Kerámiák archeometriai vizsgálata 5. Mázak



Hasonló dokumentumok
ÜVEG ÉS ÜVEGMÁZ. (Fórizs István MTA Geokémiai Kutatóintézet Anyagának felhasználásával)

Karbonát és szilikát fázisok átalakulása a kerámia kiégetés során (Esettanulmány Cultrone et al alapján)

Karbonát és szilikát fázisok átalakulása a kerámia kiégetése során (Esettanulmány Cultrone et al alapján)

Röntgen-pordiffrakció (XRD) Kő-, kerámia- és fémek archeometriája Kürthy Dóra

Mőszaki Anyagtudományi Kar Kerámia-és Szilikátmérnöki Tanszék. gyakorlati segédlet

Kerámia, üveg és fém-kerámia implantátumok

A tételsor a 21/2007. (V.21.) SZMM rendeletben foglalt szakképesítés szakmai és vizsgakövetelménye alapján készült.

1. A VÍZ SZÉNSAV-TARTALMA. A víz szénsav-tartalma és annak eltávolítása

KÉSŐ AVAR ÜVEGGYÖNGYÖK ÖSSZETÉTEL- VIZSGÁLATA

SiAlON. , TiC, TiN, B 4 O 3

... Mázhibák a kályhacsempéken

Sav bázis egyensúlyok vizes oldatban

Interkerám 20 éve a szilikátipar szolgálatában.... A raku. Rövid története és újjáéledése

NEM KONSZOLIDÁLT ÜLEDÉKEK

Redoxi reakciók Elektrokémiai alapok Műszaki kémia, Anyagtan I előadás

2. csoport: Alkáliföldfémek

Kötőanyagok. Kötőanyagok osztályozása. Dr. Józsa Zsuzsanna. Építési mész. Természetes kövektől a mesterségesekig. Építési mész. Hagyományos mészégetés

33 sorozat ÚJ! alacsony égetési hőfokú festékek üvegre

Kerámiák archeometriai vizsgálata

Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35

Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35

A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

Milyen anyag az üveg?

KERÁMIA NYERSANYAGOK, KERÁMIÁK

Minőségi kémiai analízis

Röntgen-pordiffrakció (XRD) Kőeszközök, fémek és kerámiák archeometriája Kürthy Dóra

Samba 100. Ólom mentes máz feletti festékek porcelánra, csontporcelánra, félporcelánra, kőcserépre és tűzzománcra

KIEGÉSZÍTÕ TERMÉKEK Film- és optikai eszköz védõ termékek

szilícium-karbid, nemes korund és normál korund

A Föld kéreg: elemek, ásványok és kőzetek

Bevezetés a történeti kerámiatechnológiába

Kerámiák archeometriai vizsgálata

SZERVETLEN KÉMIAI REAKCIÓEGYENLETEK

Kerámiák. Csoportosítás. Hagyományos szilikátkerámiák Építőanyagok: cement, tégla, fajansz, stb Üvegekek, Fémoxidok, nitridek, boridok stb.

Polimorfia Egy bizonyos szilárd anyag a külső körülmények függvényében különböző belső szerkezettel rendelkezhet. A grafit kristályrácsa A gyémánt kri

ÁSVÁNYI ALAPÚ FESTÉKEK

Periódusosság. 9-1 Az elemek csoportosítása: a periódusostáblázat

Szent-Györgyi Albert kémiavetélkedő

Falazatok anyagai. A tégla története. A tégla története. Vályog. Természetes kövektől a mesterségesekig. Természetes kövektől a mesterségesekig

Szakdolgozat. Módosító oxidok hatása kerámia mázak tulajdonságaira. Miskolc, Jáborcsik Levente

ÜVEG. Az üveg története 1. Ólomüveg. Az üveg története 2. Az üveg szerkezete. Az üveg alapanyaga

Al 2 O 3 kerámiák. (alumíniumtrioxid - alumina)

Üveges és képkeretező 4 Üveges és képkeretező 4

Fogorvosi anyagtan fizikai alapjai 5. Általános anyagszerkezeti ismeretek Fémek, ötvözetek

RÉSZLETEZŐ OKIRAT (3) a NAH /2016 nyilvántartási számú akkreditált státuszhoz

Üvegfúvó Üveggyártó

ÁSVÁNYI ALAPÚ FESTÉKEK

7. osztály Hevesy verseny, megyei forduló, 2003.

Nátrium és Kalcium részösszefoglaló feladatlap

FONDO FINITURA ACRILICO S. IMPA 2K ADVANCE ACRYL URETANICO L PU 420 NEW ACRYL URETANICO O.

Curie Kémia Emlékverseny 2018/2019. Országos Döntő 8. évfolyam

American Society of Materials. Szilárdtestek. Fullerének (C atomok, sokszögek) zárt gömb, tojás cső (egy és többrétegű)

A standardpotenciál meghatározása a cink példáján. A galváncella működése elektrolizáló cellaként Elektródreakciók standard- és formálpotenciálja

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos

A szilikongumi csövek nem csak fedett színben gyárthatók hanem áttetsző transzparens színekben is elkészítjük.

Bevontelektródás ívhegesztés

Hevesy György Kémiaverseny. 8. osztály. megyei döntő 2003.

Törmelékkızetek. Törmelékes kızet. Legalább 50%-ban törmelékes alkotórészek. Szemcseméret alapján. kızettöredékek ásványtöredékek detritális mátrix

Törmelékes kızet. Legalább 50%-ban törmelékes alkotórészek. Szemcseméret alapján. kızettöredékek ásványtöredékek detritális mátrix

Litoszféra fő-, mikro- és nyomelemgeokémiája

Kémiai energia - elektromos energia

LERAKÁS - Hulladékkezelési technológiák nem hasznosítható maradékanyagainak listája

Mikrohullámú abszorbensek vizsgálata

Általános és szervetlen kémia Laborelıkészítı elıadás VI

Kerámia, üveg és fém-kerámia implantátumok. BME Anyagtudomány és Technológia Tsz.

Építőanyagok 2. Anyagjellemzők 1.

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz!

Fogászati anyagok fajtái. Fogorvosi anyagtan fizikai alapjai 5. Általános anyagszerkezeti ismeretek Anyagcsaládok: fémek, kerámiák.

... Dátum:... (olvasható név)

Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik

Kiss László Blog:

8. osztály 2 Hevesy verseny, megyei forduló, 2004.

G04 előadás Napelem technológiák és jellemzőik. Szent István Egyetem Gödöllő

IV.főcsoport. Széncsoport

Anyagok és nyersanyagok az őskorban és a történeti korokban - bevezető

Fogorvosi anyagtan fizikai alapjai 8. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

+oxigén +víz +lúg Elemek Oxidok Savak Sók

Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

Fogorvosi anyagtan fizikai alapjai 7.

Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

Ftelemek: struktúra és tulajdonságok Elimenko, Schlegel, Pemco Brugge ( Mitteilungen, 2007/3)

A szilikongumi csövek nem csak fedett színben gyárthatók hanem áttetsző transzparens színekben is elkészítjük.

4. változat. 2. Jelöld meg azt a részecskét, amely megőrzi az anyag összes kémiai tulajdonságait! A molekula; Б atom; В gyök; Г ion.

Fémek. Fémfeldolgozás - Alumínium

A 2007/2008. tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatlapja. KÉMIÁBÓL I. kategóriában ÚTMUTATÓ

Elektrolit kölcsönhatások tőzzománc iszapokban Peggy L. Damewood; Pemco Corporation The Vitreous Enameller 2009,60,4

KÉMIAILAG ELLENÁLLÓ ZOMÁNCOK

KŐZETEK ELŐKÉSZÍTÉSE A LEPUSZTULÁSRA. Aprózódás-mállás

13 Elektrokémia. Elektrokémia Dia 1 /52

Felületmódosító technológiák

Cerablast - Üveg, kerámia és korund szóróanyagok -

Szakértesítő 1 Interkerám szakmai füzetek A folyósító szerek viselkedése a kerámia anyagokban

MAGAS ÉLETTARTAM, NAGYOBB TERMELÉKENYSÉG: LUTZ SZÕNYEG- ÉS TEXTILIPARI PENGÉK

Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS

Szemelvények a 2017 júniusi trencséntepliciüveg konferenciáról. Készítette: Dr. Simon Andrea

I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Minta feladatsor. Az ion képlete. Az ion neve O 4. Foszfátion. Szulfátion CO 3. Karbonátion. Hidrogénkarbonátion O 3. Alumíniumion. Al 3+ + Szulfidion

FONDO FINITURA ACRILICO S. IMPA 2K ADVANCE ACRYL URETANICO L PU 420 NEW ACRYL URETANICO O K MATT GYANTA

Kiselejtezett televízió-képernyők üvegének hasznosítása az üvegkerámia-gyártásban

Átírás:

Kerámiák archeometriai vizsgálata 5. Mázak Szakmány György Kerámiák archeometriai vizsgálata; 2011. december 13. Máz Máz: A kerámia felületén kialakított, amorf, üvegszerű bevonat, megszilárdult szilikátolvadék átmenet az üveg és a zománc között Összetétele: üveges fázis + kevés kristályos fázis Kialakítás: alapanyag + égetés (olvasztás); gyártása azonos az üveggyártás technológiájával Funkciója: mechanikai szilárdságnövelés kémiai ellenállóképesség növelés felület vízhatlanná alakítása esztétikai érték növelése Felépítése: Kerámia Átmeneti réteg folyamatos átmenet a kerámia és a máz között a máz és a kerámia közötti anyagi és hőtágulási különbség feszültségének kiegyenlítődése Máz üveges fázis 1

Máz tulajdonságai, összetétele Tulajdonságokat a mázat alkotó oxidok minősége és mennyisége szabja meg. Tulajdonságok: Olvadási T Hőtágulás Viszkozitás, felületi feszültség Mechanikai és vegyi ellenállóképesség Szín Kémiai összetétel - titkos receptek Első osztályozás: Seger mázalkotó oxidok kémiai összetétel alapján: rácsképző oxidok: SiO 2, B 2 O 3, SnO 2, stb. általában savanhidridek szabálytalan térrácsot alkotnak átmeneti oxidok: Al 2 O 3, Fe 2 O 3, stb. - rácsképző ionokat helyettesítik hasonló koordinációs szám és ionsugár, de eltérő ionerősség elektromos töltésviszonyok megváltoznak módosító oxidok: az átmeneti oxidok okozta felesleges negatív töltések kiegyenlítésére Na 2 O, K 2 O, CaO, MgO, BaO, PbO stb. Seger-formula: a mázat alkotó oxidok mólaránya (megfelelő szabályok szerint keverve) Mázalkotó oxidok 1. rácsképzők SiO 2 legfontosabb rácsképző oxid Nyersanyaga: Fe-mentes homok, kaolinit, földpát Olvadáspontot növeli Hőtágulást csökkenti Nyomószilárdságot, kopásállóságot, kémiai elleneállóságot növeli B 2 O 3 SiO 2 -vel jól elegyedik, azt helyettesíti Nyersanyaga: Ca-borát, Zn-borát, bórsav, bór-trioxid, bórax Olvadáspontot csökkenti Szélesíti az olvasztási hőtartományt Felületi feszültséget csökkenti Hőtágulást csökkenti (max 10%-nyi B 2 O 3 mennyiségig) Túlzott mennyiség + sok CaO és ZnO zavarosság (bórfátyol): BaO+SrO-val kiküszöbölhető 2

Mázalkotó oxidok 2. - átmeneti oxidok Al 2 O 3 Nyersanyaga: földpát, kaolinit, tűzálló agyag vagy égetett cserép Növeli az olvadáspontot Szélesíti az olvasztási hőtartományt Növeli a viszkozitást Növeli az ellenállóképességet Tűzállóvá teszi a színes mázakat és festékeket Mázalkotó oxidok 3. - módosító oxidok 1. PbO egyedüli oxid, ami a SiO 2 -vel vízben oldhatatlan mázat ad Nyersanyag: PbO, PbCO 3 (cerusszit), Pb 3 O 4 (mínium) Olvadáspontot jelentősen csökkenti (900 C 1:1 arányban SiO 2 és PbO) Lágyítja a mázat, rugalmasságát növeli Hőtágulást közepes szinten tartja Az ólmos máz jól oldja a színező fémoxidokat Mérgező!!! Alkáli-oxidok: Na 2 O, K 2 O, Li 2 O Nyersanyag: Na és K: elsősorban karbonátok, földpátok Li: Li-csillám, Li 3 PO 4, Li-karbonát, LiF Hőtágulást növelik Olvadási tartományt csökkentik ( Al 2 O 3 ) Viszkozitást csökkentik ( Al 2 O 3 ) Más oxidok mázban való oldódását elősegítik Ezen felül a Li-oxid növeli a máz fényességét Növeli az ellenállóképességet Kedvezően befolyásolja a színezőoxidok hatását 3

Mázalkotó oxidok 4. - módosító oxidok 2. CaO Nyersanyag: kalcit, mészkő (vasmentes), dolomit Keménységet, szilárdságot, ellenállóképességet növeli Fényességet növeli Hőtágulást és a hajszálrepedésre való hajlamot csökkenti Az átmeneti réteget szélesíti, ha a kerámia is tartalmaz meszet feszültséget levezeti a máz és a kerámia között Nagy mennyiség esetén (16-18% fölött) a máz átkristályosodik matt MgO Nyersanyag: magnezit, dolomit, MgO Felületi feszültséget növeli Keménységet, ellenállóképességet növeli Hajszálrepedésre való hajlamot csökkenti Nagy mennyiségben az olvadékonyságot növeli Kis mennyiségben a fényességet növeli Hajlamos a kristályképződésre matt máz Mázalkotó oxidok 5. - módosító oxidok 3. BaO és SrO Nyersanyag: karbonát vagy szulfát formájában (witherit, stroncianit, barit, cölesztin) Zavarosító komponensek matt máz Ba: olvadáspontot csökkenti (~900 C), előny: Pb-mentes ZnO Nyersanyag: ZnO, ZnCO 3 (smithsonit) Olvasztási hőmérsékletet emeli Máz rugalmasságát fokozza Hőtágulást csökkenti Kis mennyiségben (<0,2 mol%) a fényességet növeli >0,3 mol%: zavarosító, illetve kristályosodik matt vagy kristálymáz Zn-hez hasonló hatású a fluor (CaF 2 fluorit vagy Na 3 AlF 6 kriolit) 4

Mázalkotó oxidok 6. zavarosító oxidok SnO 2 átlátszatlan fedőmázak legfontosabb zavarosító adalékanyaga Nyersanyag: kassziterit A mázolvadékban nem oldódik Fedőhatás függ az SnO 2 részecskék méretétől Máz rugalmasságát növeli, csökkenti a hajszálrepedezettség kialakulását 9-12% SnO 2 fehér máz Nem mérgező!!! TiO 2 Nyersanyag: Ti-oxidok Nagy fénytörés jó zavarosító (hatását ZnO és CaO erősíti) 15% TiO 2 matt máz Mázolvadékban oldódik, de a lehűlés során TiO 2 kristályok válnak ki Repedésre való hajlamot csökkenti Savállóságot növeli ZrO 2 Nyersanyag: cirkon (cirkon tartalmú homok), baddeleyit Fedőképességet növeli Sav- és lúgállóságot növeli, hajszálrepedés ellen hat De: nehezíti a máz olvadását és tűszúrásossá teszi (F, ZnO adagolással javítható) Mázak színe 1. színtelen, fehér mázak Színtelen, átlátszó: színtelen oxidokból (ld. korábban) Átlátszóságot befolyásolja: Részleges kristálykiválás a mázban (devitrifikálódás); ok: túl savas a máz összetétele ellenszer: Al 2 O 3 növelés, alkáli oxidok csökkentése Tejszerű fátyolosodás a máz felületén; ok: sok a mész ellenszer: CaO csökkentés, PbO növelés Sok légzárvány a mázban opálos szín; ok: felszabaduló gázok az égetés során (elsősorban CO 2 karbonátokból) Fehér máz: zavarosító oxidok felhasználásával (TiO 2, SnO 2, ZrO 2 ) B 2 O 3, ZnO, CaO, F túladagolásával 5

Mázak színe 2. színes mázak Színes fémoxidok néhány %-os adagolásával: Co-oxid: kék, türkisz, fekete Cu-oxid: zöld, sárga, piros Ni-oxid: szürke, barna, acélkék, rózsaszín Mn-oxid: ibolya, barna Fe-oxid: sárga, barna, vörösbarna, vörös U-oxid: sárga, narancs, vörös Sb-oxid: sárga, acélkék Au: bíbor, rózsaszín Pt: szürke Ir: fekete Színt befolyásolja a többi oxid jelenléte, égetési viszonyok (oxidációs - redukciós atmoszféra, égetési T, égetési ciklusok) Színerősséget gyengíti: CaO, ZnO, BaO, B 2 O 3, SnO 2 Ugyanaz a színes fémoxid eltérő színt ad: Pb-tartalmú Pb-mentes Alkáli-tartalmú B-tartalmú mázakban Mázkészítés, mázas égetés Máz nyersanyagit nedves őrléssel finom iszappá őrlik máziszap stabilitásának növelése: plasztikus agyag hozzáadásával (10-20%) Égetés Egyszeres égetés máz a nyers cserépre, majd együtt égetés Kétszeres égetés porózus kerámiáknál 1. Biszkvit égetés (mázatlan égetés): magas T-n (900-1100ºC) 2. mázas égetés: 100-150 C-kal alacsonyabb T tömött kerámiáknál 1. Zsengélés: kiégetés (mázatlan égetés): alacsony T-n 2. erőstüzű mázas égetés: 400-500 C-kal magasabb T Kritikus T (érett T) amelyen az olvadék ráolvad a kerámia felületére 6

Túl magas T: Máz leválik Buborékképződés Mázas égetés - problémák Túl alacsony T Matt vagy nem üvegszerű lesz a felület Megtapadás problémás, ha a máz és az agyag tágulási együtthatói jelentősen eltérnek Megfelelő: a máz egy kicsit húzódjon jobban össze, mint a kerámia test Repedezettség: máz jelentősen erősebben összehúzódik, mint a kerámia test Elválás: máz kevésbé húzódik össze, mint a kerámia test vagy lassabban húzódik össze, mint a kerámia Máztípusok 1. Máztípusok Nyersmázak máziszapot közvetlenül a mázat alkotó nyersanyagokból őrlik Porcelánmáz Fajanszmáz Ólomtartalmú nyersmáz Ólommentes nyersmáz Agyagmáz Frittelt mázak mázkomponensek átalakítása olvasztással történik (mázkomponensek között mérgező anyagok vagy illók vannak) Sómáz égetés alatt kb 1200 C-on NaCl-t és vízgőz a kemence légterébe ezek reakcióba lépnek egymással és a kerámia alkotóival (Si és Al) a keletkező Na 2 O földpátszerű üveget alkot és átitatja a cserép anyagát, illetve a felületén bevonatot képez: Kevésbé fényes Kémiailag ellenálló 7

Máztípusok 2. Fedőmázak a mázban a fém-oxidok eredeti állapotban vagy kristályos formában vannak jelen átlátszatlan máz Legjobb hatás: ZrO 2, SnO 2, TiO 2, Sb 2 O 5 Matt mázak üvegszerű anyagban apró kristályok Túladagolás valamely oxidból: Al 2 O 3, TiO 2, CaO, Na 2 O, ZnO, MgO, BaO a SiO 2 csökkentésével Repedezett mázak máz és kerámia között a hőtágulási együttható nagy égetés után gyors hűtés Repedéseket színező anyaggal kitöltik Újabb mázolás majd kiégetés Kristálymázak lehűtéskor kristálygócok képződése Fémoxidok túladagolásával (ZnO, TiO 2, U 3 O 8, MnO, Fe 2 O 3 ) Megfelelő hűtés Korabeli mázak kémiai alapú osztályozása 1. Pb-oxid tartalom olvadáspont legjobb csökkentése 2. Alkáliák (elsősorban K- és Na-oxidok) tartalom 3. Alkáli földfém (elsősorban Ca-oxid) tartalom 4. Al-oxid tartalom olvadáspont legjobb növelése 8

Máztörténet Legkorábbi máz: 4000 BC: Közel-Kelet és Egyiptom 2. évezred BC közepe: Közép-Kelet alkáli-mész-szilikát máz alkália nyersanyaga: szóda Repedezett, gyengén tapadt a kerámiára sokáig ezt az összetételt használták (600 BC - 600 AD) Első Pb-máz: Kína (Warring States periódus): 475-221 BC; PbO~20% Pb-oxid-szilikát Pb-oxid Ba-szilikát Rómaiak: Pb-máz (kínaiaktól független bevezetés); PbO~45-60% Bizánc, Iszlám: Római hagyományok követése Pb-alkáli máz: 8. szd, Irak területén Sn-máz: iszlám fazekasok (kb 900 évvel az Sn-üveg első használata után késő római kor fajansz (Faenza), majolika (Mallorca) Iznik kerámia iszlám tradíción a 16-17. szd-ban: Pb-oxid-szóda (Na)-mész Olasz reneszánsz: Na helyett K 9