TANULMÁNY. Robbanóanyagok felderítése. kvadrupólus magrezonancia (NQR) segítségével. Összeállította: Matus Péter és Tóth Ferenc.



Hasonló dokumentumok
Koherens lézerspektroszkópia adalékolt optikai egykristályokban

Mágneses módszerek a mőszeres analitikában

Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör?

Mágneses módszerek a műszeres analitikában

Elektronika Oszcillátorok

Analóg elektronika - laboratóriumi gyakorlatok

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:

2. Elméleti összefoglaló

I. Az NMR spektrométer

Programozható Vezérlő Rendszerek. Hardver

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

Jelgenerátorok ELEKTRONIKA_2

Modern fizika laboratórium

Hangfrekvenciás mechanikai rezgések vizsgálata

Műszeres analitika II. (TKBE0532)

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:

Számítási feladatok a 6. fejezethez

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez

Biomolekuláris szerkezeti dinamika

ÁRAMKÖRÖK SZIMULÁCIÓJA

Orvosi Fizika és Statisztika

Analóg elektronika - laboratóriumi gyakorlatok

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia március 18.

Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk

ELEKTRONIKAI ALAPISMERETEK

Elektronspinrezonancia (ESR) - spektroszkópia

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft

Mérés és adatgyűjtés

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz november 19.

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2013 nyilvántartási számú akkreditált státuszhoz

Ultrahangos anyagvizsgálati módszerek atomerőművekben

2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

Röntgen-gamma spektrometria

A fény tulajdonságai

Gyakorló többnyire régebbi zh feladatok. Intelligens orvosi műszerek október 2.

ELEKTRONIKAI ALAPISMERETEK

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Számítási feladatok megoldással a 6. fejezethez

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1

Mérés és adatgyűjtés

LÉPCSŐHÁZI AUTOMATÁK W LÉPCSŐHÁZI AUTOMATA TIMON W SCHRACK INFO W FUNKCIÓK W MŰSZAKI ADATOK

Nemzeti Akkreditáló Testület. MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT /2013 nyilvántartási számú akkreditált státuszhoz

A Mössbauer-effektus vizsgálata

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása

Kutatási beszámoló február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése

Anyagvizsgálati módszerek Elemanalitika. Anyagvizsgálati módszerek

Hangfrekvenciás mechanikai rezgések vizsgálata

Készítette: NÁDOR JUDIT. Témavezető: Dr. HOMONNAY ZOLTÁN. ELTE TTK, Analitikai Kémia Tanszék 2010

Műszeres analitika II. (TKBE0532)

40-es sorozat - Miniatűr print-/ dugaszolható relék A

A nehézfémek növényi vízháztartásra gyakorolt hatásának vizsgálata Mágneses Rezonancia készülékkel. Készítette: Jakusch Pál Környezettudós

Sokcsatornás DSP alapú, komplex elektromos impedancia mérő rendszer fejlesztése

PWM elve, mikroszervó motor vezérlése MiniRISC processzoron

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?

Villamos jelek mintavételezése, feldolgozása. LabVIEW előadás

1. A hang, mint akusztikus jel

Mi mindenről tanúskodik a Me-OH néhány NMR spektruma

Zaj- és rezgés. Törvényszerűségek

Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító)

Elektronika Előadás. Modulátorok, demodulátorok, lock-in erősítők

2000 Szentendre, Bükköspart 74 MeviMR 3XC magnetorezisztív járműérzékelő szenzor

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

Koincidencia áramkörök

Elektromágneses módszerek geofizikai-földtani alkalmazásai. Pethő Gábor (Miskolci Egyetem)

Áramköri elemek mérése ipari módszerekkel

Lézerek. A lézerműködés feltételei. Lézerek osztályozása. Folytonos lézerek (He-Ne) Impulzus üzemű lézerek (Nd-YAG, Ti:Sa) Ultrarövid impulzusok

Jelkondicionálás. Elvezetés. a bioelektromos jelek kis amplitúdójúak. extracelluláris spike: néhányszor 10 uv. EEG hajas fejbőrről: max 50 uv

. T É M A K Ö R Ö K É S K Í S É R L E T E K

Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata.

Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató

ATOMEMISSZIÓS SPEKTROSZKÓPIA

Nagyfrekvenciás rendszerek elektronikája házi feladat

Rogowski-tekercses árammérő rendszer tervezése és fejlesztése

Műveleti erősítők. 1. Felépítése. a. Rajzjele. b. Belső felépítés (tömbvázlat) c. Differenciálerősítő

Modern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: Az optikai pumpálás. A beadás dátuma: A mérést végezte:

ÁLTALÁNOS SZENZORINTERFACE KÉSZÍTÉSE HANGKÁRTYÁHOZ

Energia-diszperzív röntgen elemanalízis

ELEKTRONIKAI ALAPISMERETEK

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.

a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása

Foglalkozási napló a 20 /20. tanévre

NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2

többfunkciós működésmód többfeszültségű (12 240)V AC/DC a 90.02, 90.03, és foglalatokba dugaszolható

Vektorok, mátrixok, tenzorok, T (emlékeztető)

85-ös sorozat - Miniatűr dugaszolható időrelék 7-10 A

Jelgenerálás virtuális eszközökkel. LabVIEW 7.1

Sugárzások kölcsönhatása az anyaggal

22-es sorozat - Installációs mágneskapcsolók 25 A

A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA JAVÍTÁSI ÚTMUTATÓ. Pohár rezonanciája

Akusztikus mérőműszerek

Feszültségérzékelők a méréstechnikában

OP-300 MŰSZAKI ADATOK

Spektroszkópiai módszerek 2.

Sorbaépíthető jelző, működtető és vezérlőkészülékek

Sorbaépíthető jelző, működtető és vezérlőkészülékek

A LED, mint villamos alkatrész

Átírás:

MAGYAR TUDOMÁNYOS AKADÉMIA SZILÁRDTESTFIZIKAI ÉS OPTIKAI KUTATÓINTÉZET 1121 BUDAPEST, XII. ker., Konkoly-Thege út 29-33 Levélcím: 1525 Budapest, Postafiók 49 Telefon: 392-2212 Fax: 392-2215 e-mail: szfki@szfki.hu TANULMÁNY Robbanóanyagok felderítése kvadrupólus magrezonancia (NQR) segítségével Összeállította: Matus Péter és Tóth Ferenc Készült a HONVÉDELMI MINISZTÉRIUM HADITECHNIKAI INTÉZET megbízásából (szerződésszám: 1068/2/2000) Budapest, 2001.

1. Bevezetés Szilárd kémiai anyagok szelektív kimutatásának egyik hatékony eszköze az atommag kvadrupólus rezonancia (Nuclear Quadrupole Resonance = NQR) spektroszkópia. Az eljárás fontosabb jellegzetességei: összekeveredett anyagokat kémiai és kristályszerkezeti tulajdonságaik alapján képes megkülönböztetni nem igényel mintaelőkészítést roncsolásmentes kvantitatív meghatározást is lehetővé tesz a mérőberendezés rendeltetésétől függően nem túlságosan költséges Biológiai és gyógyszeripari termékeket a molekulában előforduló nitrogén kötési tulajdonságainak meghatározásával lehet azonosítani. A kérdéses vegyületet változtatható frekvenciájú elektromágneses térrel besugározva a nitrogén atommag a kémiai kötésre jellemző gerjesztett állapotba kerül, amely a rezonancia abszorpció alapján kimutatható. Az atommag eq nagyságú elektromos kvadrupólus momentumának az azt körülvevő eq nagyságú és η aszimmetria paraméterrel jellemzett lokális elektromos térgradienssel való kölcsönhatása eredményeképpen az atommag energianívói felhasadnak, így a nívók között a rádiófrekvenciás térrel átmenet gerjeszthető (1. ábra). A gerjesztéshez szükséges elektromágneses tér frekvenciáját a molekula kvadrupólus paraméterei határozzák meg. A 14 N atommagnak három NQR vonala van, amelyek az alábbi módon függnek a molekula kvadrupólus paramétereitől: 3 2 η ν + = e qq / h 1 + 4 3 3 2 η ν = e qq / h 1 4 3 1 2 ν 0 = ν + ν = e qq / hη 2 ν 0 ν - ν + 14 N 1. ábra 14 N atommagok NQR átmenetei A kémiai összetételtől függően a gerjesztési frekvencia (ν +,ν - ) néhány száz khz és 6 MHz között változhat. A besugárzást rövid: 5-250 µs hosszúságú, kv nagyságrendű, periodikusan ismétlődő impulzuscsomagokkal végzik. A besugárzás megszűnte után a magok visszatérve gerjesztett állapotukból, a felvett energiát visszasugározzák, amelynek mérésével a kérdéses molekula jelenléte, mennyisége meghatározható. A visszasugárzott jel nagyon kicsi, µv nagyságrendű, értékét a molekulára jellemző paraméterek határozzák meg. - 1 -

A gerjesztett állapotból az alapállapotba való visszatérést 2 paraméterrel, a T 1 és a T 2 relaxációs időkkel jellemezzük. A relaxációs idők ismerete igen fontos, ugyanis a gerjesztő impulzuscsomagok ismétlési idejét (a gyakorlatban kb. 10T 1 ), valamint az NQR jel félértékszélességét ( f=1/π/t 2 ) határozzák meg. 2. Robbanóanyagok azonosítása Egyes kémiai anyagok a következő kvadrupólus paraméterek alapján azonosíthatók: NQR frekvenciák: ν +, ν - relaxációs idők: T 1, T 2 abszorpciós jelszélesség: f aszimmetria paraméter: η A gyalogsági aknák túlnyomó többsége az alábbi robbanóanyagok valamelyikéből (vagy ezek keverékéből) készült: Megnevezés Jele Kémiai összetétel NQR frekvenciák (khz) T 1 relaxációs Jelszélesség (Hz) idő (ms) trotil TNT CH 3 C 6 H 2 (NO 2 ) 3 872; 861,5; 853; 850; 1-6 n.a. 847; 837; 712; 769; 742,5; 718; 755; 742 hexogén RDX N 3 (NO 2 ) 3 (CH 2 ) 3 5180; 5256; 5319; 6000; 1-8 100-300 3394; 3413; 3511; 4050 oktogén HMX N 4 (NO 2 ) 4 (CH 2 ) 4 5063,5300,720; 3623; n.a. n.a. 3737; 540; 490 pentaerythritil PETN C(CH 2 O) 4 (NO 2 ) 4 900; 500; 400 n.a. n.a. tetranitrát urotropin (hexa) HMT N 4 C 6 H 12 3585; 3468; 4942; 4785 300 100 n.a.: nincs adat 1. Táblázat Robbanóanyagok NQR paraméterei A 2/a. és 2/b. ábrán az RDX és a PETN típusú robbanóanyagok jellegzetes NQR spektruma látható, a 2/c ábrán pedig az RDX speciális, 2 dimenziós kvadrupól rezonancia spektuma tanulmányozható. - 2 -

2/a ábra RDX NQR spektruma. (Forrás: Advanced Detection Technology) 2/b ábra PETN NQR spektruma. (Forrás: Advanced Detection Technology) - 3 -

2/c ábra RDX 2 dimenziós NQR spektruma. (Forrás: Grechishkin et al. Physics Uspekhi 40(4) 393-406 (1997)) TNT vizsgálata A TNT robbanóanyag NQR frekvenciája alacsony (200 és 900 khz közé esik), ami nagyon alacsony jel/zaj viszonyt eredményez, továbbá a hosszú T 1 relaxációs idő miatt a periodikus gerjesztési és átlagolási idő ugyanakkor nagyon hosszú, ezért kimutatása a szokásos berendezésekkel szobahőmérsékleten egyenlőre nem lehetséges. A tisztítatlan katonai célú különböző módosulatú TNT összetevők jelszélesedést és további jelszint csökkenést eredményeznek, azokban legalább 6 (lásd 2. Táblázat), kémiailag nem egyenértékű nitrogén mutatható ki. Cseppfolyós nitrogén hőmérsékleten (T = -195.79 C) a szennyezéseket is feltüntető NQR spektrum a 3. ábrán látható. ν + (khz) ν - (khz) e 2 qq/h η 1 872 712 1056 0,303 2 861,5 769 1087 0.170 3 853 742,5 1064 0,208 4 850 718 1045 0,253 5 847 755 1068 0,172 6 837 742 1052 0,179 2. Táblázat 14 N NQR frekvenciák és paraméterek a katonai célú TNT-ben szobahőmérsékleten Szlovén kutatók (Blinc és munkatársai) hidrogén-nitrogén ( 1 H- 14 N) kettős frekvenciájú besugárzással jelentős, 30-szoros jelnövekedést, illetve mérési idő csökkenést értek el, ezért - 4 -

várhatóan lehetőség nyílik a TNT anyagú robbanó-szerkezetek terepi felderítésére is a vizsgálati módszerek továbbfejlesztésével. 3. Mérőberendezés 3. ábra A TNT kettős ( 14 N- 1 H) kvadrupól rezonancia spektruma T = 77 K-en (Forrás: Grechishkin et al. Physics Uspekhi 40(4) 393-406 (1997)) NQR vizsgálatoknál az anyagmintát rövid idejű, nagy teljesítményű a kvadrupólus rezonanciának megfelelő frekvenciájú elektromágneses térrel sugározzák be, amelyet hangolható rezonanciájú rezgőkör tekercse hoz létre. A gerjesztés lecsengése után az anyag a felvett energia töredékét a rezgőkörbe visszasugározza, amely a nagyérzékenységű mérővevő segítségével analizálható. Természetesen gondoskodni kell arról, hogy az adófokozat kimenőteljesítménye a mérővevőt ne tegye tönkre, és a rádiófrekvenciás gerjesztő jel fel- és lefutása a lehető leggyorsabb legyen, továbbá a mérővevő a lehető legrövidebb holt idő után erősítsen. Ezeket a követelményeket nem könnyű kielégíteni a következők miatt. A rezgőköri mérőtekercsben kialakuló elektromágneses tér nagysága függ a térfogattól (V), a rákapcsolt rádiófrekvenciás jel frekvenciájától (f 0 ) és teljesítményétől (P), valamint a tekercs jósági tényezőjétől (Q), értéke: B 1 =3(PQ/f 0 V) 1/2 A gerjesztést követően a tekercsen megjelenő feszültség vezérli a mérővevőt, az elérhető kimenő jel/zaj (S/N) viszonya az előző paraméterekkel kifejezve: S/N=(Qf 0 V) 1/2 A mérőberendezésnél általában a térfogat adott, f 0 a kimutatni kívánt anyagtípushoz kötődik, az adóteljesítmény korlátozott, ezért hatékony jeldetektálás a mérőtekercs jósági tényezőjének fokozásával érhető el. - 5 -

A rádiófrekvenciás jel az adó kikapcsolása után a rezgőkör jósági tényezőjétől függően csak lassan csökken; mindaddig, amíg értéke a mérővevő zajszintjénél magasabb, a hasznos jelet elfedi. Ez az idő is kifejezhető a fenti paraméterekkel, hossza: τ r =0,66 Q/f 0 Nagy jósági tényezőhöz hosszú lecsengési idő tartozik, amely gyakran hosszabb a mérni kívánt jelnél, ezért azt detektálni csak gyors lecsengés mellett lehet. Ezt az ellentétes követelményt a rezgőkörre periodikusan rákapcsolható csillapító áramkör segítségével érik el, amely az adófokozat kikapcsolása után a tárolt energiát felemészti; és ezzel a szokásos 50-300 értékű jósági tényezőt 10 alá redukálja, így ennek arányában a holtidő is megrövidül. A mérőfrekvenciától függően további korlátozásokkal is számolni kell. A nagy tekercs jósági tényező vastag huzallal valósítható meg (a huzalátmérő az áram behatolási mélységének többszöröse), ez azonban NQR méréseknél nem mindig kivitelezhető. A nagy teljesítményű rádiófrekvenciás gerjesztésnél ugyanis magnetoakusztikus rezgés is keletkezik, amelyet a mérővevő szintén felerősít és nehezen választható el a hasznos jeltől. Ez csak úgy küszöbölhető ki, ha a rezgőköri huzal saját ultrahangos rezgési módusa magasabb rezgésszámú, mint a mérőfrekvencia: a huzalátmérő 0,5 0,6 milliméternél nem vastagabb. Egy további - gyakran előforduló zavarjelet maga a vizsgált anyag kelt, ha ferroelektromos fázissal rendelkezik. Ilyen esetben a piezoelektromos hatás következtében az apró kristályok nagy amplitúdójú zajokat keltenek. Mindezek figyelembevételével érzékeny NQR mérés csak nagy zavarelnyomású a gerjesztéssel koherens jeldetektálás, többszöri jelátlagolás, valamint digitális szűrés segítségével végezhető el. A jel/zaj viszony jelentősen növelhető, ha az egyszerű periodikusan ismétlődő impulzusgerjesztés helyett különböző szélességű és periódusidejű impulzuskombinációkat alkalmaznak, továbbá a gerjesztő jelet kis mértékben elhangoljuk a pontos NQR frekvenciától. Egyes speciális impulzus kombinációkkal közel egy nagyságrendű jel/zaj javulás is elérhető. Az NQR jel frekvenciájának és a relaxációs időknek hőmérséklettől és egyéb környezeti hatásoktól való függése a gerjesztés automatikus visszaszabályozásával (a frekvencia és az impulzusszélesség módosításával) korrigálható. - 6 -

Mérőrendszerrel szemben támasztott követelmények Robbanóanyagok (RDX és HMX) vizsgálatára alkalmas NQR spektrométerrel szemben támasztott fontosabb követelmények: hangolható frekvenciatartomány:200khz 10MHz (rel. stabilitás jobb, mint 10-6 ) adóteljesítmény: 100W 2kW programozható egyes impulzushossz: 5 250µs programozható és változtatható szélességű és távolságú, periodikusan ismételhető impulzuscsomag 5µs 1s tartományban mérővevő érzékenysége: <1µV rezgőkör és mérővevő holtidő (frekvenciától függően) max. 5-30µs több fázisú fázisérzékeny egyenirányító, analóg és digitális szűrés programozható jelátlagoló A vizsgálóberendezés részei A vizsgálatokat a következő mérési összeállítással végeztük: Apollo NMR (NQR) spektrométer (Tecmag Inc.) (5-450MHz frekvencia-tartomány, számítógépes vezérlés és adatgyűjtés) SK 2004, szélessávú 1kW teljesítményű adófokozat kvadrupólus rezonancia gerjesztésére alkalmas, hangolható vizsgálófej és illesztő áramkör kiszajú mérővevő gyors feléledésű Q kapcsoló fokozat A teljes mérőrendszer egyszerűsített vázlatát a 5. ábra szemlélteti, a célfeladat számára készült fokozatok kapcsolási rajza a 6., 7. és a 8. ábrán látható. A vizsgálandó anyagmintát magába foglaló rezonáns kör az adófokozathoz nagyteljesítményű gyorskapcsolóval (FET), a mintavevőhöz túlfeszültségvédő és Q csillapító áramkörrel csatlakozik (6. ábra). A 7. ábra a gyorsfeléledésű, kiszajú előerősítő egyszerűsített kapcsolási rajzát, a 8. ábra a gyorskapcsoló (kapuzott Q kapcsoló) köröket vezérlő fokozatokat szemlélteti. A robbanóanyagok azonosításának feltétele a kvadrupólus rezonancia frekvencia értékének 1 ppm (10-5 relatív) pontossággal történő beállítása, valamint a T 1 relaxációs idő - 7 -

ismerete, amelynek alapján a gerjesztés teljesítménye, impulzusának hossza és periódusideje optimalizálható. A demonstrációs kísérlet során az alkalmazott ν 0 gerjesztő frekvencia 5,196 MHz, a gerjesztő rádiófrekvenciás impulzus hossza 20 µs, az ismétlési idő 10 ms volt, továbbá 50000 átlagolást végeztünk. A kapott spektrum a 4. ábrán látható. 4. ábra RDX robbanóanyag NQR spektruma (ν 0 = 5,196 MHz) a demonstrációs kísérletben, minta mennyisége 300 g. - 8 -

Robbanóanyagok kimutatására alkalmas vizsgálóberendezések Ismereteink szerint kereskedelmi forgalomban robbanóanyagok és kábítószerek kimutatá-sára alkalmas célberendezéseket a Quantum Magnetics, Inc. cég kínál az alábbi felderítési feladatokra: Típus Alkalmazási terület Ár (1000 USD) QED 600 Kézitáska, kisebb csomag postai küldemény 65 QED 500 Táska, bőrönd, doboz 340 QED 1000 Nagyméretű csomag, láda 365 LiquiScan Folyadékok azonosítása üvegben, palackban 230 3. Táblázat NQR elven működő robbanóanyag-felderítő eszközök, és ezek ára - 9 -

- 10-5. ábra A teljes mérőrendszer (Tecmag, Inc. Apollo) vázlata

ADÓ BE - 11 - FET Erősitő bemenetre 6. ábra Mérőkör

Detektorhoz -12- Erősitő bemenet 7. ábra Gyors feléledésű előerősítő

-13-8. ábra Gyors kapuzó vezérlőkör