1.1. Halmazok. 2. Minta - 5. feladat (2 pont) Adott két halmaz:



Hasonló dokumentumok
HALMAZOK 2. Feladat Év Kész Nem ment. 1) Egy osztály tanulói valamennyien vettek. 2) Egy 10 tagú csoportban mindenki beszéli az

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok

Érettségi feladatok: Halmazok, logika

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok

Halmazelméleti feladatok (középszint)

Érettségi feladatok: Halmazok, logika

Halmazelméleti feladatok (középszint)

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Halmazok

Érettségi feladatok: Halmazok, logika 1/5

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Halmazok

Halmazelmélet. 1 Halmazelmélet

Halmazok. d) Mennyi annak a valószínűsége, hogy egy eltérést véletlenszerűen kiválasztva, azt legalább ketten megtalálták?

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Halmazok

Halmazműveletek feladatok

Egy halmazt elemei megadásával tekintünk ismertnek. Az elemeket felsorolással,vagy ha lehet a rájuk jellemző közös tulajdonság megadásával adunk meg.

Halmazok Megoldások. c) Fogalmazza meg a következő állítás tagadását! Enikő minden eltérést

Gyakorló feladatsor 9. osztály

az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára ; halmaz összes részhalmazát!

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Logika-Gráfok

Logika, gráfok. megtalált.

9, Adott az A és B halmaz: A = {a; b; c; d}, B = {a; b; d; e; f}. Adja meg elemeik felsorolásával az A B, A B, A\B és B\A halmazokat!

3.Példa. Megoldás 4. Példa: Megoldás

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

HALMAZOK TULAJDONSÁGAI,

Alapfeladatok halmazábra készítésére, egyszerű halmazműveletekre: különbség, metszet, unió.

Év végi ismétlés 9. - Érettségi feladatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

Logika, gráfok Megoldások

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.

Készítette: Ernyei Kitti. Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Gráfok

KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE

Halmazok. A és B különbsége: A \ B. A és B metszete: A. A és B uniója: A

KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT

1.1. Halmazok 1. Minta - 5. feladat (2 pont) Adjon meg két olyan halmazt, amelynek metszete {1; 2}, uniója {0; 1; 2; 5; 8}!

Kisérettségi feladatgyűjtemény

Valószínűség számítás

ÉRETTSÉGI FELADATOK SZÁZALÉKSZÁMÍTÁS SZÖVEGES FELADATOK. 1. Számítsa ki 25 és 121 számtani és mértani közepét! (2 pont)

2017/2018. Matematika 9.K

Azonosító jel: ÉRETTSÉGI VIZSGA május 29. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Matematika kisérettségi

Érettségi feladatok: Szöveges feladatok

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

Középszintű matematika érettségi feladatok adatbázisa témakörök szerint 2005.május 2018.május MEGOLDÁSOKKAL

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

Halmazok. Gyakorló feladatsor a 9-es évfolyamdolgozathoz

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. A: József Attila hosszú versei D: az osztály legokosabb tanulója

2017/2018. Matematika 9.K

HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK

HALMAZOK. Készítette: Fazekas Anna matematika tanár

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget!

b) Fogalmazza meg a következő állítás tagadását! A focira jelentkezett tanulók közül mindenkinek van testvére.

Azonosító jel: ÉRETTSÉGI VIZSGA május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!

Feladatok MATEMATIKÁBÓL a 12. évfolyam számára

MATEMATIKA ÉRETTSÉGI május 28. KÖZÉPSZINT I.

KOMPETENCIA ALAPÚ LEVELEZŐ MATEMATIKA VERSENY

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Logika-Gráfok

Számelmélet Megoldások

1-A 1-B. francia. francia - 3 -

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

(6/1) Valószínűségszámítás

MATEMATIKA KÖZÉPSZINT. Érettségi feladatok témakörök szerint

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Valószínűségszámítás

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc

1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat!

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Kombinatorika és Valószínűségszámítás

Halmazelmélet alapfogalmai

Az egyszerűsítés utáni alak:

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Középszintű matematika érettségi feladatok adatbázisa témakörök szerint 2005.május 2018.május

A B C D E. 2. Anna, Bori és Cili moziba mennek. Hányféle sorrendben ülhetnek le egymás mellé? Írja le a megoldás menetét!

b) Az összes megírt dolgozatból véletlenszerűen kiválasztunk egyet. Mennyi a valószínűsége annak, hogy jeles vagy jó dolgozatot veszünk a kezünkbe?

1. Halmazok, számhalmazok, alapműveletek

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI május EMELT SZINT. 240 perc

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 4. 8:00. Időtartam: 45 perc OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

MATEMATIKA ÉRETTSÉGI május 4. KÖZÉPSZINT I.

Érettségi feladatok: Szöveges feladatok 1/7

2003 máj.-jun. / 6.feladat: Egy dobozban 5 piros golyó van. Hány fehér golyót tegyünk hozzá, hogy a fehér golyó húzásának valószínűsége 80% legyen?

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Középszintű érettségi és próbaérettségi feladatok HIÁNYZIK!!!- NÉZZ UTÁNA!

Hányan vannak ilyenek, ha? Halmazelmélet 2. feladatcsomag

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Halmazok

MATEMATIKA VERSENY

3. Venn-diagrammok használata nélkül bizonyítsuk be az alábbi összefüggéseket!

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Matematika kisérettségi I. rész 45 perc NÉV:...

MATEMATIKA VERSENY

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY HARMADIK OSZTÁLY

Kisérettségi feladatsorok matematikából

Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?

MATEMATIKA ÉRETTSÉGI október 25. KÖZÉPSZINT I.

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc

Halmazelmélet. 1. Jelenítsük meg Venn-diagrammon az alábbi halmazokat: a) b) c) 2. Milyen halmazokat határoznak meg az alábbi Venn-diagrammok?

Átírás:

1.1. Halmazok 2009. május id. - 11. feladat (3 pont) A H halmaz elemei legyenek a KATALINKA szó betűi, a G halmaz elemei pedig a BICEBÓCA szó betűi. Írja fel a H U G halmaz elemeit! 2010. október - 1. feladat (1+1=2 pont) Adott az A és B halmaz: A = {a; b; c; d}, B = {a; b; d; e; f}. Adja meg elemeik felsorolásával az A B és A B halmazokat! 3 2006. február - 12. feladat (4 pont) Az A és a B halmazokról a következőket tudjuk: A B = {1; 2}, A B = {1; 2; 3; 4; 5; 6; 7}, A \ B = {5; 7}. Adja meg az A és a B halmaz elemeit! 1. Minta - 5. feladat (2 pont) Adjon meg két olyan halmazt, amelynek metszete {1; 2}, uniója {0; 1; 2; 5; 8}! 2. Minta - 5. feladat (2 pont) Adott két halmaz: A = { egyjegyű pozitív páratlan számok} B = { 2;3;5;7 } Sorolja fel az A B és az A \ B halmaz elemeit! 2007. október - 1. feladat (2 pont) Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az A B halmaz elemeit! 2006. május id. - 1. feladat (2 pont) Az A halmaz elemei a 10-nél nem kisebb és a 20-nál nem nagyobb páros számok, a B halmaz elemei a néggyel osztható pozitív számok. Adja meg az A B halmaz elemeit! 2009. október - 2. feladat (1+1+1=3 pont) Legyen az A halmaz a 10-nél kisebb pozitív prímszámok halmaza, B pedig a hattal osztható, harmincnál nem nagyobb pozitív egészek halmaza. Sorolja fel az A, a B és az A B halmazok elemeit! 2011. május - 7. feladat (4 pont) Az A halmaz az 5-re végződő kétjegyű pozitív egészek halmaza, a B halmaz pedig a kilenccel osztható kétjegyű pozitív egészek halmaza. Adja meg elemeik felsorolásával az alábbi halmazokat: 2011. május id. - 12. feladat (4 pont) Tekintsük a következő két halmazt: A={36 pozitív osztói}; B={16-nak azon osztói, amelyek négyzetszámok}. Elemeik felsorolásával adja meg a következő halmazokat: A; B; 2008. október - 3. feladat (2 pont) A halmaz összes kételemű részhalmazát! Sorolja fel az = { 1;10;100} 2009. május id. - 1. feladat (2 pont) Írja fel az { 3; 6;15; 28} A; B; A B ; A \ B. A B ; A \ B. A = halmaz minden olyan részhalmazát, amelynek csak páros számok az elemei! 2006. október - 9. feladat (2 pont) Egy iskola teljes tanulói létszáma 518 fő. Ők alkotják az A halmazt. Az iskola 12. c osztályának 27 tanulója alkotja a B halmazt. Mennyi az A I B halmaz számossága?

2011. október - 4. feladat (1+1+1=3 pont) 4 Jelölje N a természetes számok halmazát, Z az egész számok halmazát és az üres halmazt! Adja meg az alábbi halmazműveletek eredményét! a) N Z; b) Z ; c) \ N. Logikai szita 2 halmazra 2008. május id. - 3. feladat (1+1+1=3 pont) Egy osztály tanulói valamennyien vettek színházjegyet. Kétféle előadásra rendeltek jegyeket: az elsőre 18-at, a másodikra 24-et. 16 tanuló csak a második előadásra rendelt jegyet. a) Hány tanuló rendelt jegyet mindkét előadásra? b) Hány tanuló akart csak az első előadásra elmenni? c) Mennyi az osztály létszáma? 2006. május - 11. feladat (3 pont) Egy 10 tagú csoportban mindenki beszéli az angol és a német nyelv valamelyikét. Hatan beszélnek közülük németül, nyolcan angolul. Hányan beszélik mindkét nyelvet? Válaszát indokolja számítással, vagy szemléltesse Venn-diagrammal! 2009. május id. - 12. feladat (4 pont) Egy fordítóiroda angol és német fordítást vállal. Az irodában 50 fordító dolgozik, akiknek 70%-a angol nyelven, 50%-a német nyelven fordít. Hány fordító dolgozik mindkét nyelven? Válaszát indokolja! 2003. május - 8. feladat (2+2=4 pont) Júniusban a 30 napból 12 olyan nap volt, amikor 3 mm-nél több, és 25 olyan, amikor 7 mm-nél kevesebb csapadék esett. a) Hány olyan nap volt, amelyen 7 mm vagy annál több csapadék esett? b) Hány olyan nap volt, amikor 3 mm-nél több, de 7 mm-nél kevesebb csapadék esett? 2005. október - 13.a,b) feladat (4+4=8 pont) Egy középiskolába 700 tanuló jár. Közülük 10% sportol rendszeresen a két iskolai szakosztály közül legalább az egyikben. Az atlétika szakosztályban 36 tanuló sportol rendszeresen, és pontosan 22 olyan diák van, aki az atlétika és a kosárlabda szakosztály munkájában is részt vesz. a) Készítsen halmazábrát az iskola tanulóiról a feladat adatainak feltüntetésével! b) Hányan sportolnak a kosárlabda szakosztályban?

Logikai szita 3 halmazra 5 2005. május 29. - 14.a) feladat (4 pont) Egy osztályban a következő háromféle sportkört hirdették meg: kosárlabda, foci és röplabda. Az osztály 30 tanulója közül kosárlabdára 14, focira 19, röplabdára 14 tanuló jelentkezett. Ketten egyik sportra sem jelentkeztek. Három gyerek kosárlabdázik és focizik, de nem röplabdázik, hatan fociznak és röplabdáznak, de nem kosaraznak, ketten pedig kosárlabdáznak és röplabdáznak, de nem fociznak. Négyen mind a háromféle sportot űzik. Írja be a megadott halmazábrába a szövegnek megfelelő számokat! 2004. május - 17.c) feladat (7 pont) Egy iskolában összesen 117 angol, 40 német, 30 francia nyelvvizsgát tettek le sikeresen a diákok. Három vagy több nyelvvizsgája senkinek sincs, két nyelvből 22-en vizsgáztak eredményesen: tíz tanuló angol német, hét angol francia, öt pedig német francia párosításban. Az iskolában hány tanulónak van legalább egy nyelvvizsgája? 2010. május - 16.a,b,c) feladat (2+6+2=10 pont) Egy középiskolába 620 tanuló jár. Az iskola diákbizottsága az iskolanapra három kiadványt jelentetett meg: I. Diákok Hangja II. Iskolaélet III. Miénk a suli! Később felmérték, hogy ezeknek a kiadványoknak milyen volt az olvasottsága az iskola tanulóinak körében. A Diákok Hangját a tanulók 25%-a, az Iskolaéletet 40%-a, a Miénk a suli! c. kiadványt pedig 45%-a olvasta. Az első két kiadványt a tanulók 10%-a, az első és harmadik kiadványt 20%-a, a másodikat és harmadikat 25%-a, mindhármat pedig 5%-a olvasta. a) Hányan olvasták mindhárom kiadványt? b) A halmazábra az egyes kiadványokat elolvasott tanulók létszámát szemlélteti. Írja be a halmazábra mindegyik tartományába az oda tartozó tanulók számát! c) Az iskola tanulóinak hány százaléka olvasta legalább az egyik kiadványt? I. II. III.

2005. május 10. - 18.a,b) feladat (4+8=12 pont) Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először Ádám és Tamás nézték meg figyelmesen az ábrákat: Ádám 11, Tamás 15 eltérést talált, de csak 7 olyan volt, amelyet mindketten észrevettek. a) Hány olyan eltérés volt, amelyet egyikük sem vett észre? Közben Enikő is elkezdte számolni a eltéréseket, de ő sem találta meg az összeset. Mindössze 4 olyan volt, amelyet mind a hárman megtaláltak. Egyeztetve kiderült, hogy az Enikő által bejelöltekből hatot Ádám is, kilencet Tamás is észrevett, és örömmel látták, hogy hárman együtt az összes eltérést megtalálták. b) A feladat szövege alapján töltse ki az alábbi halmazábrát arról, hogy ki hányat talált meg! 6 2005. május 28. - 18.a,b) feladat (4+8=12 pont) Egy zeneiskola minden tanulója szerepelt a tanév során szervezett három hangverseny, az őszi, a téli, a tavaszi koncert valamelyikén. 20-an voltak, akik az őszi és a téli koncerten is, 23-an, akik a télin és a tavaszin is, és 18-an, akik az őszi és a tavaszi hangversenyen is szerepeltek. 10 olyan növendék volt, aki mindhárom hangversenyen fellépett. a) Írja be a halmazábrába a szövegben szereplő adatokat a megfelelő helyre! A zeneiskolába 188 tanuló jár. Azok közül, akik csak egy hangversenyen léptek fel, kétszer annyian szerepeltek tavasszal, mint télen, de csak negyedannyian ősszel, mint tavasszal. b) Számítsa ki, hogy hány olyan tanuló volt, aki csak télen szerepelt!

2007. május id. - 15. feladat (2+10=12 pont) Egy atlétika szakosztályban a 100 m-es síkfutók, a 200 m-es síkfutók és a váltófutók összesen 29 fős csoportjával egy atlétaedző foglalkozik. Mindegyik versenyző legalább egy versenyszámra készül. A 100 m-es síkfutók tizenöten vannak; hét versenyző viszont csak 100 méterre edz, négy versenyző csak 200 méterre, hét versenyző csak váltófutásra. a) Készítsen a feladatnak megfelelő halmazábrát! b) Azt is tudjuk, hogy bármelyik két futószámnak pontosan ugyanannyi közös tagja van. Mennyi ez a szám? 7 2008. október - 18.c) feladat (8 pont) Az autókereskedés parkolójában 1 25-ig számozott hely van. Minden beérkező autó véletlenszerűen kap parkolóhelyszámot. Május 10-én az üres parkolóba 25 kocsi érkezik: 12 ezüstszínű ötajtós, 4 piros négyajtós, 2 piros háromajtós és 7 zöld háromajtós. A május 10-re előjegyzett 25 vevő az autó színére is megfogalmazta előzetesen a kívánságait. Négyen zöld kocsit rendeltek, háromnak a piros szín kivételével mindegyik megfelel, öten akarnak piros vagy ezüst kocsit, tízen zöldet vagy pirosat. Három vevőnek mindegy, milyen színű kocsit vesz. Színek szempontjából kielégíthető-e a május 10-re előjegyzett 25 vevő igénye az aznap reggel érkezett autókkal?

Intervallumok 8 2008. május - 1. feladat (2 pont) Adja meg a 3 8 1 ; 8 nyílt intervallum két különböző elemét! 2004. május - 9. feladat (2+1=3 pont) Adott két intervallum: ] 1; 3[ és [0; 4]. a) Ábrázolja számegyenesen a két intervallum metszetét! b) Adja meg a metszetintervallumot! 2009. május - 9. feladat (4 pont) Az A és a B halmazok a számegyenes intervallumai: A [ 1,5 ; 12], [ 3 ; 20] Adja meg az A B és a B A halmazokat! = B =. 2007. május - 13.c) feladat (6 pont) x egyenlőtlenség valós megoldásainak Legyen az A halmaz a 7 + < 2 ( x 2) 2 halmaza, B pedig az x + x 6 0 egyenlőtlenség valós megoldásainak halmaza. Adja meg az A B, A B és B \ A halmazokat!