ELEKTRONIKAI TECHNIKUS KÉPZÉS



Hasonló dokumentumok
A maximálisan lapos esetben a hurokerősítés Bode diagramjának elhelyezkedése Q * p így is írható:

Forgó mágneses tér létrehozása

FPC-500 hagyományos tűzjelző központ

Villamos gépek tantárgy tételei

Az aszinkron (indukciós) gép.

Elektronika I. Gyakorló feladatok

GÉPÉSZETI ALAPISMERETEK

Logaritmikus erősítő tanulmányozása

A 2006/2007. tanévi Országos középiskolai Tanulmányi Verseny második fordulójának feladatai és azok megoldásai f i z i k á b ó l. I.

Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata.

Szakács Jenő Megyei Fizika Verseny, II. forduló, Megoldások. F f + K m 1 g + K F f = 0 és m 2 g K F f = 0. kg m

Márkus Zsolt Értelmezések, munkapont beállítások BMF -

2.Előadás ( ) Munkapont és kivezérelhetőség

Érzékelők és beavatkozók

10.1. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ

Elektronika 1. (BMEVIHIA205)

1.zh Kösse össze a két oszlop egy-egy összetartozó fogalmát! pozitív visszacsatolás

Műveleti erősítők. 1. Felépítése. a. Rajzjele. b. Belső felépítés (tömbvázlat) c. Differenciálerősítő

Villámvédelem 3. #5. Elszigetelt villámvédelem tervezése, s biztonsági távolság számítása. Tervezési alapok (norma szerint villámv.

Ipari folyamatirányítás

1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak?

Elektronika 11. évfolyam

ANALÓG ÉS DIGITÁLIS TECHNIKA I

Áramkörök számítása, szimulációja és mérése próbapaneleken

Teljesítmény-erősítők. Elektronika 2.

Frekvenciatartomány Irányítástechnika PE MI BSc 1

2006/2007. tanév. Szakács Jenő Megyei Fizika Verseny I. forduló november 10. MEGOLDÁSOK

Dinamika. F = 8 N m 1 = 2 kg m 2 = 3 kg

ÁLTALÁNOS SZENZORINTERFACE KÉSZÍTÉSE HANGKÁRTYÁHOZ

Elektronika Előadás

( ) abszolút érték függvényét!

Elektronika Oszcillátorok

Ideális műveleti erősítő

ELEKTRONIKAI ALAPISMERETEK

TARTÓSZERKEZETEK II.-III.

Elektronika alapjai. Témakörök 11. évfolyam

Elektronika Előadás. Műveleti erősítők felépítése, ideális és valós jellemzői

A 2006/2007. tanévi Országos középiskolai Tanulmányi Verseny második fordulójának feladatai és azok megoldásai f i z i k á b ó l III.

Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások

Műveleti erősítők alapkapcsolásai A Miller-effektus

Gingl Zoltán, Szeged, dec. 1

ELEKTRONIKAI ALAPISMERETEK

MÉRÉSI JEGYZŐKÖNYV. Felhasznált eszközök. Mérési feladatok

Analóg elektronika - laboratóriumi gyakorlatok

MUNKA, ENERGIA. Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő hatására elmozdul.

Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2

Jelgenerátorok ELEKTRONIKA_2

- IV.1 - mozgó süllyesztékfél. álló süllyesztékfél. 4.1 ábra. A süllyesztékes kovácsolás alapelve

VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Elektronika Előadás. Műveleti erősítők. Alapkapcsolások műveleti erősítővel.

AquaProdukt USZODAI LÉGKEZELŐK PÁRÁTLANÍTÁS TÍPUS HÁZSZERKEZET

Jelkondicionálás. Elvezetés. a bioelektromos jelek kis amplitúdójúak. extracelluláris spike: néhányszor 10 uv. EEG hajas fejbőrről: max 50 uv

Attól függően, hogy a tranzisztor munkapontját melyik karakterisztika szakaszon helyezzük el, működése kétféle lehet: lineáris és nemlineáris.

ELEKTRONIKAI ALAPISMERETEK

AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

Távközlési mérések Laboratórium ALCATEL OPTIKAI VÉGBERENDEZÉS MÉRÉSE

Analóg elektronika - laboratóriumi gyakorlatok

Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK

Praktikus tippek: Lambdaszondák ellenőrzése és cseréje

Mechanika A kinematika alapjai

Elektronika Előadás. Műveleti erősítők táplálása, alkalmazása, alapkapcsolások

Gingl Zoltán, Szeged, :44 Elektronika - Diódák, tranzisztorok

Tájékoztató. Használható segédeszköz: számológép

Műveleti erősítők - Bevezetés

1 CO (váltóérintkező) 1 CO (váltóérintkező) Tartós határáram / max. bekapcs. áram. 10 / 0,3 / 0,12 6 / 0,2 / 0,12 Legkisebb kapcsolható terhelés

Hatvani István fizikaverseny forduló megoldások. 1. kategória

X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ

1. Visszacsatolás nélküli kapcsolások

Egyedi cölöp süllyedésszámítása

Teljesítményerősítők ELEKTRONIKA_2

Kidolgozott minta feladatok kinematikából

= 450 kg. b) A hó 4500 N erővel nyomja a tetőt. c) A víz tömege m víz = m = 450 kg, V víz = 450 dm 3 = 0,45 m 3. = 0,009 m = 9 mm = 1 14

KÖZÖS EMITTERŰ FOKOZAT BÁZISOSZTÓS MUNKAPONTBEÁLLÍTÁSA

MINERVA TÉRINFORMATIKAI RENDSZER ELEKTROMOS HÁLÓZAT TÉRINFORMATIKAI INTEGRÁCIÓJA

Adatok: R B1 = 100 kω R B2 = 47 kω. R 2 = 33 kω. R E = 1,5 kω. R t = 3 kω. h 22E = 50 MΩ -1

Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Repülőgépek és hajók Tanszék

1. Gépelemek minimum rajzjegyzék

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA TÁVKÖZLÉSI ISMERETEK KÖZÉPSZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK

Földelt emitteres erősítő DC, AC analízise

ELEKTRONIKAI ALAPISMERETEK

BUDAPESTI MŰSZAKI FŐISKOLA KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI FŐISKOLAI KAR AUTOMATIKA INTÉZET ELEKTRONIKA MINTAPÉLDÁK

Szakács Jenő Megyei Fizika Verseny, I. forduló, 2003/2004. Megoldások 1/9., t L = 9,86 s. = 104,46 m.

ELEKTRONIKAI ALAPISMERETEK

1. MINTAFELADATSOR KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

ELEKTRONIKAI ALAPISMERETEK

Mûveleti erõsítõk I.

Széchenyi István Egyetem MTK Szerkezetépítési és Geotechnikai Tanszék Tartók statikája I. Dr. Papp Ferenc RÚDAK CSAVARÁSA

8. Fejezet A HÁROM MŰVELETI ERŐSÍTŐS MÉRŐERŐSÍTŐ

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK

feszültség konstans áram konstans

Csak felvételi vizsga: csak záróvizsga: közös vizsga: Villamosmérnöki szak BME Villamosmérnöki és Informatikai Kar május 31.

Gyengesavak disszociációs állandójának meghatározása potenciometriás titrálással

Tranzisztoros erősítő vizsgálata. Előzetes kérdések: Mire szolgál a bázisosztó az erősítőkapcsolásban? Mire szolgál az emitter ellenállás?

5. MÉRÉS LC OSZCILLÁTOROK VIZSGÁLATA

ELEKTRONIKAI ALAPISMERETEK

Elektronika Előadás. Analóg és kapcsoló-üzemű tápegységek

Mérési útmutató Periodikus, nem szinusz alakú jelek értékelése, félvezetős egyenirányítók

Átírás:

ELEKTRONIKAI TECHNIKUS KÉPZÉS 2 0 1 3 M Ű V E L E T I E R Ő S Í T Ő K ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR

- 2 - Tartalomjegyzék Műveleti erőítők...3 Műveleti erőítők fogalma, működéi elve, felépítée...3 Műveleti erőítők jellemző paraméterei...7 Műveleti erőítő egyenáramú é váltakozó áramú erőítő alapkapcoláok...8 Műveleti erőítők egyenáramú mnkapont-beállítáa...10 Műveleti erőítők frekvenciakompenzáláa...11 Műveleti erőítők alkalmazáa...12 Áttenté: a nyílthrkú erőíté hatáa a vizacatolt erőítére...15

Műveleti erőítők - 3 - Az azimmetrik, dizkrét eleme tranziztoro erőítő fokozatok felhaználhatóágát korlátozza, hogy a mnkapontok erően hőméréklet függőek é többnyire cak váltakozó fezültég erőítéére alkalmaak. A hőméréklet változá miatt fellépő mnkapont vándorlá vagy má néven drift, megfelelő, több fokozatot átfogó vizacatoláal jelentően cökkenthető. Az egyenáramú jelátvitelhez a bemeneti mnkaponti fezültég földpotenciál közelébe helyezée zükége, ami kettő tápfezültéget igényel. A fokozatok közötti galvanik catolá feltétele a mnkaponti fezültégek egyezée. Ez megoldható az egye fokozatok tápfezültégének lépcőzéével, vagy NPN-PNP... típú tranziztoro fokozatok özekapcoláával. A lépcőzete tápegyég bonyollt, a komplementer fokozatok eetén előbb-tóbb elfogy a vezérléi tartomány. Egyenfezültég erőítéére a differenciál erőítők a legalkalmaabbak, mivel felépítéük miatt a hőméréklet ill. a tápfezültég változáa a meneti fezültégükre, elvileg hatátalan. Az integrált áramkörö gyártátechnológia fejlődéének eredménye a műveleti erőítő. Az áramkör analóg zámítáok elvégzéére, matematikai műveletek megoldáára kézült, nevüket angol elnevezéük, Operational Amplifier vagy Operational Circit fordítáából kapták. Műveleti erőítők fogalma, működéi elve, felépítée Azokat az egyenfezültég erőítőket, melyek két zimmetrik bemenettel é általában egy azimmetrik menettel rendelkeznek műveleti erőítőknek nevezzük. A műveleti erőítő menő fezültége a neminvertáló (+) é az ivertáló () bemenetekre kapcolt fezültégek különbégével arányo. Az arányoági tényező a műveleti erőítő nyílthrkú azaz vizacatolá nélküli erőítée. Blokkvázlat: A differenciálerőítő, két FE erőítő fokozatból áll, melyeknek közö az emitter ellenállák. A tranziztorok paraméterei é a kollektor ellenálláok értékei azonoak. Ezt az biztoítja, hogy egyzerre kézülnek. A tápfezültég kettő, közö pontjk a földpont. A fokozatok mnkapont-beállítáa miatt a báziok földpotenciálra vagy a közelébe kerülnek. A differenciál erőítőknek két bemenete é két menete van. A bemenetek vezérelhetők külön-külön é együtt i. A menő fezültéghez vagy a kollektorok é a földpont vagy a két kollektor között lehet hozzáférni.

- 4 - Általáno eetben a bemeneti fezültégek bármilyen nagyágúak é fázihelyzetűek lehetnek, de minden eetben előállíthatók két azono nagyágú é fázihelyzetű bek, é két azono nagyágú de ellentéte fáziú be fezültégekből. be be1 be2 be1 be2 bek 2 Differenciáli zimmetrik vezérlé eetén mindkét bemenet külön-külön kap bemenő fezültéget, azimmetrik vezérlé eetén cak az egyik bármelyik bemenet vezérelt, a máik földpontra van kötve. A két bemenőjel különbége be1 - be2 = be, a tranziztorok BE diódáján ozlik meg. Az be / 2 a tranziztorokat azono mértékben de ellentéteen vezérli. A kollektorokon az be / 2-vel arányoan felerőített de ellentéte irányú fezültég jelenik meg, így az 1-2 = az be-el arányo. A differenciál módú fezültégerőíté az FE kapcolára jellemzően: A be h21 Rc h11 Érdeme megfigyelni, hogy ha az be1-t vezéreljük azimmetrikan, akkor az ellentéte, é ha az be2-t vezéreljük azimmetrikan, akkor az azono fáziú lez. Az egyik bemenet tehát fázit fordít, a máik bemenet nem fordít fázit. Közö módú vezérlé eetén mindkét bemenet vezérlő fezültége azono nagyágú é fáziú. A kollektorokban a megjelenő fezültégek nagyága é iránya i azono, ezért ideáli eetben az = 0. A tranziztorok az be1 = be2 = bek bemeneti fezültéget a közö emitter ellenálláon máolják, így a vezérlé miatt alakló emitter áram Ie = bek / Re. A tranziztorok az emitter áramot egyenlően oztják meg, ezért a kollektor ellenálláokon folyó ic1 = ic2 = ie / 2 áram hozza létre az 1 = 2= k = Rc ie / 2 menő fezültéget. A közö módú fezültégerőíté az emitterköri negatív vizacatolt FE-re jellemzően: Ak k bek A közö módú erőíté jelentően cökkenthető az emitter ellenállá áramgenerátorral való váltáával. A gyakorlatban be =0 eetén az 0. Ezt a hibafezültég má néven ofzet, az alkatrézek azimmetriája miatt jelenik meg. További problémát okoz a hőméréklet változá miatt fellépő bek=2mv/c drift vagy mnkapont vándorlá i. A kedvezőtlen hatáokat, a DC catolá érdekében, zintén az emitterköri áramgenerátor alkalmazáa cökkenti jelentően. A fennmaradó hibafezültéget külő áramköri elemekkel, mnkapont-beállítáal lehet kompenzálni. A differenciál erőítők differenciál módú fezültégerőítée kb. 50 60 db, közö módú erőítée kb. -20-30 db. Rc 2Re

- 5 - A differenciál erőítő bemeneti fezültégeinek zimmetrik é közö özetevőkre bontáa alapján, a bemeneti áramok i özetevőkre bonthatók. A bemeneti ellenálláokat a zimmetrik illetve a közö fezültégek é áramok hányadoai határozzák meg. R be i be be 2 i be1 be1 i be2 be2 R bek i bek bek 1 2 i be1 be1 i be2 be2 A differenciál erőítő meneti ellenálláa ~2R C, a többnyire terheletlen üzemmód miatt ninc jelentőége. A fáziözegző a differenciál erőítő zimmetrik menő fezültégét azimmetrikra alakítja. Jelentő erőítée ninc, 1. Megoldható "a." ábra zerint emitter követővel, ebben az eetben cak fele akkora menőjel továbbítható, vagy PNP tranziztoro FE kapcoláal "b." ábra zerint. A D dióda a T3 nyitófezültégét függetleníti a hőméréklettől. A főerőítő két tranziztorból áll, a kollektorok párhzamoan a bázi emitter diódák orba vannak kapcolva. Eredőben egy B 1 B 2 áramerőítéű NPN tranziztor alakl "a" ábra. A elrendezét Darlington kapcolának nevezzük. A bemeneti ellenállá h11 e =h11 1 +h11 2 B 1. Kedvezőtlen a oro nyitófezültégek hőméréklet függée. Ez cökkenthető komplementer tranziztorok alkalmazáával, "b" ábra. Az eredő NPN tranziztor áramerőítée az előzővel azono, a bemeneti ellenálláa h11 e =h11 1. A kapcolát kompozit párnak nevezzük. A zintáttevők feladata a különböző fezültégű mnkapontok közötti hazno jel cillapítatlan továbbítáa. Szintáttevőnek olyan kétpólok alkalmaak, melyeknek karakteriztikájában van áramtengellyel párhzamo jellegű zakaz. Tipik alakítáok: oro diódalánc, Zener dióda, tranziztoro zinteltoló, áramgenerátoro zintáttevő. A tranziztoro zinteltolónak haonló karakteriztikája van, mint a Zener diódának záróirányban, de a letöréi fezültég az R1 é R2 ellenállától függ. A kétpól egy oro ellenálláon kap fezültéget. Amíg az R1 fezültége ebb a tranziztor nyitófezültégénél, addig cak az R1 é R2 ellenálláokon folyik egy vizonylag áram. Ha R1 fezültége eléri a nyitófezültéget, akkor a tranziztor nyit é a kollektor árama elvezeti az ellenálláok áramának egy rézét, de ezzel a aját nyitófezültégét i cökkenti. Végeredményben alakl egy egyenúlyi helyzet, a

- 6 - tranziztor állandóítja az U CE fezültégét. Egy erőítő fokozat fezültégerőítéét az alkalmazott aktív elemen kívül a mnkaellenállá határozza meg. Nagy erőítéhez nagy értékű mnkaellenállá é emiatt nagy tápfezültég i zükége. Integrált áramkörö technológiával nagy értékű ellenállá előállítáa hátrányokkal jár, a nagy tápfezültég az alkalmazát tezi nehézkeé. Ki tápfezültég mellett nagy ellenállát áramgenerátorral lehet megvalóítani. A tranziztor felhaználható áramgenerátornak, mivel kollektor árama cak mértékben függ a kollektor - emitter fezültégtől. Az áramgenerátor alapelvét az emitterkövető kapcolá valóítja meg, "a" ábra. A tranziztor az állandó bázifezültéget, az emitter ellenálláon máolja. Mivel az emitter ellenálláon állandó a fezültég, ezért az emitter áram é így a kollektor áram i állandó. Az Ig forrá áramot az Ue / Re hányado határozza meg, Az emitter fezültég U BE -vel ebb, mint az Ug é hőméréklet függée az Ig forrááramot i befolyáolja. JFET-e áramgenerátort mtat a "b" ábra. A forrááramot az Ug / R özefüggéel lehet meghatározni. A tranziztor hőméréklet függéét, két azono irányú hatá okozza. A hőméréklet emelkedée következtében, egyrézt a bázi-emitter nyitó fezültég cökkenée, márézt a kollektor-bázi záró áram növekedée miatt, a tranziztor mnkapontja nyitó azaz nagyobb áramú irányba tolódik el. Állandó bázi illetve kollektor áramot, állandó báziemitter fezültéggel nem lehet biztoítani. Állandó Uo mnkaponti fezültég mellett a báziáram Io1-ről, Io2-re változik, ha a hőméréklet T1-ről, T2-re növekzik, "a." ábra. Az emitterköri negatív oro-áram vizacatolá cökkenti a mnkapont hőméréklet függéét de a DC catolához ez em elegendő megoldá. A báziáram állandó lez, ha a nyitófezültéget Uo1-ről, Uo2-re változtatjk, amikor a hőméréklet T1-ről, T2- re növekzik. Hőméréklet független áram generátorként a tranziztor cak abban az eetben haználható, ha a vezérlő fezültég i hőméréklet függő. A "c." ábra mtatja, hogy ezt az elvet, hogyan lehet haznoítani áramgenerátor hőméréklet függetlenítéére. Az Iv vezérlőáram a D dióda é az R ellenállá eredőjén hozza létre a bázifezültéget. A dióda é a tranziztor nyitófezültége jó közelítéel azono é a hőméréklettel együtt változik. Az Ig forrááram az Iv R / Re alapján zámítható. Ha az ellenálláokat elhagyjk é a diódát egy

- 7 - máik, azono paraméterű "önzabályozott" diódaként működő tranziztorral állítjk elő, akkor gyakorlatilag teljeen hőméréklet független áramgenerátort kapnk, "d." ábra. Az Iv vezérlő é az Ig generátor áramok arányát az integrált emitter felületek aránya határozza meg. Egy vezérlő tranziztorra több különböző forrááramú generátor i kapcolható, "e." ábra. Az elrendezét áramtükörnek i nevezi a zarodalom. Az áramtükör javított paraméterű változatai a nagypontoágú áramáttevő, "f." ábra, é a nagy belő ellenálláú áramgenerátor, "g." ábra. Aktív mnkaellenállá alkalmazáával az erőíté egy áramgenerátor belő ellenálláán jön létre, így a nagy értékű integrált ellenállá alakítáa elkerülhető. Mindkét kapcolában a T2 tranziztor az áramgenerátor. FE kapcoláal - baloldali rajz - 1000 3000-zere, FC kapcoláal - jobboldali rajz - 1-zere erőíté é közel tápfezültégnyi vezérelhetőég érhető el. A végfokozat általában komplementer tranziztoro felépítéű. A 2UBE generátor egy zinteltoló, feladata a végtranziztorok AB oztályú beállítáa, mellyel a nlla átmeneti torzítá züntethető meg. A végtranziztorok nyitófezültégének hőméréklet kompenzációját i a zinteltoló oldja meg (a rajzon ninc feltüntetve!). Az áramkör legtöbb eetben túlterhelé elleni védelemmel i el van látva, példál 25 ma-re korlátozza a terhelő áramot. A végfokozatok általában a tápfezültég 85-90%-ig vezérelhetők. Műveleti erőítők jellemző paraméterei Az ideáli műveleti erőítő jellemzői: nyílthrkú differenciáli fezültégerőíté: nyílthrkú közö módú fezültégerőíté: 0 bemeneti ellenállá: meneti ellenállá: 0 ávzéleég: A műveleti erőítők katalógban megtalálható jellemzői: Ao nyílthrkú differenciáli fezültégerőíté: zimmetrik bemeneti jellel, alacony frekvencián, vizacatolá nélkül, terheletlen menet eetén mért fezültégerőíté. (pl. 100 db) Ak nyílthrkú közö módú fezültégerőíté: közö bemeneti jellel, alacony frekvencián, vizacatolá nélkül, terheletlen menet eetén mért fezültégerőíté. (pl. 0,2) G közö módú fezültég elnyomái tényező: differenciáli é a közö módú

- 8 - fezültégerőíté hányadoa, vagy logaritmik mérőzáma (pl. 20 lg Ao / Ak = 100 db). IBO bemeneti mnkaponti áram: bemeneti áramok átlaga (pl. Ip+In/2=100nA). Ibeo bemeneti ofzet áram: az a zimmetrik bemeneti hibaáram, mely a M.E. meneti fezültégét 0 V-ra állítja. (pl. Ip-In=50nA) Ubeo bemeneti ofzet fezültég: az a zimmetrik bemeneti hibafezültég, mely a M.E. meneti fezültégét 0 V-ra állítja. (pl. Up-Un=1mV) Rbeo bemeneti ellenállá: zimmetrik bemeneti fezültég é a zimmetrik bemeneti áram hányadoa (pl. Up-Un/IBO =2 M). Ro meneti ellenállá: meneti ürejárái fezültég é rövidzárái áram hányadoa (pl. Uü / Ir = 10 ). Udmax bemeneti differenciáli fezültégtartomány: bemenetekre kapcolható maximáli differenciáli fezültég (pl. ± 5 V). Ukmax bemeneti közö fezültégtartomány: bemenetekre kapcolható maximáli közö fezültég (pl. ± 5 V). fo ávzéleég: az a frekvencia, ahol az Ao cökkenée 3dB (pl. 10 Hz). S jelkövetéi ebeég: a meneti fezültég maximáli változái ebeége (pl. 0,5 V/µ). Annak a zinzo bemeneti fezültégnek a frekvenciája, melyet a M.E. menete még képe követni. Egy zinzo fezültég nlla átmeneti változái ebeége: S = U / t = 2 f Û. Ut tápfezültég tartomány: az a kettő tápfezültég tartomány, ahol már é ahol még üzemzerűen működtethető a M.E. (pl. ± 5 ± 18 V). Műveleti erőítő egyenáramú é váltakozó áramú erőítő alapkapcoláok Invertáló erőítő alapkapcolában a műveleti erőítőt negatív vizacatoláal egézítjük. A vizacatoló hálózat egy fezültégoztó, melyre a bemeneti é a műveleti erőítő meneti fezültége kapcolódik, az oztápontja pedig az invertáló bemenetre van kötve. Az be hatáára a M.E. ellenkező irányban úgy állítja be a meneti fezültégét, hogy az, az Rv-R fezültégoztó oztápontján alakló n különbégi fezültég Ao-zoroa legyen. Nagy Ao eetén, a különbégi fezültég caknem nlla, az n p, ezért az invertáló bemenet látzólago földpotenciálnak tenthető. Az R ellenálláon az be-vel arányo áramot, mely telje egézében az Rv ellenálláon folyik tovább, a M.E. menete "lenyeli". Az Rv-en az, az R-n az be fezültég eik, így az erőíté a két ellenállá hányadoa. A meneti ellenállá az Rv, R ellenálláokkal megvalóított negatív párhzamo fezültég vizacatolá mi- Rv Av be R Rbe R Av R Ro Ao Rk R Rv

- 9 - att ebb lez mint az Ro. Az invertáló bemenet mnkaponti árama a bemenetre catlakozó ellenálláokon folyik át é a vezérlétől függetlenül hibafezültéget hoz létre. Ez a hibafezültég a neminvertáló bemenetre kapcolt gyanakkora úgynevezett kompenzáló ellenálláal züntethető meg, mint amekkorát a máik bemenet "lát", tehát Rk = R Rv. Nem invertáló erőítő alapkapcolában a műveleti erőítőt zintén negatív vizacatoláal látjk el. A vizacatoló hálózat ebben az eetben i egy fezültégoztó, mely a műveleti erőítő menő fezültége é a földpont közé van kapcolva, az oztápont az invertáló bemenetet vezérli. Az be hatáára a M.E. azono irányban úgy állítja be a meneti fezültégét, hogy az, az Rv-R fezültégoztó oztápontján alakló n különbégi fezültég Ao-zoroa le- be Rv be Rv gyen. Nagy Ao eetén az R-en gyakorlatilag az be Av R 1 be be R fezültég, illetve azzal arányo áram alakl. Ez az Rbe R áram az Rv-n telje egézében átfolyik é rajta Rv / Av R arányú be-zere fezültéget hoz létre. Mivel a R Ro két ellenálláon eő fezültég özege az, ezért a Ao fezültégerőíté eggyel nagyobb mint az Rv / R. Rk R Rv Az R ellenállá zerepe é értéke gyanaz mint az invertáló kapcolában. Ha üzem közben biztoítható a bemenet állandó lezáráa, akkor az R ellenállát oroan i lehet kapcolni a bemeneti fezültéggel, így haználható a műveleti erőítő nagy bemeneti ellenálláa. Ebben az eetben az Rbe. Ha az Rv rövidzár é az R zakadá, akkor az erőíté egyégnyi lez, követő vagy leválaztó erőítő jön létre. Az imertetett invertáló é neminvertáló alapkapcoláok egyenáramú é váltakozó áramú jelek erőítéére i alkalmaak. Ha a bemenetekre é a menetekre catoló kondenzátorokat helyezünk el, akkor zárólag váltakozó áramú jelek erőítéére alkalma kapcoláokat kapnk. A fokozatok méretezée é jellemzőinek zámítáa ávközépen haonló özefüggéekkel történik mint előzőleg. Av Rv R Rbe R Rk Rv Av 1 Rv R Rbe Rk Rk Rv R

- 10 - A kapcoláok meneti ellenálláa az előzőkkel azono: Av R Ro Ao A bemeneti catolókondenzátor a bemeneti ellenálláal, a meneti catolókondenzátor a terhelő ellenálláal alkot frekvenciafüggő fezültégoztót. Mindkettő meghatároz egy-egy aló határfrekvenciát, melyek közül a nagyobb lez az aló határfrekvencia. 1 fabe 2 C1 Rbe fa 1 2 C2 Rt Műveleti erőítők egyenáramú mnkapont-beállítáa Mnkapont-beállítá alatt a bemeneti nygalmi áram, az ofzet fezültég é az ofzet áram miatt, a meneti fezültégben fellépő nemkívánato eltéréek megzüntetéét, kompenzáláát értjük. A differenciál erőítő bemeneti tranziztorainak mnkaponti árama a bemeneti nygalmi áram. Ez az áram a vizacatoló hálózat ellenálláain átfolyva fezültégeét hoz létre, melyet a műveleti erőítő mint vezérlőjelet felerőítve a menetén megjeleníti. A meneten tehát bemenőjel nélkül i megjelenik néhányzor 1mV-o vagy néhányzor 10mV-o egyenfezültég. Váltakozó áramú erőítők eetén a meneti egyenfezültég nem befolyáolja működét de egyenáramú, főleg mérétechnikai alkalmazáoknál megengedhetetlen. A meneti hibafezültég megzüntetéének elve, hogy a neminvertáló bemenetre catlakozó ellenálláok eredője legyen azono az invertáló bemenetre catlakozó ellenálláok eredőjével. Ebben az eetben a nygalmi áramok az ellenálláokon azono nagyágú fezültégeéeket hoznak létre, ami a műveleti erőítő zámára közö módú vezérlét jelent é így nem jelenik meg a meneten hibafezültég. A nygalmi áram kompenzáláát az alapkapcoláoknál imertetett Rk ellenállá oldja meg. A neminvertáló bemenetre tehát akkora ellenállát célzerű válaztani, amekkora az invertáló bemenetre catlakozó öze ellenállá párhzamo eredője egyenáramúlag. Az ofzet fezültég a differenciál erőítő bemenetén, a tranziztorok paramétereinek eltéréeiből, a bázi-emitter átmenet geometriai é a rétegek zennyezettégének különbözőégéből zármazik. A meneti nygalmi fezültég nllára állítáához az ofzet fezültéget kell létrehozni a bemeneten. Az ofzet kompenzáció alatt azt az eljárát értjük, mely orán a gyártákor az áramkörben alaklt hibát külő alkatrézekkel létrehozott, ellentéte hatáal züntetjük meg. Ofzet fezültég kompenzáló áramköri megoldát mtat az ábra. Az Rk ellenállá nem a földpotenciálra, hanem attól néhány mv-al eltérő pontra catlakozik.

- 11 - Rövidrezárt bemenet eetén a potenciométerrel beállítható a nlla meneti fezültég. Ha a bemeneti rövidzár megzüntetéekor imét fellép a meneten hibafezültég, akkor áramkompenzációt kell alkalmazni. Az ofzet áram a bemeneti tranziztorok áramerőítéének eltérééből ered. Nagyágrendileg ebb hibafezültéget hoz létre, mint a nygalmi áramból zármazó, de precízió alkalmazáoknál zükége lehet az ofzet áram kompenzáláa. Az áramköri megvalóítát mtatja az ábra. Az invertáló bemenetre, mint látzólago földpontra egy nagy értékű ellenálláon néhány mv fezültégről pontoan az ofzet áramot folyatjk be. A beállítáa az előzőhöz haonló, rövidrezárt bemenet eetén a potenciométerrel nlla V-ra állítjk a menetet. Számo műveleti erőítő el van látva ofzet hiba egyenlítéére alkalma vezetéekkel, melyekre a gyártó által javaolt külő elemeket ráépítve a kompenzálá egyzerűen elvégezhető. Az ilyen típú alkatrézeket nevezzük belő kompenzáláú műveleti erőítőknek. A vezetéeket nem kötelező felhaználni, az áramkör példál AC erőítőnek kompenzálatlanl i felhaználható. Műveleti erőítők frekvenciakompenzáláa A műveleti erőítő frekvencia vagy váltakozó áramú kompenzáláának célja a gerjedé mente működé biztoítáa. A valóágo műveleti erőítők nyílthrkú erőítée é fázitoláa a nagyobb frekvenciá tartományban, erően függ a frekvenciától. A műveleti erőítők belő áramköri alakítáa miatt, az integrált alkatrézek közötti parazita kapacitáok nagyfrekvencián, hatáoá válnak. Az áramkör ellenálláaival ezek a kapacitáok magaabb fokú allátereztő zűrőt hoznak létre, azaz az erőíté frekvenciamenetében több törépont i megjelenhet. Minden törépont -20 db/dekád meredekégű erőítécökkenét é -90 fázitolát jelent. Az ábra egy olyan nyílthrkú frekvenciamenetet mtat, ahol az f1, f2 é f3 törépontok 20kHz-nél, 2MHznél é 20MHz-nél vannak. A fáziforgatá eredőben -270. Ha a műveleti erőítő kapcolá frekvencia menetében - több nagy frekvenciá törépont eetén - létezik 180 -o fázifordítához egyégnél nagyobb erőíté, akkor ezen a frekvencián a negatív vizacatolá pozitívvá válik é az áramkör begerjed. A nagyfrekvenciá ozcilláció miatt az áramkör nem tdja ellátni a

- 12 - feladatát, egye eetekben a műveleti erőítő túlmelegzik é tönkremegy. A gerjedé megakadályozáára több megoldá létezik. A kapcolá bemenetén elhelyezett zűrővel nem engedjük meg, hogy a gerjedét okozó frekvencia a műveleti erőítőbe bejon. A gyártó ajánláa alapján, a műveleti erőítő erre a célra zolgáló vezetéeire catlakozó, általában R-C elemekből álló kompenzáló hálózat alkalmazáa. A tabil működéhez zükége külő áramköri elemek értékét é kapcolái módját a gyártó adatlapokon közli. Általában a különböző erőíté értékekhez má é má kompenzáló elemek zükégeek, tehát egyedileg kell a kompenzációt elvégezni. Belő kompenzáláú műveleti erőítő alkalmazáa eetén, a ávzéleég meterége bezűkítée miatt a gerjedé feltétele nem jöhet létre. A belő kompenzáláú műveleti erőítőkben a felő határfrekvencia, egy néhányzor 10 pf-e, beintegrált MOS kapacitá miatt kb. 10 Hz-nél jelenik meg. Az amplitúdó karakteriztika meredekége -20 db/dekád, a 0 db-e tengelyt kb. 1 MHz-nél metzi. Az eredő fázitolá cak egyzer 90, így a gerjedé feltétele, tehát az azono fáziú vizacatolá az é egyégnyi hrokerőíté, nem jöhet létre. A gerjedé menteégért a vizonylag zűk ávzéleéggel kell fizetni. A belő kompenzáláú műveleti erőítők, példál a A741, előorban ipari irányító áramkörökben, hangfrekvenciá fokozatokban haználhatók. A felő határfrekvencia zámítáa: Egy invertáló fokozat erőítée Ao Av = -100, a felő határfrekvencia Ao = 100 000 eetén 10 fv fo Av khz. Műveleti erőítők alkalmazáa Invertáló özeadó kapcolá kettő vagy több bemenetre egézített invertáló alapkapcolá. Az egye bemenetek az invertáló bemenetre, tehát a látzólago földpontra catlakoznak. A bemeneti fezültég a oro ellenálláokon áramot hajt, melyeknek az özege a vizacatoló ellenálláon folyik a menet felé. Az invertáló bemenetre felírható comóponti törvény: I1 + I2 + Iv = 0 A fezültégek é ellenálláok behelyetteítée tán, a meneti fezültég: U Rv Ube1 R1 Rv Ube2 R2 A kapcolá tehát a bemeneti fezültégek előjelhelye algebrai özegének -1-zereét ál-

- 13 - lítja elő a meneten. A rajz egy két bemenetű özeadót mtat be, a gyakorlatban a bemenetek záma ninc korlátozva. Az Rk kompenzáló ellenállá értékének, az invertáló bemenetre catlakozó ellenálláok párhzamo eredőjét célzerű válaztani, jelen eetben Rk = R1 R2 Rv. A kapcolá catoló kondenzátorokkal egézítve, váltakozó fezültégek özeadáára i alkalma. Különbégképző kapcolá egy invertáló é egy neminvertáló alapkapcolából áll. Az így képződő két bemenet fezültégének előjelhelye különbégét állítja elő a kapcolá. A ponto működé feltétele, az azono jelöléű ellenálláok értékének azonoága. A meneti fezültég meghatározáához az neminvertáló é invertáló bementek fezültégét kell felírni: Rv Up Ube2 R Rv Ube1 Un R Un U Rv Ube1 Rv U R Un R Rv Egyenúlyi helyzetben a műveleti erőítő bemeneti fezültégei azononak tenthetők, tehát Up = Un. Rv Ube1 Rv U R Ube2 R Rv R Rv A kapott özefüggét a meneti fezültégre rendezve: Rv U (Ube2 Ub1) R Ha az R é Rv ellenálláok azonoak, akkor a bemeneti fezültégek különbége, ha nem, akkor a bementi fezültégek különbégének Rv / R -zeree jelenik meg a meneten. Ideáli egyenirányító kapcolá jön létre, ha a diódá egyenirányító hidat a vizacatoló ágban helyezzük el. A R ellenálláon mindig az be fezültéggel arányo áram folyik, így a vizacatoló ág meghajtáa áramgenerátoro lez. A diódák nyitófezültégét a műveleti erőítő menete zedi magára, tehát nem jelenik meg a méréi eredményben. A Deprez műzeren átfolyó áram, a bemenet fezültég átlagértékének é az R ellenállának a hányadoával egyenlő. Az elrendezé igen előnyö tlajdonága, hogy nyitófezültégnél ebb váltakozó fezültégek i mérhetők. Integráló é differenciáló kapcoláokkal integrálá é deriválá matematikai műveletek végezhetők el. Az integrálá művelet egy görbe alatti terület meghatározáát, a deriválá vagy differenciál hányado képzée egy görbe változáfüggvényének előállítáát jelenti.

- 14 - Ha egy invertáló alapkapcolában az Rv vizacatoló ellenállát egy kondenzátorra ceréljük, akkor egy invertáló integráló kapcolá keletkezik. A bemenetre kötött egyenfezültég áramot hajt az R ellenálláon kereztül a látzólago földpont felé. Mivel a műveleti erőítő bemenete zakadá ezért az áram a kondenzátorba folyik be, megemelve ezzel az invertáló bemenet potenciálját. A műveleti erőítő erre a potenciálváltozára úgy válazol, hogy meneti fezültégét negatív irányba egyenlete ebeéggel növeli. A meneti fezültég az idővel arányoan nő. Négyzög lefolyáú bemeneti fezültég eetén, háromzög lefolyáú lez a meneti fezültég. Egy integrátor amplitúdó karakteriztikája egy 20 db/dekád meredekégű egyene mely, a 0 db-e tengelyt fo = 1 / 2 R C értéknél metzi, a fázi karakteriztikája kontan -90. Kozinzo bemenőjel eetén a meneten 90al kéő, tehát zinzo jel keletkezik. Az imertetett áramkör fázit fordít, tehát zinzo bemenőjel eetén mínz kozinzo lez a menőjel időbeli lefolyáa. Ha egy invertáló alapkapcolában az R oro ellenállát egy kondenzátorra ceréljük, akkor egy invertáló differenciáló kapcolá keletkezik. A bemeneti oro kondenzátor a bemenőjelnek cak a változáát engedi át, a meneten a bemenőjel idő zerinti deriváltjával arányo fezültég jelenik meg. Háromzög lefolyáú bemeneti fezültég eetén, négyzög lefolyáú lez a meneti fezültég. A differenciátor amplitúdó karakteriztikája egy 20 db/dekád meredekégű egyene mely, a 0 db-e tengelyt fo = 1 / 2 R C értéknél metzi, a fázi karakteriztikája kontan 90. Szinzo bemenőjel eetén a meneten 90-al iető, tehát kozinzo jel keletkezik. Az imertetett áramkör fázit fordít, tehát kozinzo bemenőjel eetén mínz zinzo lez a menőjel időbeli lefolyáa. Az integrátor é a differenciátor meneti fezültégét leíró függvények: 1 t (t) be(t)dt R C 0 Az integrátor é differenciátor kapcoláok cak az elvi felépítét mtatják be. A gyakorlatban haználható áramkörökhöz egézítéekre van zükég, példál integrátor eetén a kezdeti érték beállítáa, az ofzet fezültég integráláának megakadályozáa, differenciátor eetén a gerjedére való hajlam cökkentée, nagyfrekvencián jelentkező zaj elnyomáa. A felorolt egézítéekkel az áramkörök az analóg zámítátechnika, a zabályozái é mérétechnikai rendzerek nagyon fonto ezközei. A műveleti erőítők felhaználái területe, a feloroltakon kívül i igen zéle. Számo áramkör létezik hangerőítők, hangzínzabályozók, hangkeltők, aktív zűrők, teljeítményerőítők, tápegyégek, analóg-digitáli é digitáli-analóg átalakítók témakörében. A nemlineári alkalmazáok közül a komparátor, Schmitt-trigger é mltivibrátor kapcoláok a gyakoriak. A műveleti erőítők egy ciny néhány mm 2 -e zilícim lapka felületére integrálva kézülnek. Az áramköröket 14 vagy 8 lábú DIP illetve DIL műanyag, valamint TO-99 e 8 vezetée kerek fém tokozáal hozzák forgalomba. Az SMD technológiához i kézülnek műveleti erőítők. R C dbe dt

Áttenté: a nyílthrkú erőíté hatáa a vizacatolt erőítére - 15 - A műveleti erőítő fezültégei: p n A o Invertáló alapkapcolá: p n 0 p A o Az R - Rv ellenálláokon folyó áramok azonoága alapján: be be Az erőíté ponto értéke: A v A nyílthrkú erőíté hatáa a vizacatolt erőítére: be = 100 mv R = 4 k Rv = 200 k Ao = 10 100 1000 10000 [V] = -0,8197-3,3113-4,7574-4,9746 Av = -8,197-33,113-47,574-49,746 [V] = -0,082-0,0331-0,00476-0,000497 Az erőíté közelítő értéke Ao eetén: R n A R be o n R v A o R (A o R v Av R v AoR 1)R v R v

- 16 - Neminvertáló alapkapcolá: p n be p be A o Az Rv R fezültégoztáa alapján: R n R R be A o v R R R v Az erőíté ponto értéke: A v be A (A o o (R R v) 1)R R v A nyílthrkú erőíté hatáa a vizacatolt erőítére: be = 100 mv R = 4 k Rv = 200 k Ao = 10 100 1000 10000 [V] = 0,8361 3,3775 4,8525 5,0741 Av = 8,361 33,775 48,525 50,741 [V] = 0,084 0,0338 0,00485 0,000507 Az erőíté közelítő értéke Ao eetén: A v R 1 R v ***