5. ENZIMEK, KOENZIMEK, VITAMINOK



Hasonló dokumentumok
Vitaminok meghatározása és csoportosítása

BIOMOLEKULÁK KÉMIÁJA. Novák-Nyitrai-Hazai

Az enzimek katalitikus aktivitású fehérjék. Jellemzőik: bonyolult szerkezet, nagy molekulatömeg, kolloidális sajátságok, alakváltozás, polaritás.

A vitaminok és az élelmiszerek kapcsolatáról

Az enzimműködés termodinamikai és szerkezeti alapjai

09. A citromsav ciklus

A piruvát-dehidrogenáz komplex. Csala Miklós

A bioenergetika a biokémiai folyamatok során lezajló energiaváltozásokkal foglalkozik.

Grilla Stúdiója - gyógytorna, szülésfelkészítés

A glükóz reszintézise.

MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak

Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek

folsav, (a pteroil-glutaminsav vagy B 10 vitamin) dihidrofolsav tetrahidrofolsav N CH 2 N H H 2 N COOH

P O O O. OAc A O. OAc

ZSÍRSAVAK OXIDÁCIÓJA. FRANZ KNOOP német biokémikus írta le először a mechanizmusát. R C ~S KoA. a, R-COOH + ATP + KoA R C ~S KoA + AMP + PP i

A felépítő és lebontó folyamatok. Biológiai alapismeretek

Nitrogéntartalmú szerves vegyületek. 6. előadás

Bevezetés a biokémiába fogorvostan hallgatóknak

Heterociklusos vegyületek

Fehérjék. SZTE ÁOK Biokémiai Intézet

A nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk.

Citrátkör, terminális oxidáció, oxidatív foszforiláció

ENZIMSZINTŰ SZABÁLYOZÁS

BIOGÉN ELEMEK MÁSODLAGOS BIOGÉN ELEMEK (> 0,005 %)

IV. Elektrofil addíció

A biokémiai folyamatokat enzimek (biokatalizátorok) viszik véghez. Minden enzim. tartalmaz fehérjét. Két csoportjukat különböztetjük meg az enzimeknek

Vitaminok leírása, hatásai

A szénhidrátok lebomlása

Szerves Kémiai Problémamegoldó Verseny

, mitokondriumban (peroxiszóma) citoplazmában

szabad bázis a szerves fázisban oldódik

R R C X C X R R X + C H R CH CH R H + BH 2 + Eliminációs reakciók

A sejtek élete. 5. Robotoló törpék és óriások Az aminosavak és fehérjék R C NH 2. C COOH 5.1. A fehérjeépítőaminosavak általános

Zsírsav szintézis. Az acetil-coa aktivációja: Acetil-CoA + CO + ATP = Malonil-CoA + ADP + P. 2 i

6. FONTOSABB DEFINICIÓK

MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI A LIPIDEK 1. kulcsszó cím: A lipidek szerepe az emberi szervezetben

A szénhidrátok lebomlása

Általános jellemzés, fogalom Tartós tengeri út Skorbut Hántolt rizs fogyasztása beriberi (1896)

A gasztrointesztinális (GI) rendszer élettana IV. Táplálkozás élettan.

Szerves Kémiai Problémamegoldó Verseny

Néhány fontosabb vitamin

Táplálkozás. SZTE ÁOK Biokémiai Intézet

1. A nitrogén körforgása

Aromás: 1, 3, 5, 6, 8, 9, 10, 11, 13, (14) Az azulén (14) szemiaromás rendszert alkot, mindkét választ (aromás, nem aromás) elfogadtuk.

Energiatermelés a sejtekben, katabolizmus. Az energiaközvetítő molekula: ATP

Szénhidrátok monoszacharidok formájában szívódnak fel a vékonybélből.

Néhány fontosabb vitamin

AMINOSAVAK, FEHÉRJÉK

Fémorganikus vegyületek

Glikolízis. emberi szervezet napi glukózigénye: kb. 160 g

Glikolízis. Csala Miklós

Mire költi a szervezet energiáját?

1. KARBONILCSOPORTOT TARTALMAZÓ VEGYÜLETEK

Az AS nitrogénjének eltávolítása

Bevezetés a biokémiába fogorvostan hallgatóknak Munkafüzet 4. hét

Aminosavak általános képlete NH 2. Csoportosítás: R oldallánc szerkezete alapján: Semleges. Esszenciális aminosavak

Dr. Mandl József BIOKÉMIA. Aminosavak, peptidek, szénhidrátok, lipidek, nukleotidok, nukleinsavak, vitaminok és koenzimek.

BIOGÉN ELEMEK Azok a kémiai elemek, amelyek az élőlények számára létfontosságúak

Szénhidrogének III: Alkinok. 3. előadás

VITAMINOK JELENTŐSÉGE ÉS FORRÁSAIK

A légzési lánc és az oxidatív foszforiláció

KARBONIL-VEGY. aldehidek. ketonok O C O. muszkon (pézsmaszarvas)

Szerkesztette: Vizkievicz András

A nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk.

A METABOLIZMUS ENERGETIKÁJA

A METABOLIZMUS ENERGETIKÁJA

MEDICINÁLIS ALAPISMERETEK BIOKÉMIA AZ AMINOSAVAK ANYAGCSERÉJE 1. kulcsszó cím: Az aminosavak szerepe a szervezetben

Vitaminok csoportosítása

Szénhidrogének II: Alkének. 2. előadás

A fehérjék harmadlagos vagy térszerkezete. Még a globuláris fehérjék térszerkezete is sokféle lehet.

Táplálkozási ismeretek. Fehérjék. fehérjéinek és egyéb. amelyeket

szerotonin idegi mûködésben szerpet játszó vegyület

6. Előadás Oligonukleotidok szintézise, koenzimek, vitaminok

Néhány fontosabb vitamin

A koenzim Q10 fél évszázados története

Purin nukleotidok bontása

Integráció. Csala Miklós. Semmelweis Egyetem Orvosi Vegytani, Molekuláris Biológiai és Patobiokémiai Intézet

A KOLESZTERIN SZERKEZETE. (koleszterin v. koleszterol)

Helyettesített karbonsavak

IX. Szénhidrátok - (Polihidroxi-aldehidek és ketonok)

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Enzimek. Enzimek! IUBMB: szisztematikus nevek. Enzimek jellemzése! acetilkolin-észteráz! legalább 10 nagyságrend gyorsulás. szubsztrát-specificitás

Louis Camille Maillard ( )

4. FEHÉRJÉK. 2. Vázanyagok. Az izmok alkotórésze (pl.: a miozin). Inak, izületek, csontok szerves komponensei, az ún. vázfehérjék (szkleroproteinek).

TAKARMÁNYOZÁSTAN. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

Sporttáplálkozás. Étrend-kiegészítők. Készítette: Honti Péter dietetikus július

Testünk építőkövei: A vitaminok

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

A Magyar Élelmiszerkönyv /496 számú elıírása az élelmiszerek tápérték jelölésérıl

KÉMIA II. (BMEVESZAKM1) A tárgy heti 2 2 óra előadásból és heti 1 óra laboratóriumi (kummulált) gyakorlatból áll.

KÉMIA II. (BMEVESZAKM1) A tárgy heti 2 2 óra előadásból és heti 1 óra laboratóriumi (kummulált) gyakorlatból áll.

Szemináriumi feladatok (alap) I. félév

Intra- és intermolekuláris reakciók összehasonlítása

Élelmiszer-fehérjék átalakulása a feldolgozás és tárolás során

Fémorganikus kémia 1

10. Előadás. Heterociklusos vegyületek.

A biokémia alapjai. Typotex Kiadó. Wunderlich Lívius Szarka András

KÉMIA II. (BMEVESZAKM1) A tárgy heti 2 2 óra előadásból és heti 1 óra laboratóriumi (kummulált) gyakorlatból áll.

1. KARBONILCSOPORTOT TARTALMAZÓ VEGYÜLETEK

KARBONSAVAK. A) Nyílt láncú telített monokarbonsavak (zsírsavak) O OH. karboxilcsoport. Példák. pl. metánsav, etánsav, propánsav...

Átírás:

5. EZIMEK, KEZIMEK, VITAMIK 5.1. Enzimek 5.1.1. Az enzimek általános tulajdonságai Az enzimek a globuláris fehérjék körébe tartoznak. A szervezet folyamataiban fontos szerepet játszanak, mint biokatalizátorok. Feladatuk abban áll, hogy a sejtekben végbemenı biokémiai reakciók a fiziológiai körülmények között megfelelı sebességgel végbemehessenek. A katalitikus folyamat során a peptidláncban egymástól távoli aminosavrészek kerülnek olyan térhelyzetbe, hogy együttesen fejthetik ki hatásukat. A fehérje felületén egy olyan sajátos szerkezeti részlet alakul ki, amelyhez a szubsztrát molekula illeszkedik, és az enzimhez kapcsolódik. Ez a kötıhely. A kötıhely a molekulában lévı ún. katalitikus hellyel együtt, ahol lejátszódhat a katalitikus reakció, az enzim aktív centrumát képezi. A katalitikus helyen azok a funkciós csoportok találhatók, amelyek a szubsztrátum átalakításában közvetlenől részt vesznek. Az enzimek királis molekulák, képesek különbséget tenni enantiotóp csoportok és felületek között, mintegy 96-98%-os sztereoszelektivitással. Az enzimmőködés részletes folyamatát a tripszin és a kimotripszin-a példáján mutatjuk be (5.1. és 5.2. ábra). Mindkét enzim a szerinproteázok csoportjába tartozik. evük onnan ered, hogy egyrészt proteázok, mert polipeptidek, proteinek hidrolízisét katalizálják. Másrészt pedig azért különböztethetık meg a többi proteáztól, mert a katalitikus reakcióban a szerin aminosav oldallánca játszik döntı szerepet. Mindkét enzimben a katalitikus helyen a láncban egyébként távoli három aminosav a három-dimenziós szerkezetben térközeli helyzetbe kerül: az aszparaginsav (Asp-102), a hisztidin (is-57) és a szerin (Ser-195). Alapvetı különbség a két enzim között a kötıdési hely szerkezetében található. A tripszin elınyösen olyan peptidkötést bont, melynek szomszédságában bázikus oldalláncot tartalmazó aminosav, pl. lizin, vagy arginin helyezkedik el. Ekkor a kötıhely és a szubsztrát között oulomb-féle ionos kölcsönhatások alakulnak ki. A kimotripszin-a esetében pedig az enzim felületén olyan zsebszerő képzıdmény keletkezik, mely hidrofób kölcsönhatás révén rögzíti a szubsztrátot: a kimotripszin-a így olyan peptidkötést bont, 101

melynek szomszédságában pl. fenilalanin van. Ez illeszkedhet a hidrofób falhoz az enzim felületén. A kötıdési hely szerkezetében található alapvetı különbség határozza meg a szerinproteázok specifikusságát. A két különbözı típusú kötıhely az alábbi ábrán látható: 5.1. Ábra. A tripszin és a kimotripszin-a kötıhelyének részlete. (5.2. ábra). A katalitikus reakció mechanizmusát a kimotripszin-a példáján mutatjuk be 5.1.2. A kimotripszin-a hatásmechanizmusa Szerkezete régóta ismert. 1964-ben artley megállapította az aminosav-sorrendet, a térszerkezetét Blow határozta meg 1967-ben. A kimotripszin-a a hasnyálmirigybıl kristályosan izolálható, mintegy 245 aminosavat tartalmazó fehérjebontó enzim. árom peptidláncból áll, melyeket diszulfán-kötések rögzítenek. Az aktív centrum részét itt is a Ser-195, a is-57 és az Asp-102 aminosavak alkotják. Proteináz és peptidáz (hidroláz) szerepe van: kedvezményezetten olyan helyeken bont, ahol a karboxilcsoport aromás aminosav része: pl. fenilalanin, tirozin. Az enzim felületén a szubsztrát kötıdési helye egyúttal a sztereospecifikusságot is meghatározza. a D-aminosav van jelen ebben a helyzetben, az oldallánc rossz irányban, a zsebbel ellenkezı oldalon helyezkedik el. Ezért 102

a szerinproteázok D-aminosavakat nem hidrolizálnak. Észter-kötést is bontanak, észteráz aktivitásuk is van. A peptidkötés hidrolízisének összegzett reakciója a következı: Q + 2 enzim + 2 Q Az egyenletben = az -terminális, Q = a -terminális peptid fragmens. Az aromás oldallánc szerepe, mint említettük, abban rejlik, hogy a kötıhelyen az aromás győrő a kötıhely hidrofób falához kapcsolódik. A folyamatot az 5.2. ábrán mutatjuk be. Az I-es képen a kiindulási állapotot tüntettük fel. A hidrolizálandó peptidkötést tartalmazó fehérje aromás győrőjével már a kötıhelyhez kapcsolódott nem kovalens kötéssel. Az enzim peptidláncában egymástól távol álló, de a térszerkezetben egymáshoz közel került három aminosav, melyeket már említettünk, így kifejtheti katalitikus hatását. A hisztidin imidazol-győrője egy proton-felvétellel és egy proton-vesztéssel járó lépésben vesz részt, és kialakul a II-es képen látható enzim-szubsztrát komplexben a nukleofil szerinoldallánc. Az alkoholát anion a peptid-karbonilcsoport szénatomja ellen intéz nukleofil támadást, melynek eredménye az un. elsı átmeneti állapot, vagy tetrahedrális (tetragonális) átmeneti állapot, amely a III-as képen látható. Ezután a proton a -terminális fragmenshez kapcsolódik, mely a szén-nitrogén kötés hasadása után eltávozik. Az - terminális rész észterkötéssel kapcsolódik az enzimhez és így kialakul a gyakran acilenzim intermediernek nevezett vegyület, melyben a szubsztrátot és az enzimet kovalens kötés köti össze (IV). A szerin tulajdonképpen alkoholízissel bontotta el az amid-kötést. A következı lépésben keletkezik az V acil-enzim-víz komplexnek nevezett struktúra, a hisztidin egy vízmolekulát deprotonál (V), és a keletkezett hidroxidion újabb nukleofil támadással az észter szénatomhoz kötıdik. Ez egy észter-hidrolízis kezdı lépése. Kialakul az un. második átmeneti állapot (VI), melynek stabilizálódása során a második peptidfragmens is szabaddá válik és eltávozik, miközben a proton a hisztidinrıl a szerin hidroxilcsoportjára vándorol. Visszajutunk a VII-es képen bemutatott alapállapothoz: az enzim készen áll a következı amid kötés hasítására. 103

I II EZIM EZIM Ser-195 2 is-57 2 α terminális terminális Ser-195 2 is-57 2 terminális α terminális Asp -102 Asp -102 III IV EZIM EZIM Ser-195 2 is-57 2 terminális α terminális Ser-195 2 is-57 2 terminális α terminális Asp -102 Asp-102 V VI EZIM EZIM Ser-195 2 is-57 2 α terminális Ser-195 2 is-57 2 α terminális Asp-102 Asp -102 5.2. Ábra. A kimotripszin-a hatásmechanizmusa. 104

(az 5.2. ábra folytatása) VII EZIM Ser-195 2 2 α terminális is-57 Asp -102 Fontosak a hisztidin reakciói. Ebben az imidazolgyőrő a fiziológiás p-n könnyő protoncserét tesz lehetıvé, mivel konjugált savának a pk a értéke 6,2. Az imidazol erısen polarizálja a szerin hidroxilcsoportját, növeli ennek nukleofilitását. Minthogy a szerin hidroximetil-csoportja rendszerint nem túlságosan reaktív, a hisztidin imidazolgyőrőjének a szerin hidroxilcsoportján a negatív töltés kialakításában alapvetıen döntı szerepe van. Ez a protonátmenet valószínőtlen, azonban az aszparaginsav (Asp-102) negatív töltésével stabilizálni képes a hisztidin heterociklusos győrőjének protonálási folyamatát. Az enzim centrumában végeredményben két egymást követı katalitikus reakció játszódik le: egy bázis-katalizált átészterezés, majd egy bázis-katalizált alkoholízis, melyben bázisként a hisztidin szerepel. A kimotripszin-a reakciómechanizmusa jó példája az enzimek mőködésének. Látható, hogy az aktivált állapotok energetikai stabilizálása és a reaktánsok meghatározott, pontos térhelyzetben történı rögzítése mennyire fontos az aktiválási szabadenergia csökkentésében. Említettük, hogy a kimotripszin-a észterhidrolízist is katalizál. Az alábbi egyszerő példa jól bizonyítja a szerin szerepét. A trimetilecetsav-p-nitrofenil-észterét a kimotripszin A-val reagáltatva, a reakció során az oldatban a p-nitrofenolát anion szabadul fel, mely UV-spetroszkópiával jól követhetı. a ezután a reakcióelegybıl visszanyerjük az enzimet, azt tapasztalhatjuk, hogy 105

az elvesztette aktivitását akár amid-, akár észterhidrolízises reakciókra. Így, miután a trimetilacetil molekularész sem szabadult fel, gyanítható, hogy az enzim valamely elsırendő fontosságú funkciós csoportja acilezıdött, megszüntetve az aktivitást. Végül is röntgenvizsgálatokkal derült ki, hogy ez a szerkezeti rész pontosan a szerin-195 hidroxilcsoportja. 3 3 3 2 E(nzim) E ( 3 ) 3 + 2 Ezt a tényt az a kísérleti tapasztalat is alátámasztotta, hogy az így inaktivált enzimet az erısen nukleofil hidroxilaminnal reagáltatva megkapták a trimetilecetsav hidroxámsavszármazékát, és ugyanakkor az ebben a reakcióban visszanyert enzim újra aktívnak bizonyult. E 3 + 2 E + 3 ( 3 ) 3 3 Másik lehetısége az enzim gátlásának a tetrahedrális köztiterméken alapul. Ezt támasztja alá a formilcsoport szerepe a gátlásban. Ez a gátló hatású aldehid polipeptidhez kötött, mégpedig oly módon, hogy a formilcsoport szomszédságában aromás győrő kell, hogy legyen. Az ilyen típusú vegyületek az aldehid-hidrát- ill. acetál képzıdését használják fel a tetrahedrális állapot kialakítására, és így az enzim nem képes a valódi szubsztráttal kapcsolatba kerülni. polipeptid 2 106

Ser Az irreverzibilis, kovalensen kötıdı inhibitorok közül a foszfátokat említhetjük meg, melyek tipikusan kompetitív inhibitorok. Ilyenek a diizopropil-fluorofoszfát (DFP) és a szarin (harci gáz), melyek szintén a szerin hidroxilcsoportjához kapcsolódnak és azt blokkolják. Ezek a vegyületek minden olyan enzim inhibitorai, melyek az aktív helyen szerint tartalmaznak. Gátolják a szerin-proteázokat, így az acetilkolin-észterázt is, mely utóbbi idegi ingerület-átvitelben játszik fontos szerepet: az említett foszforvegyületekkel történı bénítása során az inhibíció az életfunkciók gyors összeomlását eredményezi. Felhasználási területük a rovarölık és ideggázok gyártása. F P F P 3 diizopropil-fluorofoszfát (DFP) szarin 5.2. Koenzimek Az enzimek nagy részénél a katalitikus funkciók mőködéséhez egy kisebb, nem fehérje természető molekulára is szükség van. Ez az un. koenzim, mely valamilyen módon kapcsolódik a fehérjéhez (az apoenzimhez) és így alakul ki a mőködésképes holoenzim. A koenzimek egy része nukleotid-származék, más része pedig a további fejezetben szereplı koenzim funkciójú vitamin. 5.2.1. ikotinsav-amid tartalmú koenzimek ikotinsav-amidot tartalmaz a nikotin-adenin-dinukleotid (AD + ) és 2 -foszfátja, a nikotin-adenin-dinukleotid-foszfát (ADP + ). 107

2 4 5' P P 1'' 1' 2' 2 nikotin-adenin-dinukleotid 2 1'' 4 P AD P 5' 2' 1' 2 P nikotin-adenin-dinukleotid-foszfát ADP 5.3. Ábra. A AD + és a ADP + szerkezete. Ezek a vegyületek voltaképpen pszeudonukleotidoknak is nevezhetık, hiszen tartalmaznak DS-ben, S-ben elıforduló bázist, azonban a molekulákban található másik heterociklus nem sorolható a nukleinsav-bázisok körébe. (Az 5.3. ábrán kékkel jelöltük a nikotinamid-részt és pirossal a 2 -foszfát helyettesítıt.) Ezek a koenzimek oxidációs-redukciós folyamatokban vesznek részt, miközben hidrogént vesznek fel ill. adnak le. A redox folyamat végeredményben a piridin-győrőn játszódik le. A nitrogénatom pozitív töltése hatására a 4-es helyrıl elektronvándorlás indul meg a nitrogén irányába. Ennek következtében a 4-es hely felé hidridanion (két elektron és egy proton) intéz nukleofil támadást, mely eredményeképpen az aromás rendszer felbomlik, kinoidális szerkezet alakul ki és a hidrogén a 4-es szénatomhoz kapcsolódik. 108

pro- 2 + 2e + 2 AD + AD AD + A2 A + AD + 5.4. Ábra. A piridingyőrő szerepe a AD + redukciójában. Ilyen folyamat megy végbe pl. a májban az etil-alkohol acetaldehiddé történı oxidációjakor. Ennek a folyamatnak deutériummal jelzett vegyületek segítségével történt vizsgálata során megállapították, hogy az alkohol pirossal jelzett pro-s hidrogénje vándorol a piridingyőrőre és a folyamat az alábbi reakcióegyenlettel írható fel: AD + 3 3 + AD + A AD esetén a 4-es helyzető szénatomhoz kapcsolódó hidrogének nem ekvivalensek, hanem enantiotópok. Ezt példázza a piroszılısav tejsavvá történı redukciója is, mely a glikolízis során megy végbe. Ekkor a karbonil szénatomot mindig a pro- hidrogén támadja. Így az enantiotóp felületet képezı karbonilcsoport szénatomját a tér olyan oldaláról éri a reagens (ebben az esetben a hidrogén) támadása, mely lehetıvé teszi a sztereospecifikus reakció végbemenetelét, vagyis azt, hogy a reakcióban ne racém, hanem L-tejsav képzıdjön. 109

3 L 3 enzim 3 is 3 AD pro- Glu 5.5. Ábra. A piroszılısav redukciója tejsavvá. Megemlítjük, hogy ebben a reakcióban a szubsztrátot ionos kölcsönhatások rögzítik a kötıhelyhez az enzim bázikus aminosav-oldalláncai segítségével, és a folyamatban fontos szerep jut a protoncserében szerepet játszó hisztidinnek (is), valamint a glutaminsavnak (Glu). 5.2.2. Flavin-adenin-dinukleotid edox-folyamatok koenzimje a flavin-adenin-dinukleotid (FAD): A vegyület csak egy nukleinsav-bázist tartalmaz, ez az adenin, mely ribofuranóz és foszfátrészeken keresztől kapcsolódik az ábrán kékkel jelılt riboflavinhoz, mely a B 2 - vitamin. A másik heterociklusos győrő az izoalloxazin, melynek alapja a pteridinváz. Ez utóbbi pirazin és pirimidin kondenzációjával írható fel az alábbi módon: 110

3 3 6 7 5 8 10 4 3 9 2 1' 1 2 2' 3' 4' 5' 2 P P B2-vitamin: riboflavin 2 adenozin-difoszfát 1 4 pirazin 2 3 4 d 5 3 c b 2 a 1 6 pirimidin 8 1 7 2 6 3 5 4 pteridin = pirazino[2,3-d]pirimidin 7 6 8 9 5 10 1 2 4 3 9 3 alloxazin benzo[g]pteridin-2,4(1,3)-dion izoalloxazin benzo[g]pteridin-2,4(3,9)-dion 5.6. Ábra. A FAD szerkezete. 111

Külön figyelmet érdemel a cukorrész, mely a ribóz redukált alakja, a D-ribit(ol), mely a D- vagy L-ribóz redukciójakor keletkezik, optikailag inaktív cukoralkohol: 2 2 2 2 2 D-ribóz D-ribit(ol) mutatjuk be. A koenzim mőködésének mechanizmusát részletesen a vitaminok tárgyalásánál 5.2.3. A Koenzim-A szerkezete Az egyik legismertebb koenzim a koenzim-a (oa) (5.7. ábra). Tartalmaz egy adenin-tartalmú nukleotid részt. Az 1940-es években F. Lipmann izolálta, szintézisére 1959- ben került sor (Khorana). A ribofuranozid-győrő a 3 -helyzetben foszforilezve van és az 5 - helyzethez kapcsolódó két foszforsav-csoport köti össze a vitaminként is ismert pantoténsavval, amelyet a béltraktus baktériumai termelnek. A pantoténsav, melyet az ábrán kékkel jelöltünk, két részbıl áll: egy hidroxisavból, mely a D-2,4-dihidroxi- 3,3-dimetilbutánsav, és az aminosavaknál már megismert β-alaninból, mely a 3-aminopropionsav. A pantoténsav β-ala karbonilcsoportjához kéntartalmú amin kapcsolódik: ez a ciszteamin, mely a ciszteinbıl vezethetı le (az ábrán narancssárga színnel jelölve). Fontos szerepe az acilcsoport szállítása, e szerepében legismertebb származéka az acetil-koenzim-a (oa-sac). Ez a vegyület energiagazdag észter, így igen reakcióképes. A tiolésztert a kénatom molekulapályáinak az oxigénétıl eltérı tulajdonságai destabilizálják a csak oxigént tartalmazó észterekhez képest, ezért a tiolészter szabadenergiája a hidrolitikus folyamatokban megnı. 112

2 2 2 2 S pantoténsav 2 ciszteamin P P 3 2 3 koenzim-a 3' P 2 2 2 2 3 2 3 P P 3' P 2 S 3 acetil-koenzim-a 5.7. Ábra. A koenzim-a és az acetil-koenzim-a szerkezete. 5.3. Vitaminok 5.3.1. A vitaminok általános tulajdonságai lyan szerves molekulák, melyeket a szervezet többnyire nem képes szintetizálni, és amelyekre azonban, ha kis mennyiségben is, de a biológiai folyamatokhoz alapvetıen szükségünk van. Ezek a vegyületek az élethez nélkülözhetetlen, esszenciális anyagok. 113

Elégtelen mennyíségük jellegzetes hiánybetegségeket okoz, pl. az elızıekben már megismert -vitamin hiánya skorbutot, a D-vitamin hiánya az angolkórt. A farkasvakság az A-vitamin, különbözı ideggyulladások pedig D-vitaminok hiányára utalhatnak. A fenti problémák elsısorban a régebbi idıkben léptek fel, azonban ma is felelıssé tehetı néhány kórképben a vitaminhiány, pl. a -vitamin hiánya szerepet játszhat a fogínyvérzések kialakulásában. Ezek a panaszok azonban a helyes táplálkozással gyakorlatilag megszüntethetık. a a vitaminhiány részleges, azaz a vitamin bevitele a szervezet igénye alatt marad, hipovitaminózisról beszélünk. Ezek a tünetek megfelelı mennyiségő vitamin szedésével megszüntethetık. A teljes vitaminhiány, az avitaminózis, ma már nagyon ritka. Ez a tünetegyüttes azonban a fontosabb vitaminok teljes bevitele hiányában már irreverzibilis változásokat okozhat a szervezet mőködésében és így végzetes következményekkel járhat. éhány vitamin, pl. az A- és D-vitaminok hatékony formája a szervezetben képzıdik és olyan receptorokon hatnak, melyeken a hormonok. A szervezetbe kerülı, több esetben kiindulási vegyületnek tekinthetı formát, melyet sokszor régebben a már aktív vitaminnak tekintettek, provitaminnak nevezzük. A szervezet a vitamin aktív formáját ezekbıl a vegyületekbıl képes szintetizálni. Ilyen pl. az A-vitamin esetén a β-karotin, vagy a D-vitaminok körében a még nem hidroxilezett, de már győrőfelnyílt struktúrák. Sok esetben a vitaminok a fejlıdésben is fontosak, gondoljunk csak a D 2 - és D 3 - vitaminokra. Egyes vitaminok a szervezet káros anyagai elleni védekezésben játszanak jelentıs szerepet (A-, - és E-vitaminok: un. gyökfogók). Ezek a káros anyagok többek között oxigén felhasználásával képzıdhetnek, ilyenek a hidroxil-, hidroperoxi- és peroxid-gyökök, melyek jelenlétének mutagén (a genetikai kódot megváltoztató), teratogén (magzatkárosító) ill. cancerogén (karcinogén: rákot okozó) hatás tulajdonítható. Ezeket figyelembe véve a vitaminok nemcsak a szervezet normális mőködéséhez szükségesek, hanem azért is, hogy a károsító anyagok hatására aktivizálódó kóros folyamatok ne léphessenek fel, ill. ezek hatását csökkentsék. Ezért hívjuk ezeket az anyagokat preventív (megelızı hatású) szereknek is. 114

5.3.2. A vitaminok csoportosítása A vitaminok hagyományosan három nagy csoportba sorolhatók: a) vízoldható vitaminok (pl. a B-vitaminok), b) vízben nem, hanem zsírban oldódó vitaminok (pl. A-, D- E-, K-vitaminok), c) vitaminszerő anyagok (vitogének). A vízoldható vitaminok feleslege többnyire kiürül a vizelettel, azonban a zsíroldható vitaminok túladagolására ügyelni kell, mivel ezek a zsírszövetekben (mint látni fogjuk, szerkezetükbıl adódóan) elıszeretettel felhalmozódnak, és ezért nem ürülnek ki a szervezetbıl, kifejtve a szükségesnél több mennyiségben jelentkezı káros (!) hatásukat. A tipikus túladagolási jelenség a hipervitaminózis, D-vitaminok esetén pl. a kóros meszesedési folyamatok. A vízoldható vitaminok nagyobb része enzimek koenzimjének felépítésében vesz részt és így fejtik ki hatásukat, melyek részletes reakciómechanizmusát a következıkben ismertetni fogjuk. Az alábbiakban összefoglaljuk a vízoldható vitaminok néhány jellegzetes hiánybetegségét, koenzim formáját és legfontosabb biokémiai reakcióit. 1. B 1 -vitamin (tiamin): hiánya beri-berit okoz, koenzimje a tiamin-difoszfát (tiaminpirofoszfát, a továbbiakban: TPP), reakciója: = melletti - kötés létesítése és bontása, 2. B 2 -vitamin (riboflavin): hiánya dermatitiszt, növekedési problémákat okoz, koenzimje a FAD, reakciója: oxidációs-redukciós reakciók, hidrogéngyök és 1 vagy 2 elektrontranszfer, 3. ikotinsavamid (B 3 -vitamin): hiánybetegsége a pellagra (gyomor-bél tünetekkel, bırés nyálkahártya-elváltozással, idegrendszeri tünetekkel járó betegség) és dermatitisz, koenzimje a AD +, reakciója oxidációs-redukciós reakciók, hidridanion-transzfer, 4. Pantoténsav (B 5 -vitamin): hiányakor idegrendszeri problémák léphetnek fel, koenzimje a koenzim-a, reakciója: acetilcsoport szállítása, 5. B 6 -vitamincsoport (piridoxin): hiánya idegrendszeri megbetegedéseket okoz, koenzimje a piridoxál-foszfát, reakciói: transzaminálás, dekarboxilezés, izomerizáció, racemizálás, 115

6. liponsav: hiányára növekedési problémák vezethetık vissza, koenzimje a lipoamid, reakciója: oxidáció-redukció, hidrogén és acilcsoport átvitel, 7. Biotin (-vitamin): hiánybetegsége a humán dermatitisz, koenzimje a biotin-karboxilszállító protein, reakciói: karboxilcsoport beépítése és szállítása, 8. Fólsav: hiánya anémiát (vérszegénység) okoz, koenzimje a tetrahidrofólsav, reakciója: egy szén-egység (metil-, hidroximetil-, formil- és metiléncsoport) átvitele, szállítása, 9. B 12 -vitamin: hiánybetegsége a vészes vérszegénység, koenzimjében adenozin kapcsolódik hozzá (ld. ott), reakciói: kötéshasítások ill. átrendezıdések, 10. -vitamin (aszkorbinsav): hiánya a legendás skorbut volt, ma több más káros anyag leküzdésében tulajdonítanak neki szerepet, reakciói: pl. hidroxilezés, gyökfogás. 5.3.3. Vízben oldható vitaminok 5.3.3.1. B 1 -vitamin A B 1 -vitamint vagy tiamint 1912-ben asimir Funk írta le, mint az élethez nélkülözhetetlen vital amin -t, és B-vitaminnak nevezte. A vegyület neve késıbb lett B 1 - vitamin, amikor több nitrogént tartalmazó vízoldható vitamint is felfedeztek. 2 3 2 2 2 3 l S B1-vitamin : TIAMI pirimidin tiazol (pka : 2,4) A vitamin két heterociklusos győrőbıl áll: helyettesített pirimidinbıl és tiazolból, melyeket a tiazol nitrogénjén keresztül metiléncsoport köt össze. Tiamin-pirofoszfát koenzim formájában az α-ketosavak (piroszılısav) oxidatív dekarboxilezésében játszik szerepet. 116

2 3 tiamin 3 2 l S 2 2 P P ATP AMP koenzim forma : tiamin-pirofoszfát (TPP) Korpában, gabonacsírában, élesztıben és nem utolsósorban a rizs héjában fordul elı. Tartalmazzák a bab, borsó és a kukorica is. Állati szövetekben, így a májban, szívben és vesében is megtalálható. Az erıs fızés roncsolja. api 1-3 mg szükséges a szervezet számára, de ez a mennyiség függ a táplálkozástól: szénhidrát-fogyasztás növeli, zsír-, fehérje- és alkoholfogyasztás csökkenti a szükségletet. Általában idegrendszeri károsodások kezelésére használják. Ilyen a polineuritisz (ideggyulladás), neuralgia (idegi fájdalom), isiász (ülıideg zsába) herpesz zoszter (övsömör), szklerózis multiplex (idegrendszeri kórfolyamat: az idegek velıs hüvelyének elvesztése), ill. alkoholizmus idegrendszeri következményei. iánybetegsége a beri-beri, melynek két változata ismert. A száraz változat tünetei az izomgyengeség, súlycsökkenés és idegrendszeri zavarok, míg a nedves beri-beri esetén ödéma, szívelégtelenség lép fel. Az ismertetett tüneteket végeredményben a piroszılısav felszaporodása okozza. Távol-Keleti betegség, a rizs hántolása okozta, hiszen ott ez a fı energiaforrás. A modern táplálkozás egyik forrása azonban a hántolatlan rizs, melynek fogyasztásával ezek a problémák elkerülhetık. Koenzimje a tiamin-pirofoszfát (TPP), mely a tiamin adenozin-trifoszfáttal (ATP) történı reakciójában keletkezik, eközben az ATP adenozin-monofoszfáttá (AMP) alakul. eakciójában a tiazolgyőrő -2 poziciója játszik döntı szerepet (5.8. ábra). A szomszédos elektronszívó csoport hatására a 2-es helyzető hidrogén protonként lehasad, és az így keletkezett tiamin-pirofoszfát (TPP) karbanion nukleofil támadást intéz a piroszılısav karbonilcsoportjának szénatomja ellen. Lejátszódik a nukleofil addíció, majd egy protonfelvételt követıen dekarboxiláz enzim közremőködésével a vegyület dekarboxilezıdik és kialakul az A közti termék. 117

PP PP 3 1 S 2 - S + 3 piroszılısav PP PP PP 3 S + S 3 dekarboxiláz -2 3 A S + PP PP S 3 "aciloil-tiamin" - S + 3 B acil-anion szintézis-ekvivalens S S ( 2 ) 4 liponsav PP 3 S S S -TPP ( 2 ) 4 + S-oA 3 S S ( 2 ) 4 S S + 3 S oa ( 2 ) 4 dihidro-liponsav 5.8. Ábra. A piroszılısav dekarboxilezésének mechanizmusa. Ebbıl protonfelvétellel az un. aciloil-tiamin keletkezik, mely protonleadás után a B acil-anion szintézis-ekvivalenssé alakul (A és B egyébként a mezoméria viszonyában állnak). A B inverz polározottságú acetil-szinton (Umpolung!) ezután, mint nukleofil a 118

liponsav kénatomjára támad, a liponsav 1,2-ditiolángyőrője felnyílik és a vegyület a liponsav redukált (felnyílt) formájához kapcsolódik. A liponsav a szervezetben proteinhez kapcsolódik a proteinben található lizin aminosavon keresztül: ez a lipoxin. Errıl a továbbiakban a TPP lehasad, a dihidroliponsavhoz kötött acetilcsoport a oa-ra kerül a dihidrolipoil-transzaciláz enzim segítségével. A reakció eredménye tehát acetil-koenzim-a és dihidroliponsav. Ez utóbbi FAD koenzim és dihidrolipoil-dehidrogenáz enzim közremőködésével visszaalakul liponsavvá és a keletkezett FAD 2 -t a AD + koenzim FAD-dá oxidálja. Így felírhatók ezek a részfolyamatok is: dihidro-liponsav + FAD dihidrolipoildehidrogenáz liponsav + FAD2 FAD2 + AD FAD + AD + A bemutatott reakciók a következıképpen összegezhetık: 3 + S oa + AD liponsav TPP FAD AcS oa + AD + + 2 A folyamat során a piruvát dehidrogenáz ciklusról van szó: az oxidatív dekarboxilezéskor az energiadús tioészter, az acetil-oa keletkezik ( G = -33,5 kj/mol). A reakció lényege, hogy az umpolung segítségével az acilanion-ekvivalens a liponsav felhasználásával az acetil-oa-t eredményezi. A folyamat jelentısége abban áll, hogy az acetil-koenzim-a, mely a citromsav-ciklus üzemanyaga, összeköti a glükóz- és a zsírsavmetabolizmust, a 2-oxoborostyánkısav (oxálacetát) citromsavvá alakulásához ezúton szolgáltatva az acetil-oa-t. 119

GLÜKÓZ ZSISAV-METABLIZMUS PISZİLİSAV AETIL-KEZIM-A 2 S KoA AcS-oA 2 2 oxál-ecetsav 2 2 citroil-koenzim-a citromsav A fenti biokémiai folyamatból a szerves kémia, mint általánosítható umpolung reakciót, a Stetter-reakciót (5.9. ábra) használja 1,4-dikarbonilvegyületek elıállítására. Br S Et3 Br S - Br S Ph Ph Ph Br S + 2 Et Et Ph 5.9. Ábra. A Stetter-reakció. Ez a reakció jól modellezi a tiaminból keletkezı acil-anion szinton reakcióképességét. A negatív polározottságú szénatom α,β-telítetlen észterekre intéz 120

nukleofil támadást a β-szénatomon keresztül, és az addíciós reakcióban a karbonilcsoportot páros helyzetben tartalmazó oxoésztereket kapunk. 5.3.3.2. B 2 -vitamin A B 2 -vitamin, más néven riboflavin a FAD koenzim része, szerkezetével már ott találkoztunk. övényekben, gombákban fordul elı és a májban is megtalálható. A bélbaktériumok szintetizálják. iánya dermatitiszt, vakságot és idegrendszeri problémákat okozhat. élkülözhetetlen a növekedésben. iányában a nyelv és az ajak duzzadása, súlyos béltünetek, fáradtság, a hemoglobinszint csökkenése is felléphet. Mőködésének alapja: oxidációs és redukciós reakciókban koenzimként funkcionál. A teljes reakció két hidrogénatom (két elektron és két proton) 1,4-addíciója. A reakció a pteridinvázas heterocikluson megy végbe, ahol = a FAD koenzim tárgyalásánál már megismert oldallánc. 3 3 9 2 3 4 2-2 3 3 1 2 3 4 sárga oxidált forma szintelen redukált flavin FAD FAD2 Katalizátora a következı folyamatoknak: 1.) észt vesz a triptofán oxidatív dekarboxilezésében, mely során indol-3-acetamid keletkezik: 2 2 L- (vagy S) triptofán 2 triptofán-oxidáz- -dekarboxiláz 2 2 indol-acetamid 121

2.) A xantin húgysavvá történı átalakításában. A húgysav volt az elsı, vizeletbıl izolált purinvázas vegyület, amelynek szerkezetét szintézissel is igazolták. 2 + 2 xantin-oxigenáz 22 xantin húgysav Másik funkciója az elektrontranszfer reakciók körébe tartozik. Elsı lépésben a 10-es helyzető nitrogénatom protonálódik, és a megfelelı konjugált sav keletkezik. Az így kialakult pozitív töltéső vegyület felírható egy másik mezomer határszerkezettel is. 10 e FAD2 5.10. Ábra. A FAD 2 keletkezése FAD redukciójával. szemikinon Egy elektron felvételével az un. szemikinon intermediert eredményezi. A páratlan elektront tartalmazó gyök egy hidrogénatomot vesz fel ez idáig nem teljesen tisztázott 122

folyamatban, és a FAD redukált formája, a FAD 2 a reakciósor végeredménye. A folyamatot az 5.10. ábrán vázoltuk fel. 3.) A rendszer képes egyelektronos oxidációval a nem hemoglobinhoz kötött vas(ii)-t vas(iii)-má oxidálni: FeII FeIII 4.) észt vesz kétszer egyelektronos redukcióban: az oxigént hidrogén-peroxiddá alakítja. 2 2 e Így oxidáz és dehidrogenáz reakciókban, pl. a AD redukáló ágens és a Fe 3+ egy elektronos oxidáló ágens között intermedierként funkcionál. Ez a szerepe a mitokondriális elektrontranszportban. 5.3.3.3. Pantoténsav A koenzim-a alkotórésze. B 5 -vitaminnak is nevezik. Két szerkezeti egységbıl tevıdik össze, egyik az ábrán lilával jelzett β-alanin, mely amidkötéssel kapcsolódik a dihidroxisavhoz. A koenzim-a felépítéséhez szükséges, szabályozza az élesztı növekedését. Bélbaktériumok is termelik. β-ala 2 2 2 3 3 pantoténsav iánya az élı szervezetekben a növekedés és a szaporodás gátlását idézi elı. Az egészséges szervezet mindenféle sejtjében megtalálható. Gazdag forrása az élesztı, a máj és a tojássárgája, valamint a zöld növényi részek. 123

5.3.3.4. iacinamid A niacinamid vagy B 3 -vitamin tulajdonképpen nikotinamid, a nikotin-adenindinukleotid (AD + ) és 2'-foszfátja a ADP + koenzimek fontos része. A koenzimeknél már tisztáztuk az oxidációs és redukciós reakciókban betöltött szerepét. Sav formája a niacin, vagy nikotinsav. 2 nikotinsavamid : niacinamid nikotinsav : niacin A "vitamin" fogalomtól eltérıen az emberi szervezet képes szintetizálni a triptofánból B 6 -vitamin segítségével. övényekben és állati szervezetekben is széleskörően megtalálható, így a rizskorpában, búzakorpában, élesztıben, májban, húsfélékben, vesében és a halakban (elsısorban a heringben). iánya elsısorban a nagyrészt kukorica alapú táplálékon élıkön mutatkozik. Fáradtság, gyomor-bélrendszeri zavarok, száj- és nyálkahártya gyulladások a tünetek. Fellép a pellagra két formája: érdes bır és fekete elszínezıdések a nyelven és a bırön, a nyelv dagadása, hasmenés, valamint idegrendszeri zavarok is észlelhetık. A tünetek a niacin vagy a niacinamid adagolására elmúlnak. Miután a biológiai rendszerekben a savamid (niacinamid) fordul elı, ezért ezt tekintik vitaminnak annak ellenére, hogy a sav (niacin) amidálása az állati szervezetben könnyen végbemenı folyamat. 5.3.3.5. B 6 -vitamincsoport Ebbe a csoportba a következı piridin-származékok tartoznak: Ide sorolható a piridoxál, mely a 4-es helyzetben könnyen karbonsavvá oxidálódható aldehid-csoportot tartalmaz, a piridoxin vagy piridoxol, az elıbbi alkohollá redukált formája, valamint a piridoxamin, amelyben aminometil-csoport a reakciókban résztvevı funkciós csoport. Mindhárom vegyület további fenolos hidroxil- ill. metilcsoport helyettesítıket tartalmaz. 124

2 2 2 2 2 2 3 3 3 piridoxál piridoxin vagy piridoxol piridoxamin Koenzimjeként a 3-as helyen lévı hidroximetil-csoport alkoholos hidroxilcsoportjának foszforilezett származéka, a piridoxál-foszfát szerepel. 2 ATP 2 P 3 3 koenzim forma: piridoxál-foszfát övényi magvakban fordul elı. iánybetegsége során, amely ritkán figyelhetı meg, bırelváltozások, vérszegénység, gyengeség, idegrendszeri bántalmak léphetnek fel. A szervezetnek általában kevés B 6 -vitaminra van szüksége, melyet a normális étrend többnyire fedez, azonban bizonyos gyógyszerek szedése növelheti az igényt. Ilyen például a tuberkulózis kezelésére használatos IZIAZID, melynek szerkezete izonikotinsavhidrazid. A vegyület a piridoxál aldehidcsoportjával hidrazont képezve blokkolja a vitamint, mely ebben a formában nem képes a megfelelı biokémiai folyamatokban részt venni. Biokémiai reakciói során az aminosavak metabolizmusában vesz részt. A transzaminálás során oxosavakból aminosavak keletkeznek, a bemutatott példában glutaminsav és oxálecetsav reakciójában α-ketoglutársav és aszparaginsav keletkezik. A folyamatban a glutaminsav az amindonor aminosav, az oxálecetsav pedig az akceptor. A reakcióban a glutamin-aszparagin-transzamináz vagy aminotranszferáz enzim is részt vesz. A glutaminsav (vagy ahogy a biokémia tankönyvekben a fiziológiás körülmények között elıforduló anionos formáját helyesen emlegetik, a glutamát), mint az ammónia-asszimiláció 125

terméke kulcsszerepet játszik a transzaminálásban. Legtöbbször, de nem mindig, aminosav/ketosav párként a glutamát/α-oxoglutársav (vagy α-oxoglutarát; α-ketoglutarát) pár az aminotranszferázok szubsztrátja. Ugyanígy szerepel az aszpartát (aszparaginsav anionos formája) ill. az oxálacetát is ebben a rendszerben, valamint az alanin/piruvát (piroszılısav anionos formája) is. Az ezekhez az oxosav/aminosav párokhoz kapcsolódó enzimek fontosak a klinikai diagnosztikában. Ilyenek a humán megbetegedésekben jellemzı mértékő szérum glutamát-oxálacetát transzamináz (SGT) és a szérum glutamát-piruvát transzamináz (SGPT) aktivitások. Ezek az enzimek, melyek nagy mennyiségben megtalálhatók a szív és a máj szöveteiben, a sejtek sérülése esetén, melyeket pl. a miokardiális infarktus ill. a fertızı májgyulladás, esetleg más szerv kóros állapota okoz, felszabadulnak a sejtbıl. Ezen enzimek aktivitásának mérése a vér szérumban felhasználható egyrészt a diagnózis felállításában, másfelıl pedig a beteg kezelés hatására történı reagálásának nyomon követésére is. 2 2 2 + 2 glutamin-aszparagin- -transzamináz 2 2 + 2 2 glutaminsav (donor aminosav) oxálecetsav (akceptor) α keto-glutársav aszparaginsav A következı katalizált reakció, a dekarboxilezés során aminosavakból aminok, mégpedig un. biogén aminok keletkeznek, melyeknek a szervezet mőködésében igen fontos szerepük van. A glutaminsav ezen az úton alakul át γ-aminovajsavvá a glutamindekarboxiláz enzim közremőködésével, mely aminovegyületet az angol elnevezése (γaminobutyric acid) alapján GABA rövidítéssel használnak. A GABA rendkívül fontos idegi ingerületátvivı anyagként mőködik a szervezetben. Ebbe a folyamatba avatkozik be pl. a gyilkos galóca a mérgezés során. 126

2 glutamin-dekarboxiláz 2 2 2-2 2 2 (γ-amino-vajsav) GABA Végül példaként megemlítjük az aminosavak izomerizációs ill. racemizációs reakcióit is, melyekben e vitamincsoportnak szintén szerepe van. A reakciók részletes mechanizmusát az 5.11. ábrán mutatjuk be. A piridoxál Schiff-bázist képez az apoenzim lizin aminosavjának ω-aminocsoportjával, ily módon kötıdve az enzimhez. A lizin helyére az átalakítandó aminosav addíciós-eliminációs reakcióval kerül át, szintén aldimint képezve. Az intermediert stabilizálja a fenolos hidroxilcsoport segítségével kialakult hidrogénhíd kötés. E forma stabilizálásában gyakran fémionok, pl. Al 3+ és u 2+ ionok is szerepet játszanak. Ezután a molekula kétféle köztitermékké alakulhat, attól függıen, hogy milyen folyamatot katalizál az összetett reakcióban résztvevı enzim. A protonálódott nitrogénatom irányába történı elektronáramlás hatására megtörtént dekarboxilezést követı protonfelvétel és az imin kötés hidrolízise a megfelelı biogén aminhoz vezet. Másfelıl a kiindulási aminosav-piridoxál Schiff-bázis protonvesztéssel az ábrán látható kinoidális intermedierré alakulhat át. Ekkor az aminosav α-szénatomja és az α-helyzető nitrogénatom között kettıs kötés jön létre. Ez a planáris szerkezet sztereotóp felületként szerepel a következı protonfelvétel során. A bekapcsolódó proton ugyanis a planáris struktúra két oldaláról közelítheti meg a támadás helyét. Amennyiben az enzimkomplexben van kitüntetett támadási iránya a reagensnek, esetünkben a hidrogénnek, úgy optikailag aktív aminosav keletkezik. a a reakció egyforma valószínőséggel játszódik le a sík mindkét oldala irányából, akkor racemizáció történik. Bár a piridoxál-foszfát ezekben a reakciókban koenzimként mőködik, a reaktív forma mégsem az aldehid, hanem inkább az aldimin struktúra, amely a vitamin és az átalakítandó aminosav között jön létre. a pl. az így keletkezett aldimin szén-nitrogén kettıs kötését (=) nátrium-tetrahidrido-boráttal (ab 4 ) redukáljuk, az irreverzibilis változás következtében (eltőnik a kettıs kötéses planáris felület) a rendszer elveszti aktivitását, és alkalmatlanná válik aminosavak átalakítására. 127

apoenzim LIZI 2 P (L) 3 enzim-lys (Ad + E) 2 P, 2-2 2 P (dekarboxilezés) - + 2 2 (biogén amin) 2 P + α 2 P + 2 (izomerizáció v. racemizáció) (kinoidális intermedier) 2 P + (D)- vagy racém aminosav 5.11. Ábra. A B 6 -vitamin szerepe aminosavak dekarboxilezésében és izomerizációjában. A vitamin által katalizált reakciókba a transzaminálás is beletartozik. Ekkor a piridoxamin forma játszik fontos szerepet, melyben az aminofunkció adja az oxosavval történı kapcsolódás lehetıségét szintén imin formájában. Végeredményben ez a vitamincsoport mintegy 60 specifikus reakció katalízisében vesz részt. 128

5.3.3.6. Liponsav idrogénezési, dehidrogénezési folyamatok koenzimje. Az apoenzimhez történı kapcsolódása az oldalláncban elhelyezkedı karbonsav funkción keresztül történik lizin aminocsoportjával savamid formájában (lipoxin). Az ábrán az oxidált és a redukált formáját tüntettük fel. S S S S liponsav dihidro-liponsav Az emberi szervezet, eltérıen a többi vitamintól képes szintetizálni. A máj és az élesztı gazdag liponsavban, egyúttal néhány baktérium növekedési faktoraként is ismert. Szerepét az α-ketosavak dekarboxilezésében (acetilcsoport átvitel) már a tiamin tárgyalásakor bemutattuk. 5.3.3.7. Biotin A vitamint -vitaminnak is nevezik, biotinként mégis jobban ismert. Fıleg az élesztıben és a májban fordul elı. iánya bırbetegséget okoz, ilyenkor gyulladásos pír lép fel az egész testen (dermatitisz: bırgyulladás), valamint hámlás, szırkihullás és körömsérülések is tapasztalhatók. Innen a -vitamin név. émetül a bır ui. aut. Biciklusos vegyület, telített imidazol és telített tiofén kondenzációjával vezethetı le. A győrőkapcsolat cisz-konfigurációjú, a sztereocentrumok 2S,3S,4-konfigurációjúak. Jobbra forgató, optikailag aktív molekula. 1' 5 4 2' 3 S 1 3' 2 6 (+)-2S,3S,4-biotin 10 129

5.12. Ábra. A biotin térbeli szerkezete. A biotin a tojásfehérje egyik összetevıjével, az avidin nevő fehérjével komplexet képez, így biológiailag inaktívvá válik: az avidin (mint bázikus protein) tehát erıs antagonistája a biotinnak (amely karboxilcsoportot tartalmaz). Pl. a sok madártejfogyasztás esetén biotinhiány léphet fel. A tojásfehérje leköti a biotint, azonban melegítés hatására, amikor denaturálódás következik be, a vegyület újra szabad állapotba kerül. A biotin a karboxilcsoportja segítségével protein lizin aminosav aminocsoportjához kötıdik peptidkötéssel, így a protein és a biotin proteidet alkot (lipoxin). Biokémiai funkciója karboxilcsoport bevitele ( 2 beépítése), a reakciót a biotinfüggı karboxiláz enzim katalizálja. A reakció mechanizmusa során a biotin molekulán elıször karboxilátcsoport épül az 1'-helyzetbe (5.13. ábra). Ennek forrása a széndioxid felvételével keletkezı hidrokarbonátion, valamint a folyamathoz adenozin-trifoszfát (ATP) is szükséges. A biotin 1'-helyzető nitrogénatom szabad elektronpárja irányából elektronátmenet indul a hidrokarbonát-ion karbonil szénatomja felé. Ebben a lépésben alakul ki a biotin-1-karboxilát, mely diacilaminként viselkedve erıs acilezıszer. 130