, csak azokra a gyártóberendezésekre tervezhetünk, amelyek a gyártás időszakában működőképesek és szabad kapacitásuk van,

egy-egy felület vagy felületcsoport egyik állapotból a másikba csak olyan megmunkálási móddal valósítható meg, amelynek megmunkálási pontossága nagyobb vagy egyenlő a megkívánt pontosságúval, az előbbi érvényes a felület érdessége vonatkozásában is, jelentkezhetnek korlátok a gyártóberendezések oldalairól is, pl. a forgóasztal pozícionálási pontossága (pontosabban pontatlansága) csökkentheti a gépen megvalósítható megmunkálási módok által elérhető helyzetpontosságot. Ilyenkor célszerű lehet oldalanként készre munkálni a munkadarabot függetlenül attól, hogy ezzel növekszik a szerszámcserék száma. Ha a korlátozások figyelembevételével állítjuk össze a technológiai gráfot, akkor az már csak azokat a reális technológiai megoldásokat (változatokat) tartalmazza, amelyek a gyártórendszer pillanatnyi állapotában megvalósíthatók és amelyek az alkatrész kívánt minőségét biztosítják.

A konkrét megoldást nehezítő tényezők: szóba jöhető variációk nagy száma, a célfüggvény számításához pontatlan adatháttér (fajlagos idő és költségadatok), a korlátok hatásukat és természetüket tekintve nem egységesek egy részük a választási lehetőségeket, más részük a sorrendi egymásutániságot korlátozza. A műveleti sorrendtervezés szintjén az optimálási feladat megoldására reális lehetőséget adó módszer: az optimumesélyes technológiai megoldások tudatos, irányított keresése. Az így kialakított sorrendi változatok már csak az optimumesélyes változatok, melyek száma lényegesen kevesebb, mint az összes lehetséges változat száma. Az optimumesélyes változat keresését segítheti a TIR-rel való együttműködés: a TIR a választható gyártóberendezések, megmunkálási módok sorozatából törölheti azokat, melyekre a gyártás időpontjában nem számíthatunk. Egyben a TIR kijelölheti az optimális kritériumot is, avagy maga dönti el, hogy mely változat optimális gyártórendszer működése szempontjából.

9.3. A művelettervezés szintjei, feladatai, optimálási lehetőségek A művelettervezés alapadatai a műveleti sorrendtervezés eredményeit adják: a művelethez rendelt megmunkáló gép, az alkatrészbefogás jellemzői, optimálási kritérium, esetleges technológiai előírások. az alkatrész adott műveletre érvényes nyers és kész állapotának leírása, Az utóbbi adatcsoport között szerepelhetnek az alkatrész egyes felületelemeihez és elemcsoportjaihoz a műveleti sorrendtervezés szintjén hozzárendelt megmunkálási módok és azok végrehajtási sorrendje. A megmunkálási módok nem tévesztendők össze a műveletelemek fogalmával.

A műveleti sorrendtervezés szintjén a megmunkálási módok bevezetésének célja csupán az alkatrész megmunkálásához szükséges műveletek kijelölése és a műveletek végrehajtási sorrendjének meghatározása, nem pedig az egyes műveletek részletes műveletelemekre bontott tartalmának megtervezése. A műveletelemek és megmunkálási módok közötti eltérések megvilágítására. Nézzük meg a 9.4. ábrát. A 9.4. ábrán lévő alkatrész 3-4 szakaszára a műveleti sorrendtervezés furatban végrehajtandó nagyoló és simító kúp-palást-homlok típusú esztergálást ír elő, amelyet a művelettervezés a következő műveletelemekre bont le: a b-c-f-g-h ráhagyás leválasztása nagyoló kúpesztergálással furatban, a c-d-e-f ráhagyás leválasztása nagyoló hosszesztergálással furatban, a 3-4 szakasz kontúrkövető simító esztergálása furatban, Példák a közbenső kontúrok képzésére.

2 Közbensõ (nagyolt) kontúr nagyolás a simítás 1 3 b d e 4 c f g h 9.4. ábra Közbenső kontúr képzése esztergálás esetében

simítás nagyolás elõnagyolás A B simító maró nagyolt kontúr nagyoló maró elõnagyoló maró elõnagyolt kontúr A B 9.5. ábra Közbenső kontúr képzése marásnál

A 9.5. ábrán szereplő üreg megmunkálására a sorrendtervezés előír nagyoló és simító zsebmarást, amelyet a művelettervezés az alábbiak szerint fejthet ki: az A üregrész előnagyolása zsebmarással, a B üregrész előnagyolása zsebmarással, a teljes üreg nagyolása zsebmarással, a teljes üreg simítása zsebmarással. Egy másik lehetséges megoldás erre az esetre: az üreg palástfelületének simítása kontúrkövető horonymarással, az üregben maradt sziget eltávolítása nagyoló zsebmarással, az üreg fenékrészének simítása zsebmarással.

Az előbbiekkel összhangban a művelettervezés alapvetően a nyersés készdarab leírásából indul ki és figyelembe véve az adott gép és befogási mód jellemzőit, meghatározza, hogy az adott műveleten belül: az alkatrész megmunkálás milyen műveletelemekkel, milyen sorrendben történjék, az egyes műveletelemekkel milyen ráhagyási alakzatot kell eltávolítani, a műveletelemek végrehajtásához milyen szerszámkészlet szükséges és hogyan kell azt elhelyezni a gépen. A művelettervezés eredménye tartalmazza a művelet részletes leírását a műveletelemekhez tartozó forgácsolási paraméterek és szerszámmozgások kivételével. A művelettervezés hatáskörébe tartozó feladatokat, a feladatok hierarchikus szintekre tagozódását és a szintek egymásra épülését a 9.6. ábra szemlélteti.

A művelettervezés folyamata visszavezethető az előzőekben tárgyalt technológiai gráf megfelelő az egyes műveletekhez tartozó szakaszainak pontosbítására. A tervezés előrehaladásával egyre hívebben tudjuk tükrözni az alkatrész egészének és egyes felületelemeinek állapotváltozási folyamatát pontosbítva a gráf csúcsainak számát és sorrendjét továbbá egyre megbízhatóbb adatok rendelhetőek a gráf éleivel ábrázolt tevékenységhez. Értelemszerűen itt is használható a már tárgyalt célfüggvény, amelynek megoldási problémái a variánsok nagy száma, az adatok pontatlansága, stb. a művelettervezés különböző szintjein differenciáltan jelentkeznek. Megoldást itt is az optimumesélyes változatnak a gyakorlati tapasztalatok alapján történő behatárolása vagy többlépcsős iterációs módszer alkalmazása jelent, mivel az egyes változatok kialakításához és értékeléséhez szükséges pontos információk gyakran csak a teljes technológiai tervezés befejezése után állnak rendelkezésünkre. A művelettervezéi feladatokat megoldó mai rendszerek többsége (pl. a GTIPROG) az optimumesélyes változatot az adatbázisban tárolt tapasztalati adatok alapján jelöli ki.[19] A GTIPROG művelettervező és NC-CNC programozó rendszert az [53] 15.5.3.2. fejezet mutatja be.

Szerszámgép- és szerszámadatokat, típustechnológiai megoldásokat tartalmazó adatbázis Alapadatok Műveleten belüli közbenső alkatrészállapotok tervezése Gyárthatósági vizsgálat kritikus méretek és koordináták meghatározása Műveletelemek generálása szerszámválasztási kritétiumok összeállítása Szerszámválasztás Műveletelemek sorrendjének véglegesítése Szerszámelrendezés tervezése Műveletterv szerkesztése nyers- és készdarab leírás alkatrész befogás jellemzők; gépazonosító; optimálási kritérium; Közbenső kontúrok Általános tervezési alapadatok Közbenső kontúrok Műveletelemek normálalakja Szerszámválasztási kritériumok Szerszámlista, szerszámok normálalakjai Műveletelemek normálalakjai Műveletelemek sorrendje Szerszámelrendezési terv Műveletelemek sorrendje Műveletelemek és szerszámok normálalakjai Általános adatok 9.6. ábra A művelettervezés szintjei és egymásra épülésük Miskolci Egyetem, Gyártástudományi műveletterv Intézet, Prof. Dr. Dudás Illés

A fentiekben vázolt általános tervezési és optimálási elvek érvényesek mind az egyszerszámos, mind a többszerszámos műveletelemeket és műveletelem-csoportokat tartalmazó műveletek tervezésére, azonban érvényesítésük többszerszámos megmunkálásra lényegesen bonyolultabb feladat, mint egyszerszámosra. Többszerszámos megmunkálás esetén a feladat megoldását mindenek előtt az nehezíti, hogy lényegesen nagyobb információhalmazt kell egyidejűleg kezelni ahhoz, hogy eljussunk a technológiailag helyes és az optimumhoz közeli megoldáshoz. A műveletelemek (önálló fúrás, külső és belső palástesztergálás, stb.) kijelöléséig a tervezés menete változatlan, azonban ezekből a többszerszámos műveletelemek és műveletcsoportok képzése, a szerszámok kiválasztása, az átfedések lehetőségeit is tükröző végrehajtási sorrend generálása igényli a teljes MKGS rendszer megmunkálás közben változó állapotának (munkadarab alakjának, a rendszerelemek egymáshoz viszonyított helyzetének, a rendszer várható terhelési viszonyainak) a figyelését.

Ismereteink szerint a feladat általános megoldására eddig egyetlen tervezőrendszerben sincs példa, a megvalósított félautomatikus (a technológus által kívülről irányított) megoldások erősen gépkonstrukció-orientáltak. Ezzel összefüggésben a rendelkezésünkre álló tapasztalatok és elméleti alapok is meglehetősen hiányosak ahhoz, hogy a többszerszámos műveletek tervezési és optimálási módszereiről részletesen írjunk. Úgy véljük, hogy e területen még jelentős kutatómunkát kell elvégezni a módszertani alapok feltárása és gyakorlati kipróbálása céljából. A következőkben tervezési szintenként (9.6. ábra) mutatjuk be a művelettervezés során megoldandó feladatokat, a lehetséges megoldási módokat és az optimálás lehetőségeit, de nem térünk ki a többszerszámos megmunkálás tervezésének speciális problémáira.

Közbenső alkatrészállapotok meghatározása A műveleten belüli, közbenső alkatrészállapotok meghatározása bonyolult összefüggő ráhagyásalakzatok általában esztergálással vagy marással történő megmunkálásának tervezésekor jelentkezik feladatként. E tervezési szint beiktatásával célunk, hogy a műveletelemek generálása számára jól kezelhetővé tegyük az egyes megmunkálási szakaszokhoz (előnagyolás, nagyolás, félsimítás, simítás) tartozó nyers és kész állapotok leírását. A feladat megoldása során vizsgálnunk kell az alkatrész felületelemeinek és összefüggő felületelemcsoportjainak nyers és kész állapotát és döntenünk kell készre munkálásuk szükséges szakaszairól, továbbá meg kell határoznunk az egyes megmunkálási szakaszokhoz tartozó ráhagyásméreteket, melyek alapján meghatározható a megmunkálási szakaszban előállítandó munkadarab-alakzat, például közbenső kontúr formájában.

A megmunkálási szakaszok kialakítására is értelemszerűen felépíthető a technológiai gráf, amelynek csúcsaihoz a megmunkálási szakaszok szerinti munkadarab állapotok, az éleihez pedig a szakaszok kialakításával kapcsolatos költség- és időadatokkal jellemezhető tevékenységek rendelhetők. A feladat megoldása során korlátozásként veendő figyelembe: az MKGS rendszer pontosbítási fokozata, mely az adott felületelem csoport előállításához minimálisan szükséges megmunkálási szakaszok számát és a technológiailag indokolt ráhagyásméreteket behatárolja, a felületelemcsoport kiindulási állapota, mely meghatározza a rendelkezésre álló teljes megmunkálási ráhagyás mértékét, a felületelem csoport geometriai jellemzői (szűkületek, belső saroklekerekítések, stb.), amelyek behatárolják a szóba jöhető megmunkálási módokat és azok termelékenységi és költségmutatóit.

A célfüggvény megoldására itt is csak közelíthető, becsült adatok állnak rendelkezésre, hiszen még nem ismerjük a megmunkáláshoz szükséges műveletelemek készletét, a szerszámokat, a forgácsolási paramétereket. Gyárthatósági vizsgálat, kritikus méretek és koordináták meghatározása művelettervezés e szintjén folytatódik a műveletelem generáláshoz szükséges adatok előkészítése, azaz: az ütközésveszély szempontjából kritikus alkatrész és befogóeszköz méretek feltárása, a felületelemek csoportosítása hozzáférhetőség szempontjából (külső, belső, egyik oldalon, másik oldalon, stb.), a bemenő adatok között előforduló technológiai előírások egységes belső (normál) alakjainak előállítása és a felületelemekkel való kölcsönkapcsolat adminisztrálása.

E feladatokkal párhuzamosan ellenőrizzük az alkatrész megmunkálhatóságát az adott gépen és a technológiai előírások végrehajthatóságát. Műveletelemek generálása, szerszámválasztási kritériumok összeállítása A műveletelemek generálása során kijelöljük az alkatrész egyes felületelemeinek és összefüggő felületelemcsoportjainak előállításához szükséges műveletelemek sorozatát, (elemi megmunkálási sorrend) meghatározzuk az egyes műveletelemekhez tartozó ráhagyás alakzatokat és a műveletelemek végrehajtásához szükséges szerszámokkal szembeni követelményeket, kritériumokat. A műveletelemek generálásának elvi alapjai azonosak a megmunkálási módok kijelölésének elvi alapjaival: az alkatrészt alkotó tipizált felületelemekhez és -elemcsoportokhoz a kiindulási nyers állapot és a kívánt kész állapot figyelembe vételével hozzárendelhetők a műveletelemek tipizált sorozatai.

Itt is érvényes az a megállapítás, hogy egy és ugyanazon felületelem előállítható a műveletelemek különböző sorozataival. Például egy tárcsajellegű alkatrész esztergagépen végzett megmunkálásakor a furatban lévő felületelemek előállíthatók méretes fúrószerszámokkal (fúrás, felfúrás, süllyesztés, dörzsölés) vagy esztergakéssel is. Az optimum, a célt legjobban kielégítő változat az egyes technológiai megoldások költség vagy termelékenységi mutatóinak értékelésével választható ki. A már tárgyalt technológia gráf és optimálási módszer könnyen alkalmazható egy-egy felületelem szempontjából optimális műveletsorozat kiválasztásához, mivel ezen a szinten a változatok száma nem túl nagy és az egyes műveletelemek költség és termelékenységi mutatói is viszonylag pontosan meghatározhatók. Célunk azonban a műveletszintű optimum megtalálása, ami nem feltétlenül esik egybe az egyes felületelemek szempontjából optimális változatok halmazával. Ugyanis több tényező (felszerszámozás, korrekciós kapcsolók beállítása stb.) hatása csak a teljes művelet szintjén értékelhető.

A teljes műveletre valamennyi technológiai változatot megtervezni olyan mélységig, hogy e tényezők hatását is értékelni lehessen rendkívül munkaigényes, ezért célszerű a műveletelem generálás folyamatát úgy irányítani, hogy az optimumesélyes változatot kapjuk eredményül. Ez az adatbázisban tárolt tapasztalati rokonesetek és viszonylag könnyen figyelembe vehető szempontok érvényesítésével érhető el. Ilyen például a szerszámok számának minimalizálása vagy a gyakorlati tapasztalatok alapján termelékenyebbnek minősített műveletelemek előnyben részesítése. Szerszámválasztás A művelet végrehajtásához szükséges szerszámokat a műveletelemek generálásával párhuzamosan összeállított szerszámválasztási kritériumok alapján választja ki a technológia tervezőrendszer az adott gép szerszámkészletéből.

A szerszámválasztás során keressük azt a szerszámot, amelyik a szerszámválasztási kritériumokban összefoglalt követelményeknek eleget tesz. A mai, számítógépes tervezőrendszerek általában elfogadják az első olyan szerszámot, amelynek paraméterei megfelelnek e követelményeknek és a többi szóba jöhető szerszámot nem vizsgálják. Optimálási törekvés a szerszámválasztási kritériumok összeállításakor érvényesül a szerszámok számának minimalizálása formájában. A mai tervezőrendszerek nem tartják nyilván, hogy egy-egy szerszámmal az adott műveleten belül mekkora ráhagyásmennyiséget kell leválasztani, nem figyelik a szerszám várható kopását sem. Holott ez befolyásolhatja a felszerszámozási tervet (esetleg több ugyanolyan szerszámot célszerű elhelyezni a szerszámtárban) és a művelet felszerszámozásával, valamint a szerszámcserékkel kapcsolatos idő és költségtényezőket.

A műveletelemek végrehajtási sorrendjének meghatározása A műveletelemek generálásakor kialakul a műveleten belüli műveletelemek végrehajtási sorrendje. Ez a sorrend technológiai szempontból helyes. Felmerül a kérdés akkor mégis miért foglalkozunk vele újból. Ennek az oka az, hogy a szerszámválasztás ami a műveletelemek generálását követi befolyásolhatja a műveletelemek végrehajtási sorrendjét. Elegendő utalni a szerszámválasztási kritériumok összeállításánál érvényesülő elvre, a szerszámok számának minimalizálására, aminek következtében több különböző műveletelem ugyanazzal a szerszámmal hajtandó végre. Az azonos szerszámmal végrehajtandó műveletelemeket célszerű közvetlenül egymás után végrehajtani, hogy a felesleges szerszámváltásokat elkerüljük. A műveletelemek sorrendjének ilyen átrendezése természetesen csak akkor lehetséges, ha nem ütközik technológiai akadályba.

A szerszámelrendezés tervezése Itt feladat a megmunkáláshoz szükséges szerszámok gépen (revolverfejben, szerszámtárban) történő elhelyezésének megtervezése. A szerszámok elrendezése hatással van a gép felszerszámozására (szerszámtár, revolverfej feltöltése) és a szerszámváltások költség- és időigényére. Ennek megfelelően optimálási cél e költség és időadatok minimalizálása. A feladat megoldása során korlátozásként veendők figyelembe a következők: a szerszámoknak a műveletelemek végrehajtási sorrendjéből származó szerszám aktivizálási sorrendje, a gép konstrukciós jellemzői, amelyek behatárolják az egyes szerszámhelyekre fogható szerszámok típusát, méretét és a szerszámcserék, valamint szerszámváltás mechanizmusát. A mai tervezőrendszerek egyszerűsített heurisztikus módszert alkalmaznak az optimumesélyes szerszámelrendezési kidolgozáshoz.

A műveletterv szerkesztése A tervezés e szintjén feladat az eddigi tervezési eredmények szerkesztése és kiadása a műveletelem tervezés számára kényelmes formában. Ennek során: beiktatjuk a szerszámváltással, -cserével, gépen történő méréssel kapcsolatos segédműveleteket a megmunkálási folyamatba, pontosbítjuk a műveletelemek geometriai és egyéb jellemzőit figyelembe véve az alkatrész készültségi szintjét a műveletelem végrehajtásának pillanatában. Az itt elkészült műveletterv használható gyártási dokumentációként (MŰVELETTERV I.), bár még nem tartalmazza a műveletelemtervezés eredményadatait (forgácsolási paraméterek, normaidők).