Alternating Permutations

Hasonló dokumentumok
On The Number Of Slim Semimodular Lattices

Véges szavak általánosított részszó-bonyolultsága

Construction of a cube given with its centre and a sideline

Local fluctuations of critical Mandelbrot cascades. Konrad Kolesko

Mapping Sequencing Reads to a Reference Genome

Erdős-Ko-Rado theorems on the weak Bruhat lattice

Statistical Inference

Schwarz lemma, the Carath eodory and Kobayashi metrics and applications in complex analysis

Cluster Analysis. Potyó László

MATEMATIKA ANGOL NYELVEN MATHEMATICS

Performance Modeling of Intelligent Car Parking Systems

Introduction. Lecture 1

PELL EGYENLETEK MEGOLDÁSA LINEÁRIS REKURZÍV SOROZATOK SEGÍTSÉGÉVEL

Eötvös Loránd Tudományegyetem Informatikai Kar. Additív számelméleti függvények eloszlása

Efficient symmetric key private authentication

Ensemble Kalman Filters Part 1: The basics

Genome 373: Hidden Markov Models I. Doug Fowler

Bevezetés a kvantum-informatikába és kommunikációba 2015/2016 tavasz

Simonovits M. Elekes Gyuri és az illeszkedések p. 1

To make long stories short from the last 24 years

ACTA ACADEMIAE PAEDAGOGICAE AGRIENSIS

Characterizations and Properties of Graphs of Baire Functions

SQL/PSM kurzorok rész

Correlation & Linear Regression in SPSS

Többszörösen élesen tranzitív halmazok véges csoportokban

Publikációs lista. Vásárhelyi Bálint Márk

MATEMATIKA ANGOL NYELVEN

16F628A megszakítás kezelése

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

Adattípusok. Max. 2GByte

Phenotype. Genotype. It is like any other experiment! What is a bioinformatics experiment? Remember the Goal. Infectious Disease Paradigm

Probabilistic Analysis and Randomized Algorithms. Alexandre David B2-206

Adattípusok. Max. 2GByte

Figurális számok és diofantikus egyenletek

MATEMATIKA ANGOL NYELVEN

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Hypothesis Testing. Petra Petrovics.

Combinatorics, Paul Erd}os is Eighty (Volume 2) Keszthely (Hungary), 1993, pp. 1{46. Dedicated to the marvelous random walk

Word and Polygon List for Obtuse Triangular Billiards II

EN United in diversity EN A8-0206/419. Amendment

A rosszindulatú daganatos halálozás változása 1975 és 2001 között Magyarországon

A logaritmikus legkisebb négyzetek módszerének karakterizációi

Széchenyi István Egyetem

discosnp demo - Peterlongo Pierre 1 DISCOSNP++: Live demo

INDEXSTRUKTÚRÁK III.

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

Klaszterezés, 2. rész

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

Statistical Dependence

Nonrelativistic, non-newtonian gravity

FÖLDRAJZ ANGOL NYELVEN GEOGRAPHY

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Nonparametric Tests

FÖLDRAJZ ANGOL NYELVEN

Tudományos Ismeretterjesztő Társulat

W

Using the CW-Net in a user defined IP network

KIEGÉSZÍTŽ FELADATOK. Készlet Bud. Kap. Pápa Sopr. Veszp. Kecsk Pécs Szomb Igény

Supplementary materials to: Whole-mount single molecule FISH method for zebrafish embryo

Számítógéppel irányított rendszerek elmélete. Gyakorlat - Mintavételezés, DT-LTI rendszermodellek

- Bevándoroltak részére kiadott személyazonosító igazolvány

MATEMATIKA ANGOL NYELVEN

Small Dynamical Heights for Quadratic Polynomials and Rational Functions

Dependency preservation

A modern e-learning lehetőségei a tűzoltók oktatásának fejlesztésében. Dicse Jenő üzletfejlesztési igazgató

8. Gyakorlat SQL. DDL (Data Definition Language) adatdefiníciós nyelv utasításai:

Budapest By Vince Kiado, Klösz György

Nemzetközi Kenguru Matematikatábor

BEVEZETÉS Az objektum fogalma

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

Adatbázisok* tulajdonságai

MATEMATIKA ANGOL NYELVEN

MATEMATIKA ANGOL NYELVEN

Cashback 2015 Deposit Promotion teljes szabályzat

New Trends in Intuitive Geometry

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Regression

First experiences with Gd fuel assemblies in. Tamás Parkó, Botond Beliczai AER Symposium

Correlation & Linear Regression in SPSS

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER

Supplementary Table 1. Cystometric parameters in sham-operated wild type and Trpv4 -/- rats during saline infusion and

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Linear. Petra Petrovics.

MATEMATIKA ANGOL NYELVEN

Választási modellek 3

Descriptive Statistics

Tételek a konvex geometria és

Index. day, xxxiv, xxxix, xli, 73 75, 81, 82, calculation, xxxii, 7, 21, 27, 54, 83

MAKING MODERN LIVING POSSIBLE. Danfoss Heating Solutions

Lecture 11: Genetic Algorithms

ANGOL NYELVI SZINTFELMÉRŐ 2013 A CSOPORT. on of for from in by with up to at

Kvantum-informatika és kommunikáció 2015/2016 ősz. A kvantuminformatika jelölésrendszere szeptember 11.

FÖLDRAJZ ANGOL NYELVEN GEOGRAPHY

Supporting Information

Minden az adatról. Csima Judit február 11. BME, VIK, Csima Judit Minden az adatról 1 / 41

MATEMATIKA ANGOL NYELVEN

Graph Coloring with Local and Global Constraints

ELEKTRONIKAI ALAPISMERETEK ANGOL NYELVEN

To Gabriela, Heidi, Hanni and Peter

AZ ACM NEMZETKÖZI PROGRAMOZÓI VERSENYE

USER MANUAL Guest user

Could René Descartes Have Known This?

Átírás:

Alternating Permutations Richard P. Stanley M.I.T.

Definitions A sequence a 1, a 2,..., a k of distinct integers is alternating if a 1 > a 2 < a 3 > a 4 <, and reverse alternating if a 1 < a 2 > a 3 < a 4 >.

Definitions A sequence a 1, a 2,..., a k of distinct integers is alternating if a 1 > a 2 < a 3 > a 4 <, and reverse alternating if a 1 < a 2 > a 3 < a 4 >. S n : symmetric group of all permutations of 1, 2,..., n

E n E n = #{w S n : w is alternating} = #{w S n : w is reverse alternating} via a 1 a 2 a n n + 1 a 1, n + 1 a 2,..., n + 1 a n

E n E n = #{w S n : w is alternating} = #{w S n : w is reverse alternating} via a 1 a 2 a n n + 1 a 1, n + 1 a 2,..., n + 1 a n E.g., E 4 = 5: 2143, 3142, 3241, 4132, 4231

André s theorem Theorem (Désiré André, 1879) y := n 0 E n x n n! = sec x + tan x

André s theorem Theorem (Désiré André, 1879) y := n 0 E n x n n! = sec x + tan x E n is an Euler number, E 2n a secant number, E 2n 1 a tangent number.

Naive proof 52439 }{{} alternating 1826 }{{} alternating

Naive proof 52439 }{{} alternating 1826 }{{} alternating Obtain w that is either alternating or reverse alternating.

Naive proof 52439 }{{} alternating 1826 }{{} alternating Obtain w that is either alternating or reverse alternating. 2E n+1 = n k=0 ( ) n E k E n k, n 1 k

Completion of proof 2E n+1 = n k=0 ( ) n E k E n k, n 1 k

Completion of proof 2E n+1 = n k=0 ( ) n E k E n k, n 1 k 2 n 0 E n+1 x n n! = 2y n 0 ( n k=0 ( ) n x )E n k E n k k n! = 1 + y 2

Completion of proof 2E n+1 = n k=0 ( ) n E k E n k, n 1 k 2 n 0 E n+1 x n n! = 2y n 0 ( n k=0 ( ) n x )E n k E n k k n! = 1 + y 2 2y = 1 + y 2, etc.

A generalization more sophisticated approaches. E.g., let f k (n) = #{w S n : w(r) < w(r + 1) k r} f 2 (n) = E n

A generalization more sophisticated approaches. E.g., let f k (n) = #{w S n : w(r) < w(r + 1) k r} f 2 (n) = E n Theorem. k 0 f k (kn) xkn (kn)! = ( n 0 ) 1 ( 1) n xkn. (kn)!

Combinatorial trigonometry Define sec x and tan x by sec x + tan x = n 0 E n x n n!.

Combinatorial trigonometry Define sec x and tan x by sec x + tan x = n 0 E n x n n!. Exercise. sec 2 x = 1 + tan 2 x

Combinatorial trigonometry Define sec x and tan x by sec x + tan x = n 0 E n x n n!. Exercise. sec 2 x = 1 + tan 2 x Exercise. tan(x + y) = tan x + tan y 1 (tan x)(tan y)

Some occurences of Euler numbers (1) E 2n 1 is the number of complete increasing binary trees on the vertex set [2n + 1] = {1, 2,..., 2n + 1}.

Five vertices 1 1 2 2 5 3 4 4 3 5 1 1 2 3 5 4 2 5 3 4 4 1 1 2 2 3 3 5 5 4 4 1 1 3 3 2 2 5 5 4 4 3 1 1 1 1 2 2 2 2 4 5 5 5 5 3 3 4 4 3 1 1 1 1 3 3 2 2 2 2 3 3 4 5 5 4 4 5 5 4

Five vertices 1 1 2 2 5 3 4 4 3 5 1 1 2 3 5 4 2 5 3 4 4 1 1 2 2 3 3 5 5 4 4 1 1 3 3 2 2 5 5 4 4 3 1 1 1 1 2 2 2 2 4 5 5 5 5 3 3 4 4 3 1 1 1 1 3 3 2 2 2 2 3 3 4 5 5 4 4 5 5 4 Slightly more complicated for E 2n

Simsun permutations Definition. A permutation w = a 1 a n S n is simsun if for all 1 k n, the restriction b 1 b k of w to 1, 2,..., k has no double descents b i 1 > b i > b i+1.

Simsun permutations Definition. A permutation w = a 1 a n S n is simsun if for all 1 k n, the restriction b 1 b k of w to 1, 2,..., k has no double descents b i 1 > b i > b i+1. Example. 346251 is not simsun: restriction to 1, 2, 3, 4 is 3421.

Simsun permutations Definition. A permutation w = a 1 a n S n is simsun if for all 1 k n, the restriction b 1 b k of w to 1, 2,..., k has no double descents b i 1 > b i > b i+1. Example. 346251 is not simsun: restriction to 1, 2, 3, 4 is 3421. Theorem (R. Simion and S. Sundaram) The number of simsun permutations w S n is E n.

Chains of partitions (2) Start with n one-element sets {1},..., {n}.

Chains of partitions (2) Start with n one-element sets {1},..., {n}. Merge together two at a time until reaching {1, 2,..., n}.

Chains of partitions (2) Start with n one-element sets {1},..., {n}. Merge together two at a time until reaching {1, 2,..., n}. 1 2 3 4 5 6, 12 3 4 5 6, 12 34 5 6 125 34 6, 125 346, 123456

Chains of partitions (2) Start with n one-element sets {1},..., {n}. Merge together two at a time until reaching {1, 2,..., n}. 1 2 3 4 5 6, 12 3 4 5 6, 12 34 5 6 125 34 6, 125 346, 123456 S n acts on these chains.

Chains of partitions (2) Start with n one-element sets {1},..., {n}. Merge together two at a time until reaching {1, 2,..., n}. 1 2 3 4 5 6, 12 3 4 5 6, 12 34 5 6 125 34 6, 125 346, 123456 S n acts on these chains. Theorem. The number of S n -orbits is E n 1.

Orbit representatives for n = 5 12 3 4 5 123 4 5 1234 5 12 3 4 5 123 4 5 123 45 12 3 4 5 12 34 5 125 34 12 3 4 5 12 34 5 12 345 12 3 4 5 12 34 5 1234 5

A polytope volume Let P n be the convex polytope in R n with equations x i 0, 1 i n x i + x i+1 1, 1 i n 1.

A polytope volume Let P n be the convex polytope in R n with equations x i 0, 1 i n x i + x i+1 1, 1 i n 1. Theorem. vol(p n ) = 1 n! E n

Ulam s problem Let E(n) be the expected length is(w) of the longest increasing subsequence of w.

Ulam s problem Let E(n) be the expected length is(w) of the longest increasing subsequence of w. w = 5241736 is(w) = 3

Two highlights Long story...

Two highlights Long story... Logan-Shepp, Vershik-Kerov: E(n) 2 n

Two highlights Long story... Logan-Shepp, Vershik-Kerov: E(n) 2 n Write is n (w) for is(w) when w S n. Baik-Deift-Johansson: ( lim Prob isn (w) 2 n n n 1/6 the Tracy-Widom distribution. ) t = F (t),

Alternating subsequences? as(w) = length of longest alternating subseq. of w w = 56218347 as(w) = 5

The main lemma MAIN LEMMA. w S n alternating subsequence of maximal length that contains n.

The main lemma MAIN LEMMA. w S n alternating subsequence of maximal length that contains n. a k (n) = #{w S n : as(w) = k} b k (n) = a 1 (n) + a 2 (n) + + a k (n) = #{w S n : as(w) k}.

Recurrence for a k (n) 2r+s=k 1 a k (n) = n j=1 ( ) n 1 j 1 (a 2r (j 1) + a 2r+1 (j 1)) a s (n j)

The main generating function Theorem. Define B(x, t) = B(x, t) = where ρ= 1 t 2. k,n 0 b k (n)t k xn n! 2/ρ 1 1 ρ t e ρx 1 ρ,

Formulas for b k (n) Corollary. b 1 (n) = 1 b 2 (n) = n b 3 (n) = 1 4 (3n 2n + 3) b 4 (n) = 1 8 (4n (2n 4)2 n ).

Formulas for b k (n) Corollary. b 1 (n) = 1 b 2 (n) = n b 3 (n) = 1 4 (3n 2n + 3) b 4 (n) = 1 8 (4n (2n 4)2 n ) no such formulas for longest increasing subsequences.

Mean (expectation) of as(w) D(n) = 1 n! w S n as(w), the expectation of as(n) for w S n

Mean (expectation) of as(w) D(n) = 1 n! w S n as(w), the expectation of as(n) for w S n Let A(x, t) = a k (n)t k xn = (1 t)b(x, t) n! k,n 0 ( ) 2/ρ = (1 t) 1 1 ρ t e 1. ρx ρ

Formula for D(n) n 0 D(n)x n = A(x, 1) t = 6x 3x2 + x 3 6(1 x) 2 = x + n 2 4n + 1 6 x n.

Formula for D(n) n 0 D(n)x n = A(x, 1) t = 6x 3x2 + x 3 6(1 x) 2 = x + n 2 4n + 1 6 x n. A(n) = 4n + 1 6, n 2

Formula for D(n) n 0 D(n)x n = A(x, 1) t = 6x 3x2 + x 3 6(1 x) 2 = x + n 2 4n + 1 6 x n. A(n) = 4n + 1, n 2 6 Recall E(n) 2 n.

Variance of as(w) V (n) = 1 n! w S n ( as(w) 4n + 1 ) 2, n 2 6 the variance of as(n) for w S n

Variance of as(w) V (n) = 1 n! w S n ( as(w) 4n + 1 ) 2, n 2 6 the variance of as(n) for w S n Corollary. V (n) = 8 45 n 13 180, n 4

Variance of as(w) V (n) = 1 n! w S n ( as(w) 4n + 1 ) 2, n 2 6 the variance of as(n) for w S n Corollary. V (n) = 8 45 n 13 180, n 4 similar results for higher moments

A new distribution? P (t) = lim n Prob w Sn ( as(w) 2n/3 n ) t

A new distribution? P (t) = lim n Prob w Sn Stanley distribution? ( as(w) 2n/3 n ) t

Limiting distribution Theorem (Pemantle, Widom, (Wilf)). ( as(w) 2n/3 lim Prob w S n n n ) t (Gaussian distribution) = 1 t 45/4 π e s2 ds

Limiting distribution Theorem (Pemantle, Widom, (Wilf)). ( as(w) 2n/3 lim Prob w S n n n ) t (Gaussian distribution) = 1 t 45/4 π e s2 ds

Umbral enumeration Umbral formula: involves E k, where E is an indeterminate (the umbra). Replace E k with the Euler number E k. (Technique from 19th century, modernized by Rota et al.)

Umbral enumeration Umbral formula: involves E k, where E is an indeterminate (the umbra). Replace E k with the Euler number E k. (Technique from 19th century, modernized by Rota et al.) Example. (1 + E 2 ) 3 = 1 + 3E 2 + 3E 4 + E 6 = 1 + 3E 2 + 3E 4 + E 6 = 1 + 3 1 + 3 5 + 61 = 80

Another example (1 + t) E = 1 + Et + ( ) E t 2 + 2 ( ) E t 3 + 3 = 1 + Et + 1 2 E(E 1)t2 + = 1 + E 1 t + 1 2 (E 2 E 1 ))t 2 + = 1 + t + 1 2 (1 1)t2 + = 1 + t + O(t 3 ).

Alt. fixed-point free involutions fixed point free involution w S 2n : all cycles of length two

Alt. fixed-point free involutions fixed point free involution w S 2n : all cycles of length two Let f(n) be the number of alternating fixed-point free involutions in S 2n.

Alt. fixed-point free involutions fixed point free involution w S 2n : all cycles of length two Let f(n) be the number of alternating fixed-point free involutions in S 2n. n = 3 : 214365 = (1, 2)(3, 4)(5, 6) 645231 = (1, 6)(2, 4)(3, 5) f(3) = 2

An umbral theorem Theorem. F (x) = n 0 f(n)x n

An umbral theorem Theorem. F (x) = n 0 f(n)x n = ( ) (E 1 + x 2 +1)/4 1 x

An umbral theorem Theorem. F (x) = n 0 f(n)x n = ( ) (E 1 + x 2 +1)/4 1 x Proof. Uses representation theory of the symmetric group S n. In particular, there is a nice representation of dimension E n.

Ramanujan s Lost Notebook Theorem (Ramanujan, Berndt, implicitly) As x 0+, 2 n 0 ( ) n(n+1) 1 x 1 + x k 0 f(k)x k = F (x), an analytic (non-formal) identity.

A formal identity Corollary (via Ramanujan, Andrews). F (x) = 2 n 0 n q n j=1 (1 q2j 1 ) 2n+1 j=1 (1 + qj ), where q = ( 1 x 1+x) 2/3, a formal identity.

Simple result, hard proof Recall: number of n-cycles in S n is (n 1)!.

Simple result, hard proof Recall: number of n-cycles in S n is (n 1)!. Theorem. Let b(n) be the number of alternating n-cycles in S n. Then if n is odd, b(n) = 1 n µ(d)( 1) (d 1)/2 E n/d. d n

Special case Corollary. Let p be an odd prime. Then b(p) = 1 ) (E p ( 1) (p 1)/2. p

Special case Corollary. Let p be an odd prime. Then b(p) = 1 ) (E p ( 1) (p 1)/2. p Combinatorial proof?

Another such result Recall: the expected number of fixed points of w S n is 1.

Another such result Recall: the expected number of fixed points of w S n is 1. J(n) = expected number of fixed points of reverse alternating w S n Theorem. J(2n) = 1 E 2n (E 2n ( 1) n ). Similar (but more complicated) for n odd or for alternating permutations.

Another such result Recall: the expected number of fixed points of w S n is 1. J(n) = expected number of fixed points of reverse alternating w S n Theorem. J(2n) = 1 E 2n (E 2n ( 1) n ). Similar (but more complicated) for n odd or for alternating permutations. Combinatorial proof?

Descent sets Let w = a 1 a 2 a n S n. Descent set of w: D(w) = {i : a i > a i+1 } {1,..., n 1}

Descent sets Let w = a 1 a 2 a n S n. Descent set of w: D(w) = {i : a i > a i+1 } {1,..., n 1} D(4157623) = {1, 4, 5} D(4152736) = {1, 3, 5} (alternating) D(4736152) = {2, 4, 6} (reverse alternating)

β n (S) β n (S) = #{w S n : D(w) = S}

β n (S) β n (S) = #{w S n : D(w) = S} w D(w) 123 213 {1} 312 {1} 132 {2} 231 {2} 321 {1, 2} β 3 ( ) = 1, β 3 (1) = 2 β 3 (2) = 2, β 3 (1, 2) = 1

u S Fix n. Let S {1,, n 1}. Let u S = t 1 t n 1, where { a, i S t i = b, i S.

u S Fix n. Let S {1,, n 1}. Let u S = t 1 t n 1, where { a, i S t i = b, i S. Example. n = 8, S = {2, 5, 6} {1,..., 7} u S = abaabba

A noncommutative gen. function Ψ n (a, b) = S {1,...,n 1} β n (S)u S.

A noncommutative gen. function Ψ n (a, b) = Example. Recall S {1,...,n 1} β n (S)u S. β 3 ( ) = 1, β 3 (1) = 2, β 3 (2) = 2, β 3 (1, 2) = 1 Thus Ψ 3 (a, b) = aa + 2ab + 2ba + bb

A noncommutative gen. function Ψ n (a, b) = Example. Recall S {1,...,n 1} β n (S)u S. β 3 ( ) = 1, β 3 (1) = 2, β 3 (2) = 2, β 3 (1, 2) = 1 Thus Ψ 3 (a, b) = aa + 2ab + 2ba + bb = (a + b) 2 + (ab + ba)

The cd-index Theorem. There exists a noncommutative polynomial Φ n (c, d), called the cd-index of S n, with nonnegative integer coefficients, such that Ψ n (a, b) = Φ n (a + b, ab + ba).

The cd-index Theorem. There exists a noncommutative polynomial Φ n (c, d), called the cd-index of S n, with nonnegative integer coefficients, such that Example. Recall Ψ n (a, b) = Φ n (a + b, ab + ba). Ψ 3 (a, b) = aa + 2ab + 2ba + b 2 = (a + b) 2 + (ab + ba). Therefore Φ 3 (c, d) = c 2 + d.

Small values of Φ n (c, d) Φ 1 = 1 Φ 2 = c Φ 3 = c 2 + d Φ 4 = c 3 + 2cd + 2dc Φ 5 = c 4 + 3c 2 d + 5cdc + 3dc 2 + 4d 2 Φ 6 = c 5 + 4c 3 d + 9c 2 dc + 9cdc 2 + 4dc 3 +12cd 2 + 10dcd + 12d 2 c.

The set S µ Recall: w = a 1 a n S n is simsun if for all 1 k n, the restriction b 1 b k of w to 1, 2,..., k has no double descents b i 1 > b i > b i+1.

The set S µ Recall: w = a 1 a n S n is simsun if for all 1 k n, the restriction b 1 b k of w to 1, 2,..., k has no double descents b i 1 > b i > b i+1. Given a cd-monomial µ, let c 0, d 10, and remove final 0. Example. µ = cd 2 c 2 d 01010001, the characteristic vector of S µ = {2, 4, 8}.

The coefficients of Φ n (c, d) Theorem (Simion-Sundaram) Let µ be a cd-monomial of degree n 1. The coefficient of µ in Φ n (c, d) is the number of simsun permutations w S n 1 with descent set S µ.

The case n = 4 w D(w) µ 123 c 3 00 213 1 dc 10 312 1 dc 10 132 2 cd 01 231 2 cd 01 Φ 4 (c, d) = c 3 + 2dc + 2cd

Expansion of cd-monomials Let m = m(c, d) be a cd-monomial, e.g., c 2 d 2 cd. Expand m(a + b, ab + ba): (a + b) 2 (ab + ba) 2 (a + b)(ab + ba) = a 9 + ba 8 +.

Expansion of cd-monomials Let m = m(c, d) be a cd-monomial, e.g., c 2 d 2 cd. Expand m(a + b, ab + ba): (a + b) 2 (ab + ba) 2 (a + b)(ab + ba) = a 9 + ba 8 +. Key observation: m(a + b, ab + ba) is a sum of distinct monomials, always including ababab and bababa.

Alternating permutations The coefficient of ababab and of bababa in Ψ n (a, b) is β n (2, 4, 6,... ) = β n (1, 3, 5,... ) = E n.

Alternating permutations The coefficient of ababab and of bababa in Ψ n (a, b) is Hence: β n (2, 4, 6,... ) = β n (1, 3, 5,... ) = E n. Theorem. (a) Φ n (1, 1) = E n (can interpret coefficients combinatorially). (b) For all S {1,..., n 1}, β n (S) β n (1, 3, 5,... ) = E n.

An example Φ 5 = 1c 4 + 3c 2 d + 5cdc + 3dc 2 + 4d 2 1 + 3 + 5 + 3 + 4 = 16 = E 5

Comments NOTE. (b) is due originally to Niven and later de Bruijn (different proofs).

Comments NOTE. (b) is due originally to Niven and later de Bruijn (different proofs). NOTE. Not hard to show that β n (S) < E n unless S = {1, 3, 5,... } or S = {2, 4, 6,... }.